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Abstract. Electrodeposition in a thin cell (ECD) in a vertical position, with the cathode above
the anode, yields a growth pattern formation whose signature is a dense branched morphology.
However, detailed analysis of front evolution reveals a complex competition between neigh-
boring branches leading to a locally fluctuating growth. Here we study the nature of this quasi
equilibrium growth through a new macroscopic model and its numerical simulation. The model,
based on first principles, uses the Nernst-Planck equations for ion transport, the Poisson equa-
tion for the electrostatic potential, the Navier-Stokes equations for the fluid flow and a new
growth model, based on a Dielectrical Aggregation Model (DBM), for deposit growth. Numer-
ical simulations in realistic 3D cells using serial and parallel computing are presented; in the
latter use is made of domain decomposition techniques with a strongly implicit iterative method
implemented in a Beowulf cluster under MPI and Linux. This allows the utilization of very fine
grids with a more realistic physical parametrization and results in a robust scalable algorithm
attaining almost linear speedup. Theory and simulations suggest the detachment of the leading
branch from its neighbors, an enlargement of its tip in the form of a mushroom, and the pres-
ence of vortex rings and vortex tubes wrapping the dendrite tip, in qualitative agreement with
experimental observations.
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1 INTRODUCTION

In a thin-layer cell electrochemical deposition (ECD) experiment, the electrolytic cell consists
of two glass plates sandwiching two parallel electrodes and a metal salt electrolyte. A voltage
difference applied between electrodes produces a ramified deposit by reduction of the metal
ions. Depending in the cell geometry, its orientation relative to gravity, electrolyte concentra-
tion, cell voltage and other parameters, the deposit can be fractal, densely branched or dendritic.
ECD has become a paradigmatic model for the study of growth pattern formation (GPF), that
is, the unstable growth of interfaces.1–25

In thin-layer cell electrochemical deposition (ECD) experiments, dendrite growth is accom-
panied by a complex physicochemical hydrodynamic ion transport process. Ion transport is
mainly governed by diffusion, migration and convection, and convection is mostly driven by
coulombic forces due to local electric charges and by buoyancy forces due to concentration
gradients that lead to density gradients.

Convection certainly increases ECD complexity and it is natural to try to reduce its influ-
ence. Several ways have been proposed with this objective in mind.12,13,22,26–28In particular,
in,12 ECD experiments in which the cell is oriented vertically relative to gravity were exam-
ined. The authors found that, when the cathode (and low density fluid) is above the anode
(and high density fluid), the invasion of the cell by the gravity induced rolls can be avoided
while electroconvection remains. When dendrites are present, horizontal concentration gradi-
ents drive convection near the growing tips, a competition emerges in which convective motion
feeds branches lagging behind until they reach the leading branches. According to the authors,
this mechanism inhibits competition leading to a uniform front rather than a hierarchy of branch
sizes as seen in horizontal cells.

In the vast majority of previous ECD theoretical models with cells in the horizontal position,
a binary electrolyte, fixed electrodes and potentiostatic conditions were assumed. Experimen-
tal evidence indicates that more realistic modeling should take into account proton migratory
fronts12,20,29–34, a reasonable growth law and boundary conditions for galvanostatic regimes.
An effort in these directions were the works in,4,32,33 where 1D ECD models, with cells in
the horizontal position, with a linear growth law or with three ion electrolytes under constant
voltage and steady state regimes were presented. The linear growth law was based upon the
experimental evidence of several researchers showing that in many cases the deposit growth
speed is equal or similar to the anion drift speed in the relatively unperturbed solution ahead of
the growing tip (see for instance,4) and in the assumption of dense branched morphology.35

It is clear from the previous discussions the need for a fully three-dimensional model of ion
transport taking into account a three-ion electrolyte, convective effects and a realistic aggre-
gation model, for describing ECD problems with cells in the horizontal position. But this is,
indeed, a formidable task.

A first step towards that goal was presented in,25 and consisted in a simplified 1D macro-
scopic model for an ECD experiment in an horizontal cell taking into account a three-ion elec-
trolyte and a linear growth law as the aggregation model. The model revealed new insights of

MECOM 2005 – VIII Congreso Argentino de Mecánica Computacional

2518



the fronts interaction and time scaling. However, the need for neglecting convective effects in
ECD with cells in horizontal position was a limitation of the model.

In a more recent paper,36 experimental measurements of ECD in cells in the vertical position
with the cathode above and below the anode and a 3D theoretical model was presented. The
model revealed useful insights of ECD in vertical cells but was limited to binary electrolytes
in the absence of dendrite growth. The results of that work show that global convection was
suppressed and therefore a one dimensional analysis neglecting convection could be attempted.
Accordingly, this study was presented in.37 Again, this model gave new insights of the ECD
problem but clearly it cannot handle local growth fluctuations as described in.12,36

The aim of this paper is to go one step further in describing conditions in a vertical cell
with the cathode above anode, extending the works in12 and in,36 in particular addressing the
local growth fluctuations by means of the introduction of a theoretical 3D model with a new
aggregation model and comparison with experimental measurements. Simulations are carried
up in serial and parallel architectures.

The plan of the paper is the following. The phenomenological model and experimental
results are presented in Section 2. Section 3 presents the theoretical model and numerical sim-
ulations in a serial and parallel machines. The final section draws some general conclusions.

2 THE PHENOMENOLOGICAL MODEL AND EXPERIMENTAL RESULTS

In what follows we present the phenomenological model for a cell in a vertical position (the
experimental setup is the same as that presented in25). In an ECD experiment in a vertical cell
(with the cathode above the anode), when the circuit is closed, current starts flowing through
the cell and ion concentration boundary layers develop near each electrode. At the anode the
concentration is increased above its initial level due to the transport of anions towards, and the
dissolution of metal ions from the anode. At the cathode, the ion concentration is decreased
as metal ions are reduced and deposited out and anions drift away. These concentration varia-
tions lead to density variations, and therefore to concentration fronts at the electrodes. In this
configuration the high density fluid is below the low density fluid, hence a stable stratified flow
emerges in which gravitoconvection is suppressed. Stratification remains stable as long as there
is no growth of dendrites. This configures a globally stable flow in which there is no con-
vection: the cathodic and anodic concentration fronts being lighter and heavier, respectively,
than the fluid adjacent, do not detach from their respective electrodes, and the absence of den-
drites precludes electroconvection. During this initial period, ion transport is mainly diffusive
and migratory and cation depletion at the cathode is supposed uniform. Simultaneously, in a
very narrow region near the cathode a local charge develops, giving rise to local electric forces
initially pointing towards the cathode.

After a few seconds, an instability develops, triggering the growth of a deposit at the cath-
ode. The deposit develops as a three-dimensional (3D) array of thin porous metallic filaments.
Electric forces concentrate at the tips; each porous filament allows fluid to penetrate its tip and
to be ejected from the sides, forming a vortex ring driven by the electric force. But as soon as
dendrite appears stratification breaks down because the fluid concentration surrounding a down-
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ward growing dendrite tip diminishes, creating an horizontal concentration gradient and thus,
locally gravitoconvection. Clearly, the presence of dendrites generates a vortex tube driven by
gravity which sums to the vortex ring driven by local electric charges. In the resulting growth
competition, gravitoconvection supplies branches lagging behind until they attain the leading
branches. The global result is a rather uniform deposit front with local dendrite growth fluctu-
ations. An example of this behavior is presented in Figure 1 that shows schlieren snapshots of
the evolution of the deposit front (dark pixels) and the cathodic and anodic concentration fronts
(light pixels). The deposit front looks rather smooth in the average, dendrite tips surrounded by
tenuous concentration arches joining neighboring tips. The shape of the arches is the result of
electroconvection and gravitoconvection.

Figure 1: Schlieren images of ECD in a vertical oriented cell at (a) 80s, (b) 160s, (c) 240s and (d) 320s. Copper
sulfate solution concentration is 0.1M, the cell dimensions are70× 10× 0.2 mm3 and the applied constant current
is 7.5mA.

However, an enlarged image of a small section of the dendrite front shows the fluctuating
growth evolution of a branch and its neighbors as presented in Figure 2: once a branch is
detached from its neighbors, its tip enlarges adopting the shape of an inverted mushroom; the
situation continues until the lagging branches catch up with the leading branch. The following
explanation is advanced. As the leading branch detach from its neighbors, its local charge
increases, the ion transport becomes more electroconvective dominant, which in turn tends to
accelerate the leading branch. However, simultaneously, a buoyancy force develops, a force that
is proportional to the size of the leading branch detachment. An increase in the buoyancy force
feeds flow to the neighboring branches accelerating them (buoyancy brings higher concentration
solution to the lagging branches accelerating them). There is another angle to this description
which merits a detour: during its detachment, the leading branch encounters a region of higher
concentration surrounding its front and sides that increases the aggregation giving rise to a
mushroom like shape. In turn, this mushroom effect decreases the local electric force at the tip
due to the local charge spread. How this affects the global balance is still a matter of conjecture.

To study in detail the behavior at the tip of a branch we present an ECD experiment in a
vertical cell (cathode above anode) in which a small detachment (fluctuation) of a branch from
its neighbors is represented by a small protruding spike in an otherwise flat cathode. The result
is shown in figure 3 where convection is visualized with 200 snapshots of micron sized tracer
particles, spanning an interval of 20 s, superposed to show their motion. The resulting motion
is the effect of the superposition of two pairs of counter-rotating vortices due to local buoyancy
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Figure 2: Enlarged Schlieren images of ECD in a vertical oriented cell at (a) 160s, (b) 185s, (c) 200s, (d) 250s,
(e) 300s and (f) 325s showing the growth fluctuation. Copper sulfate solution concentration is 0.1M, the cell
dimensions are70× 10× 0.2 mm3 and the applied constant current is 7.5mA.

and local electric forces.

3 THEORETICAL ANALYSIS AND NUMERICAL SIMULATIONS

Ion transport in thin-layer ECD can be described with a mathematical model based on first
principles,38–41 including the Nernst-Planck equations for ion transport, the Poisson equation for
the electric potential, and the Navier-Stokes equations for the fluid flow. The 3D dimensionless
system of equations can be written as

∂Ci

∂t
= −∇ · ji (1)

ji = −MiCi∇φ− 1

Pei

∇Ci + Civ (2)

∇2φ =Po
∑

i

ziCi (3)

∂ζ

∂t
+∇× (ζ × v) =

1
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∇2ζ+

∑
i
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−Ggi
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(
Ci

g

g

) ] (4)

E. Mocskos, G. Gonzalez, G. Marshall, S. Dengra, and F. V. Molina

2521



Figure 3: Visualization of 1µm sized particle trajectories near the cathode spike (amplified). To show the motion of
tracer particles, 200 digital images were superimposed in the intervals (a) 0-20s, (b) 20-40 and (c) 40-60s. Copper
sulfate solution concentration is 0.1M with 30% glycerol in weight, the cell dimensions are70× 10× 0.127 mm3,
the applied constant current is 2mA and the spike dimensions are1× 0.5× 0.127 mm3

ζ = −52Ψ (5)

v = 5×Ψ (6)

Here Ci and ji are the dimensionless concentration and flux of an ionic speciesi (for a
ternary electrolyte such as ZnSO4 /H2SO4, i= C, A and H, standing for zinc, sulphate and
hydrogen ions);v, φ, ζ and Ψ are the dimensionless fluid velocity, electrostatic potential,
vorticity vector and velocity potential vector, respectively;g/g is a unit vector pointing in the
direction of gravity. The quantitiesMi = µiΦ0/x0u0, Pei = x0u0/Di, Po = x2

0C0e/εΦ0,
Re = x0u0/ν, Ge = eC0Φ0/ρ0u

2
0 andGgi

= x0C0gαi/u
2
0, stand for the dimensionless numbers

Migration, Peclet, Electric Poisson, Reynolds, Electric Grashof and Gravity Grashof numbers,
respectively. The quantitieszi, µi, andDi are, respectively, the number of charges per ion,
mobility and diffusion constants of an ionic speciesi; µi andzi are signed quantities, being
positive for cations and negative for anions;g is the dimensional gravitational acceleration;e is
the electronic charge,ε is the permittivity of the medium andν is the kinematic viscosity.x0, u0,
φ0, C0, andρ0 are reference values of the length, velocity, electrostatic potential, concentration,
and fluid density, respectively. For system closure, a Boussinesq-like approximation has been
used for the fluid density:ρ = ρo(1 + Σiαi∆Ci), whereαi = 1

ρo

∂ρ
∂Ci

.
System (1-6), with appropriate initial and boundary conditions, is valid in a space-time do-

main defined byG = [Ω(t)x(0, t)], whereΩ is a three-dimensional region with boundaryΓ(t);
this boundary moves with speed proportional to the norm of the fluxji. The boundary condi-
tions for the velocity potential vector are discussed, for instance, in:42 in a plane impermeable
surface, the vector is normal to the surface and its gradient is zero; at nonslip surfaces, the
tangential derivative of the velocity components are zero.

The computational model solves the previous 3D system of equations, for each time step,
in a fixed or variable domain, in a 3D uniform lattice, using finite difference and deterministic
relaxation techniques. Its solution is obtained via the system of difference equations:
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Wn+1
k =

∑
j

ajW
n
j (7)

where j represents the nearest-neighbor site of the site k; the summation ranges over all nearest-
neighbor sites;Wk is a vector-valued function whose components are the concentrationsCi,
the electrostatic potentialφ, the vorticity vectorζ and velocity potential vectorΨ; andaj is a
diagonal matrix whose elements contain the nonlinear coefficients of the discretized equations.
The resulting solutionWn+1

k is then used to advance the interface with a dielectrical breakdown
model (DBM).43 The interface is moved at random, proportionate to the flux of cations, i.e.,

pk =
|jck

|∑
i |jci

|
(8)

wherek is a nearest neighbor site to the interface,pk is the probability of selecting the nearest
neighbor sitek to advance the interface, the summation is over all nearest neighbor sitesi to the
interface, andjck is the flux of cations flowing from the neighbor site k into the aggregation.

In the following we present numerical simulations of ECD experiments with the cell in a
vertical position with the cathode above the anode and with a spike in an otherwise flat elec-
trode. In all the simulations we assumed a binary electrolyte. Here we describe serial computing
results with a moving boundary. Details of the parallel simulations using domain decomposi-
tion techniques in a fixed domain implemented on a Beowulf cluster under MPI and Linux are
presented in a separate work in this conference (P. Milano, E. Mocskos and G. Marshall, Mejo-
ras en la perfomance de un programa paralelo de fisicoquimica hidrodinamica computacional
en un cluster Beowulf heterogeneo, MECOM2005). In that work it is shown that a judicious
mix of parallel techniques allow the utilization of very fine grids with a more realistic physi-
cal parametrization, resulting in a robust scalable algorithm in which almost linear speedup is
attained.

A typical cell is represented by a cubic grid of240 × 60 × 160 nodes. The dimensionless
numbers used are:Ma = 0.625, Mc = 0.42, Pea = 2.4, Pec = 3.6, Po = 1.9 × 102,
Re = 2.5 × 10−3, Ge = 1 × 104, Gga = 2.0 × 104 andGgc = 1.33 × 104. These numbers
correspond to the experiment presented in figure 3 except for the real Poisson and Electric
Grashof numbers (in the order of1×108 and1×1012 cm−3, respectively, see21), which cannot be
handled, because they produce unstable numerical solutions. All the graphics for the numerical
simulations is done with the plotting packageOpenDx.44

Towards a description of the experiment shown in figure 3 we present a simulation in which
a solitary dendrite is mimicked by a square spike or finger protruding from the cathode. The
results of the evolution of the velocity field superimposed with an anion isoconcentration sur-
face, in a longitudinal cross-section at the cell center, are shown in figures 4 and 5. In these
figures, the isoconcentration surface is taken close to the finger growth, thus indicating the
growth shape. The figures also show the hydrodynamic pattern near the growth resulting from
a composition of the vortex tube driving by local gravitoconvection and the vortex ring driven
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by electroconvection. Away from the cathode, there is a stratified flow with a complete absence
of convection as in the experiments.

Figure 4: ECD in a vertical cell: simulation near the spike (enlarged): velocity field superimposed with an anion
isoconcentration surface at three successive times.

Figure 5: ECD in a vertical cell: simulation near the spike (enlarged): velocity field superimposed with an anion
isoconcentration surface at the next three successive times.

4 CONCLUSIONS

We reported experimental measurements of ECD with a cell in the vertical position and the cath-
ode above the anode, and we introduced a 3D theoretical macroscopic model with a stochastic
aggregation model for dendrite growth and numerical simulations in serial and parallel ma-
chines describing many features of those flows. Parallel simulations using domain decomposi-
tion in a Beowulf cluster under MPI and Linux allowed much more realistic physical descrip-
tions. In some of them, almost linear speedup was attained. Our model predicts that when the
cathode is above the anode and no growth of dendrites is present, the flow is globally stable.
When dendrites are present the fluid concentration near a downward growing tip is lowered
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thus generating a vortex tube (driven by gravitoconvection) superposed to a vortex ring (driven
by electroconvection) wrapping the dendrite tip (much as in the case of the horizontal cell in
which the dendrite tip is surrounded by gravito- and electroconvective vortices, respectively).
The region close to the anode is not affected by the growth and remains without convection.
This yields a quasi-stable flow regime.

In the presence of dendrites, our model predicts the existence of a vortex ring at the tips of
the dendrites, driven by electroconvection, allowing fluid to penetrate at the tip and be ejected
from its sides. Local flow at the tips is the result of vortex tube and vortex ring superposition:
both have the same sign, that is, at the tip’s left and right sides, both vortices are clockwise and
counter clockwise, respectively. The simulated growth at the tips of the dendrite exhibits the
formation of a mushroom. Such behavior is observed in experiments.
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[36] G. Marshall, E. Mocskos, G. González, S. Dengra, F.V. Molina and C. Iemmi. Stable,
quasi-stable and unstable physicochemical hydrodynamic flows in thin-layer cell elec-
trodeposition.E. Acta, (in press) (2005).
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