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Abstract. In this paper, aspects regarding implementation of the boundary element dual reciprocity 
method—multi-domain approach (DRM-MD), in respect to 3D problems are reviewed. Results of 
numerical tests on a 3D advection–diffusion problem with non-uniform velocity field are presented. 
The sensitivity of the accuracy and stability of the codes to the continuity of the elements, scaling, 
internal DRM nodes and mesh refinement have been tested. The results show that scaling is essential 
and that mesh refinement and/or internal DRM nodes improve the accuracy when the non-
homogeneous term of the governing equation becomes dominant. The computer code implemented 
with discontinuous elements offers higher accuracy, especially for advection dominant transport, but is 
much slower than the computer code with continuous elements. At the present stage, the discontinuous 
element code has the advantage of flexibility since it can solve non-homogeneous domains. 
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1 INTRODUCTION 

The dual reciprocity method (DRM), which was introduced by Nardini and Brebbia 
(1983), is acknowledged to be one of the most effective boundary element method (BEM) 
techniques for transforming domain integrals into boundary integrals. 

The accuracy and stability of the DRM is strongly dependent on the function used in the 
DRM approximation, for which a variety of interpolation functions can be used. Until the 
1990s simple ad hoc expansions such as 1+R, where R is the distance between a collocation 
point and a field point, were preferred by users. With the application of the theory of radial 
basis functions (RBFs) in the context of the DRM the procedure gained a solid mathematical 
foundation. The origin of RBFs can be traced back when they were applied to geophysical 
data interpolation. In the 1990s, Golberg and Chen (1994, 1996) introduced the theory of 
RBFs in the DRM field and demonstrated that the DRM converges if RBFs are used as 
interpolation function. They pointed out that the early success of 1+R as approximation 
function in the DRM is due to the fact that it belongs to RBFs. 

A characteristic feature of the DRM is that it uses a set of internal points to improve its 
accuracy. The accuracy of the method is sensitive to both the number and distribution of the 
DRM points. These two factors constitute its main drawbacks, as there are no standard criteria 
to deal with them. There have been some attempts in using adaptive techniques (Schclar, 
1993; Rodríguez and Power, 2002) in order to approach this problem. 

The DRM has been demonstrated to be a general and reliable procedure. However, as 
many of the RBFs used are globally supported the matrix of the resulting system of equations 
is dense and frequently ill conditioned, when applied to large problems. This makes the 
method computationally expensive and sometimes unstable. There are two ways to avoid 
these difficulties: by using compactly supported RBFs (CS-RBFs) or by using domain 
decomposition. 

Positive-definite CS-RBFs, which are locally supported, have been explicitly constructed 
and applied to multivariate safe reconstruction in mid-1990s by Schaback (1995), Wendland 
(1995) and Wu (1995). Since then, much effort has been focused on building efficient 
algorithms using CS-RBFs, as a result of which new functions have been proposed 
(Wendland, 1995; Buhmann, 2001). The implementation of these functions leads to a sparse 
system of equation that is free of the problems mentioned above, due to the local support. 
However, the current stateof-the-art CS-RBFs faces two main difficulties: (a) their accuracy 
and efficiency depend on the scale of the support, with the scale being uncertain, and (b) the 
convergence rate of CS-RBFs is low. 

Domain decomposition is a technique that is commonly used in the BEM when the domain 
is piecewise homogeneous. After applying the numerical formulation in every subdomain, the 
final system of equations is obtained by means of a set of matching conditions in the 
interfaces between subdomains. The resulting system of equations is not dense, and the 
sparsity of the system increases with the number of subdomains. Popov and Power 
implemented a scheme using domain subdivision in conjunction with the DRM to avoid 
domain integration and called it the dual reciprocity method—multi-domain approach (DRM-
MD). The initial problem solved using this formulation was the flow of a mixture of gases 
through a porous media (Popov, Power and Baldasano, 1998; Popov and Power, 1999a, 
2000). The DRM-MD has also been applied to linear and nonlinear advection–diffusion 
problems (Popov and Power, 1999b), driven cavity flow of Navier–Stokes equations (Florez 
and Power, 2002a) and of non-Newtonian fluids (Florez and Power, 2002b), and the flow of 
polymers inside mixers with complex geometries (Florez, 2001). DRM-MD does not suffer 
the two main problems related to standard DRM; the systems of equations produced by DRM-
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MD are sparse and well conditioned, and the number and position of DRM nodes is usually 
not critical, since small sub-domains usually require no or few interior DRM nodes. 

Most of the reported results of the DRM-MD in the literature refer to 2D applications. As 
the method was extended to 3D problems in 2004 (Natalini and Popov, 2004), presently a few 
facts are known about 3D implementation, though this is an issue that is far from being 
settled. For instance, Natalini and Popov (2004, 2006) tested 10 different DRM 
approximation functions, five globally and five compactly supported RBFs, in codes that 
solve Poisson and advection–diffusion problems. The highest accuracies were obtained by 
using compactly supported RBFs. However, a suitable size of the support must be known a 
priory and there is no rigorous guideline to choose it. It is known that a small size of the 
support guarantees a safe recovery, but a large one reduces the error at expense of stability. 
Therefore a balance must be reached between these two factors. This topic has been discussed 
within the framework of multiscattered interpolation theory by Floater and Iske (1996) and 
Schaback (1995) among others. Floater and Iske proposed a strategy but it is to be used in a 
hierarchical scheme for smoothly interpolating scattered data, which cannot be applied in the 
numerical models presented here or the ones of Natalini and Popov (2004, 2006). 
Consequently Natalini and Popov concluded that the augmented thin plate splines (ATPS) 
appear to be the best choice at the moment, as ATPS produced one of the most accurate and 
certainly the most consistent results without introducing any additional parameter. 

On the other hand, Peratta and Popov (2006) applied the DRM-MD in a hybrid formulation 
to large 3D problems of transport in fractured porous media. Based on comprehensive 
research by Portapila and Power (2001, 2005) on the application of iterative solvers in 2D 
DRM-MD codes, they used an iterative solver combined with a MC64 preconditioner. The 
preconditioner showed to be essential since it reduces the CPU time required by the solver by 
several orders of magnitude. 

In this paper, the sensitivity of the method to factors such as continuity of the elements, 
scaling, mesh refinement and number of internal nodes is tested for an advection-diffusion 
problem with variable velocity field, in order to have a better insight into the 3D 
implementation of the DRM-MD. 

2 THE DUAL RECIPROCITY METHOD 

Let us consider the following Poisson equation, with the transport coefficient equal to one 

)(2 xu∇ = b(x)                                                                       (1) 

where )(xu  is a scalar field (potential function), )(xb  the non-homogeneous term, and x the 
position vector in the domain with components ei.  

Given a point x belonging to a domain Ω, which is enclosed by a contour Γ, the Green 
integral representation formula for (1) gives the value of u at x in terms of integral equations 
involving the fundamental solution of the Laplace equation: 

∫ ∫∫
Γ ΩΓ

Ω−=Γ−Γ+ yyy dbudquduqu )(),()(),()(),()()( *** yyxyyxyyxxxλ       (2) 

Here, u*(x,y) is the fundamental solution of the Laplace equation given by 

r
u 1

4
1),(*

π
=yx                                                          (3) 

for 3D problems, where r is the distance from the point of application of the concentrated unit 
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source to any other point under consideration, i.e. r = |x-y|, q(y) = ∂u(y)/∂n and q*(x,y) = 
∂u*(x,y)/∂n and n is the unit normal to the boundary of the sub-domain. Notice that in Eq. (2)  
all the integrals are over the boundary of the domain except for the one corresponding to the 
term b(y), which represents the sum of the non-homogeneous terms. The constant λ(x) has 
values between 1 and 0, being equal to 1/2 for smooth boundaries. 

To express the domain integral in (2) in terms of equivalent boundary integrals, the DRM 
approximation is introduced. The basic idea is to expand the b(y) term using approximation 
functions, i.e.: 

∑
+

=
=≅

IJ

k

k
k fbb

1
),(~)( zyy α                                                          (4) 

The functions f(y,zk) are approximation functions, which depend only on the geometry of 
the problem, and the constants αk are unknown coefficients. The approximation is done at 
(J+I) nodes, with J boundary nodes around the boundary of the domain and I nodes inside the 
domain. 

Once the DRM approximation of the non-homogeneous term, b(y), is implemented, the 
domain integral can be recast in terms of a series of surface integrals, and one finally arrives 
at a boundary only integral representation formula 

∫∫
ΓΓ

≅Γ−Γ+ yy dquduqu )(),()(),()()( ** yyxyyxxxλ  
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y

kk
k dquduqu

1

** ),(ˆ),(),(ˆ),(),(ˆ)( zyyxzyyxzxxλα         (5) 

For the numerical solution of the problem, the contour Γ is discretized in jΓ  elements and 
the density of the integrals in the above equation is defined in terms of nodal values by means 
of interpolation functions. After application of collocation technique (5) can be written in 
terms of four matrices, H, G, Û  and Q̂  which depend only on the geometry of the problem 

αqu )ˆˆ( QGUHGH −=−                                                  (6) 

In (6) the vector α  is unknown but it can be expressed as bα 1−= F , yielding 

bqu -1)ˆˆ( FQGUHGH −=−      (7) 

3 THE DUAL RECIPROCITY METHOD—MULTI-DOMAIN APPROACH 

The domain discretization in the BEM is usually used when there are few parts of the 
domain with different properties. In that case the domain decomposition is often used, in 
which the original domain is divided into subregions, and on each of them the full integral 
representation formula are applied. A case of a domain, which is subdivided into four sub-
domains, is shown in Figure 1. Though in Figure 1 a 2D domain is considered for the sake of 
simplicity, the conclusions can be extended to 3D cases as well. 

Matching conditions for a potential problem establish that at every node at the interface: 
(a) the value of the potential is the same for both subdomains. For instance, at node F of 
Figure 1 
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)()( 2112 F
F

F
F uu xx =                                                      (8) 

(b) the physical flux is the same for both subdomains 

),(),( 212121121212
FFFFFF ququ Φ−=Φ                                                (9) 

where the form of the function F depends on the physical problem under consideration. 
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Figure 1: Example of subdivision of a domain into sub-domains. 

While the BEM matrices that arise in the single domain formulation are fully populated, 
the sub-region formulation leads to blocks banded matrix systems with one block for each 
sub-region and overlaps between blocks when subregions have a common interface. Eq. (10) 
represents the structure of the system of equations in matrix form that corresponds to domain 
sub-division shown in Figure 1. 
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Aj represents the influence coefficients obtained by integration over the external boundary 
that bounds the sub-domain j and pi represents the unknown potentials uj or derivatives qj at 
the nodes on this part of the boundary. For example, for the sub-domain 1 the external part of 
the boundary is given with the curve from A to B. i

klA represents the influence coefficients 

obtained by integration over the interface of the sub-domains k and l and i
klp  represents the 

unknown potentials and derivatives at the nodes on the interface. When considering nodes on 
the interface several different situations may occur, of which only the most characteristic two 
will be explained in this text. The first one will be analysed using the node F on the interface 
between sub-domains 1 and 2. In this node there are four unknowns, two potentials and two 
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normal derivatives. Two equations can be written collocating from the F node, one for the 
sub-domain 1 and the other for the sub-domain 2. Using Eqs. (8) and (9) the contribution of 
this node towards a closed system of equations is achieved. The situation with node E is more 
complicated as this node is shared between four sub-domains. In each sub-domain there will 
be three unknowns, two derivatives and one potential, which would overall make 12 
unknowns. However, as the potential is unique in this node, using Eq. (8) three of the 
unknowns are eliminated reducing the number of unknowns to nine. Further, by using Eq. (9) 
the number of unknowns will be reduced to five, that is, four normal derivatives, for example 
the ones shown in Figure 1, and the potential. With four equations that can be written 
collocating from the node into each of the sub-domains, the contribution of this node towards 
closed system of equations is not yet achieved and unless the medium is homogeneous and 
the line/s B–E–D or/and A–E–C are smooth at the node E, this node would need to be 
converted to a discontinuous node in order that a closed system of equations is achieved. 
Node E when discontinuous will have four freedom nodes instead, moved for a small distance 
from the location of node E on the lines A–E–C, in the direction of A and C nodes, and on the 
line B–E–D, in the direction of B and D nodes. In each of the new freedom nodes a situation 
equivalent to the situation in node F will appear. When the medium is homogeneous and the 
intersection lines are smooth in E, it can be shown that q12=q43 and q23=q14, reducing the 
number of unknowns to three, making the final system of the equations over-determined. 
Therefore, when continuous, node E may have three degrees of freedom, contributing towards 
an over-determined system, or four degrees of freedom contributing towards a closed system 
of algebraic equations, depending on whether both or just one of the B–E–D and A–E–C lines 
are smooth in the node E. Node E can be continuous if all of the sub-domains 1–4 are with the 
same properties, or two by two of the neighbouring domains are of same properties, i.e., 1–2 
and 3–4, or, 1–4 and 2–3. In any other combination node E must be discontinuous, which 
produces eight degrees of freedom, contributing towards a closed system of algebraic 
equations. Similar analysis could be applied to nodes which are shared between three or more 
than four sub-domains in 2D or 3D. 

Next, let us define degree of overdetermination of acontinuous node, vO , as  

vO = eqN - unN       (11) 

where eqN  is the number of equations introduced by the node and unN  the number of 
unknowns at the node. 

Provided all the subdomains around the node have the same properties, the value of eqN  
and unN  can be calculated as  

eqN = subN  + coN       (12) 

unN = 1 + inN       (13) 

where subN  is the number of subdomains around the node, coN  the number of 
independent conditions of collinearity (in 2-D problems) or coplanarity (in 3-D problems) that 
exist in respect to interfaces joining the node and inN  the number of interfaces joining the 
node. 

4 MODEL FORMULATION 

In this paper, results on problems governed by the advection–diffusion equation 
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02 =−∇⋅−∇ kuuVuD
rr

                                                    (14) 

are presented, where D is the coefficient of diffusion, V
r

 is the vector of flow velocity and k is 
the reaction constant. Eq. (14) can be written as a non-homogeneous Laplace equation 

yielding a b term equal to ( )kuuV
D

+∇⋅
rr1 . After applying the DRM formulation (7), the 

resulting system of equations becomes 









+

∂
∂

+
∂
∂

+
∂
∂

−=− − uuVuVuVqu 321 k
eeeD 3

eee
21

1 1)ˆˆ( FQGUHGH   (15) 

where 1eV , 2eV  and 3eV are diagonal matrices containing the flow velocity components in the 
directions e1, e2 and e3, respectively. 

Replacing the partial derivatives by 

uu 1−

∂
∂

=
∂
∂ FF

ii ee
       (16) 

and denoting S the matrix 1)ˆˆ( −− FQGUH  yields 


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
+

∂
∂

+
∂
∂

+
∂
∂

=− −−− uuVuVuVqu 321 k
eeeD 3

eee
11

2

1

1
FFFFFFSGH  (17) 

Denoting as T the following matrix: 







∂
∂

+
∂
∂

+
∂
∂ −−− 11

2

1

1
FFFFFFS

3
eee eeeD 321 VVV  and 

reordering (17) produces 

0=−





 qu GS-T-H k

D
     (18) 

5 COMPUTATIONAL IMPLEMENTATION 

The implementation of the DRM-MD can be made in a variety of arrangements regarding 
factors such as domain subdivision, continuity of elements, shape functions, etc. The results 
presented in this paper were produced by two codes that basically differ in the continuity of 
the boundary elements. Apart from this, both codes require that the domain be subdivided in 
tetrahedral subdomains, being every side of every tetrahedron a triangular boundary element 
which geometry is described by a quadratic shape function; consequently, the geometry of 
every tetrahedron is described by ten geometrical nodes (Figure 2). This makes the codes very 
flexible to model complicated geometries. Quadratic shape functions have been also used to 
approximate the potentials and derivatives. The matrices arising from the model are stored in 
sparse format. This feature together with the use of iterative solvers makes it possible to run a 
wide range of problems on a PC. 

The main complications arising when using multidomain BEM approaches are due to mesh 
generation and assembly of equations. The problem of mesh generation is relatively easy to 
solve since a variety of commercial mesh generators are available. The assembly is more 
complicated in the subdomain BEM methods since potentials as well as derivatives need to be 
assembled as described in Section 3. For this purpose an assembling algorithm has been 
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designed that is general and easily adaptable to problems with different governing equations. 
The algorithm has been described by Natalini (2005). 

Both codes use ATPS as DRM approximation function. 

5.1 CODE A: a code using discontinuous boundary elements 

CODE A is the same used by Natalini and Popov (2004, 2006) to test different RBFs, 
which is to the authors’ knowledge the first ever reported 3D DRM-MD code. A modified 
version of this code was produced by Peratta and Popov (2006) to simulate transport 
phenomena in a waste repository. This code uses discontinuous triangular elements, following 
the treatment proposed by Do Rêgo Silva (1994), who described in detail the BEM 
implementation. Over every triangular element, six nodes of freedom are distributed 
according to Figure 3, where it can be seen that the nodes of freedom occupy positions that 
are different from the geometrical nodes. At every node of freedom there are two variables, 
which can be unknown or one of them can be specified as a boundary condition. Inside every 
tetrahedron, interior DRM nodes can be added. If interior DRM nodes have not been added, 
this code produces 24 equations for every subdomain. 
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Figure 2: Geometrical nodes of a tetrahedral 

subdomain. 
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5 6

 
Figure 3: Nodes of freedom on a discontinuous 

triangular boundary element. 

After the assembly is completed, the resulting system of equations is regular. Preliminary 
tests with different solvers gave the best performance with an iterative solver using a 
Conjugate Gradient-Normal Residual algorithm (Saad, 1996), which is in agreement with the 
experience of Peratta and Popov (2006). This solver with no preconditioning has been used in 
the examples presented in this work. 

5.2 CODE B: a code using continuous boundary elements 

This code uses continuous triangular elements belonging also to the family of elements 
proposed by Do Rêgo Silva (1994). The nodes of freedom occupy the same position as the 
geometrical nodes, hence it produces ten equations for every subdomain, provided interior 
DRM nodes have not been added. An important factor must be considered when using 
continuous elements. In Section 3 it has been explained that the contribution of a continuous 
node towards a closed system of equations cannot be achieved unless the medium is 
homogeneous and the plane connections between elements are smooth. When the mesh is 
structured, these conditions can be fulfilled, but in a general case the mesh is unstructured, 
therefore the condition is not satisfied , unless the node is on the boundary. Consequently, 
(18) was transformed in such a way that the variables at nodes were potential and partial 
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derivatives instead of potential and normal derivatives. The change of variables has been 
done in the following way. Let us apply Eq. (18) to a tetrahedral subdomain and express it in 
index notation. 

0=−







−− kikj

ij
ijij qgu

D
ks

th  with  

241
101
101

≤≤
≤≤
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k
j
i

  (19) 

Note that the subindex k goes from 1 to 24 because there are 24 normal derivatives in a 
single tetrahedron. At the same time, every normal derivative is the scalar product of the 
gradient and the unit normal vector: 
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By replacing (20) into (19), one obtains 
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The products between the elements of the G matrix and the components of the unit normal 
vectors can be assembled in three 10×10 matrices that we will denote 1eG , 2eG and 3eG . The 
resulting system of equations is 

0
321
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A further condition arises in order to apply (22): it must be at least four subdomains around 
every node in order to have a closed system of equations. This condition is not always 
fulfilled in apex nodes that are located in the boundary of the domain, where, instead, at least 
one condition of coplanarity can always be found. In those nodes the problem is defined as in 
the classical BEM, being the variables the potential and the normal derivative. 

The resulting system of equations of the CODE B is over-determined. The over determined 
system is solved in a least-squares sense by means of the LSQR algorithm. In the examples 
presented here preconditioning has not been used. LSQR is an iterative method for computing 
a solution p to equations Ap = m, where A is a real matrix with m rows and n columns and m 
is a real vector. Developed by Paige and Saunders (1982), it is based on the bidiagonalization 
procedure of Golub and Kahan. It is analytically equivalent to the standard method of 
conjugate gradients, but possesses more favourable numerical properties. 

6 NUMERICAL EXAMPLES 

Preliminary tests on Laplace problems showed maximum errors of 10-8 and 10-11 % for the 
codes using discontinuous and continuous elements, respectively. These results are not shown 
here since they do not have a domain integral, which would require the use of the DRM for its 
solution. 

The cases that will be shown correspond to a case of advection diffusion in a prismatic 
domain of length L = 1 in the 1e direction and width W = 0.2 in the 2e and 3e directions, see 
Figure 4. The governing equation is given by (14), whose DRM formulation is given by (18). 

The following boundary conditions were applied: 
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u(0, 2e , 3e )=U0 = 10   ;    u(L, 2e , 3e )=U1 = 4   (23) 

and 
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= 0                         (24) 
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Figure 4: Geometry of the domain and the boundary conditions used in the numerical example. 

The flow is in the 1e  direction, and the flow velocity field is a function of the reaction 
constant, k, and the 1e coordinate, and is given as 
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For this geometry, velocity field and boundary conditions, the concentration field is 
symmetrical to the longitudinal axis, and the results computed on any line parallel to the 1e  
axis are the same to the 1D problem with the following known analytical solution: 
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Figure 5 shows the distribution of flow velocities and Figure 6 the analytical solution along 
the domain for different values of k. Two meshes have been used: a rather coarse mesh of 173 
subdomains and a finer one of 1456 subdomains (see Figure 7). 

6.1 Tests on the scale of the problem 

An important issue in this kind of codes was analysed, which is the scale of the problem. A 
given problem can be converted into a similar one but with a different scale if a scale factor is 
properly applied on both the boundary conditions and the parameters of the governing 
equations. Once a result corresponding to this new problem is obtained, using again the same 
scale factor the solution of the original problem can be retrieved. From a mathematical point 
of view the results should be identical no matter whether scaling has been applied or not. In 
the codes presented here the scale affects the time needed for the iterative solver to converge. 
The reason is that in the BEM formulation some of the matrices have different dimensions. 
For instance, let us consider the resulting system of equations of the advection–diffusion 
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problem described by (18). The term 





 k

D
S-T-H has no dimensions, but the matrix G has 

a dimension of length, consequently, the size of the problem affects the condition number of 
the resulting system of equations. As the DRM formulation is applied locally to every 
subdomain, a change in the size of the mesh, that is, when refining the mesh, will change the 
condition number. 
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Figure 5: Magnitude of velocities along the domain for 
different values of k. 
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Figure 6: Analytical solution of the test cases. 

 

 
Figure 7: View of the subdivisions of the domain used in the examples. 

Figure 8 shows the variation of the condition number with the inverse of the scale factor, 
when using both CODES A and B and the mesh of 173 subdomains. The inverse of the scale 
factor indicates how many times the characteristic length of the problem has been enlarged. It 
can be seen that the condition number has a minimum for an inverse of the scale factor around 
two for CODE A, and around sixteen for CODE B. Note that CODE A is better conditioned 
than CODE B. Higher values of the inverse of the scale factor cause changes in the condition 
number that are more sudden for CODE A and depend on the value of the reaction constant k. 
Let us recall that in this problem the velocity field is a function of k (see Figure 5); the higher 
the value of k the more advective the problem. As both, the advective term and the reactive 
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term are contained in the term 





 k

D
S-T-H , this term becomes dominant when k increases; 

and as it has no dimensions, changes in the scale have less influence. For instance, for k = 0 
the rate of increment of the condition number with the inverse of the scale factor is higher 
than for k = 5 and k = 20. 
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Figure 8: Variation of the condition number with the inverse of the scale factor for both the discontinuous 
element code and the continuous element code. 
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Figure 9: Variation of the maximum error with the inverse of the scale factor for both the discontinuous element 
code and the continuous element code (the values corresponding to the continuous element code with k = 20 are 

not displayed because they stay uniformly around 14%). 

Figure 9 shows the variation of the maximum error with the inverse of the scale factor. For 
CODE A the best accuracy is in the range where the condition number is minimum. For 
CODE B the situation is different depending on the value of k. When the term 

1185



 







 k

D
S-T-H is dominant, the accuracy is not noticeably affected by the scaling, but when it 

is small or null, the error reaches a minimum for a scale factor that it is not the best from the 
point of view of the condition number. At the same time these optimal scales vary with the 
value of k.  

It is evident that it is convenient to scale the problem when using these codes. A single 
change in the unit system in which a given problem is being specified or a refinement of the 
mesh can cause the code to fail if scaling is not implemented. 

Table 1 and Table 2 compare the time that the solver needs to converge to the solution of 
the problem and the maximum error for both situations: with and without scaling, when using 
the refined mesh of 1456 subdomains. A better accuracy was expected with regard to the 
previous cases, in which a mesh of 173 subdomains was used. Note that in order to obtain a 
suitable scale factor it is the size of the subdomain what must be controlled rather than the 
size of the whole domain, hence, the scaling criterion was that the average size of the 
subdomains had to be kept the same as in the 173 subdomains case when the inverse of the 
scale factor was two, for CODE A, and fifteen, for CODE B. 

The results displayed in Table 1 and Table 2 show how the rate of convergence of the 
solver improves with the scaling. It reduces roughly three times the CPU time for CODE A 
and ten times for CODE B. The accuracy worsens when k is equal to five and zero, however, 
for these values of k the codes achieved good accuracy so the error was low. For the CODE B 
and k  = 40 the accuracy improves substantially with scaling. The refinement of the mesh 
clearly reduces the error when k = 20 but it does not when k is equal to five and zero. The 
convergence of the method with the refinement of the mesh shall be analysed in the next 
section. 

CODE A 
k = 40 k = 20 k = 5 k = 0  

Not scaled Scaled Not scaled Scaled Not scaled Scaled Not scaled Scaled 
Solver time 

[s] 
2366 746 2666 823 2928 895 3005 923 

Maximum 
error [%] 

6.3 6.5 0.94 0.92 0.039 0.36 0.0078 0.52 

Table 1: CODE A (discontinuous elements). Time needed by the iterative solver to reach convergence and the 
maximum error with and without scaling, for a refined mesh of 1456 subdomains. 

CODE B 
k = 40 k = 20 k = 5 k = 0  

Not scaled Scaled Not scaled Scaled Not scaled Scaled Not scaled Scaled 

Solver time 
[s] 

1451 103 1503 145 1621 158 1661 169 

Maximum 
error [%] 

33.2 23.0 2.0 1.9 0.13 0.78 0.066 1.0 

Table 2: CODE B (continuous elements). Time needed by the iterative solver to obtain a solution and maximum 
error with and without scaling, for a refined mesh of 1456 subdomains. 
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6.2 Mesh refinement and interior DRM nodes 

Both codes were tested using interior DRM nodes. Two situations were considered: (a) 
when one interior DRM node was added in the mesh in the middle of every subdomain, and 
(b) when five interior DRM nodes were added, preserving as much as possible equal distance 
between the nodes in order to avoid ill conditioned system of equations. The distribution of 
the interior DRM nodes is done automatically by the code, once the number of the interior 
DRM nodes is defined in the input data. 

It was expected that the accuracy would improve as more interior DRM nodes were added. 
Table 3 and Table 4 show that this was the case for both CODES A and B, using a mesh of 
173 subdomains. Table 5 shows that this is still the case for the CODE A when using a 
refined mesh of 1456 subdomains, but Table 6 shows that not always using interior DRM 
nodes a better accuracy for the case of CODE B is achieved. For k equal to 5 and 0, when 
adding one interior DRM node, the accuracy improves in regard with the case with no interior 
node; but using 5 interior nodes slightly worsen the accuracy in regard with the case with just 
one interior node. At the same time, by comparing Table 3 and Table 5 and Table 4 and Table 
6 it can be seen that both codes do not converge with mesh refinement when k = 5 and 0. 

In order to understand the results of Table 3–Table 6, let us recall that the BEM 
formulation (7) uses the fundamental solution of the Laplace operator, hence, if the problem 
under study is dominated by the Laplace operator, refining the mesh or adding internal DRM 
nodes would not necesarily improve the accuracy since new equations are being added, which 
worsen the condition number of the resulting system of equations. In the advection–diffusion 
problem considered here, the diffusive process is represented by the Laplacian while the 
advective transport is represented by the non-homogeneous term. Under these conditions, 
when mesh refinement is applied, in an advection dominated problem the accuracy always 
improves because at every subdomain the relative importance of the advective transport is 
reduced, or to put it another way, the local Peclet (Pe) number is reduced, since if a length 
scale linked to the size of the subdomain is used to calculate the Pe number at every 
subdomain, every time the mesh is refined, the Pe number decreases. If after refining the 
mesh the advection is still relevant, the accuracy can be improved by adding internal DRM 
nodes. 

CODE A 
 k = 40 k = 20 k = 5 k = 0 

Number of 
internal 

DRM nodes  
0 1  5 0 1  5  0 1 5  0 1  5  

Solver time 
[s] 

97 107 141 95 102 136 102 108 144 104 111 145 

Maximum 
error [%] 

29.6 28.3 23.3 4.37 4.14 3.12 0.17 0.16 0.13 0.03 0.03 0.03 

Table 3: CODE A (discontinuous elements). Maximum error with various number of interior DRM nodes. Mesh 
of 173 subdomains. 
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CODE B 
 k = 40 k = 20 k = 5 k = 0 

Number of 
internal 

DRM nodes  
0 1  5 0 1  5  0 1 5  0 1  5  

Solver time 
[s] 

10 17 45 10 19 47 12 20 55 13 24 63 

Maximum 
error [%] 

120 99 77 14.4 12.0 9.2 0.63 0.43 0.33 0.99 0.65 0.34 

Table 4: CODE B (continuous elements). Time needed by the solver to obtain a solution and maximum error 
with various number of interior DRM nodes. Mesh of 173 subdomains. 

CODE A 
 k = 40 k = 20 k = 5 k = 0 

Number of 
internal 

DRM nodes  
0 1  5 0 1  5  0 1 5  0 1  5  

Solver time 
[s] 

746 802 1115 823 885 1220 895 959 1304 923 986 1350 

Maximum 
error [%] 

6.5 6.08 4.41 0.92 0.90 0.67 0.36 0.24 0.05 0.52 0.36 0.07 

Table 5: CODE A (discontinuous elements). Time needed by the solver to obtain a solution and maximum error 
with various number of interior DRM nodes, for a refined mesh of 1456 subdomains. 

CODE B 
 k = 40 k = 20 k = 5 k = 0 

Number of 
internal 

DRM nodes  
0 1  5 0 1  5  0 1 5  0 1  5  

Solver time 
[s] 

103 201 637 145 231 707 158 306 972 169 325 1027 

Maximum 
error [%] 

23.0 26.3 30.1 1.9 1.61 1.37 0.78 0.51 0.67 1.0 0.65 
 

0.71 

Table 6: CODE B (continuous elements). Time needed by the solver to obtain a solution and maximum error 
with various number of interior DRM nodes, for a refined mesh of 1456 subdomains. 

The apex of the subdomains of the coarser mesh is about 1/10 long, and the one of the finer 
mesh is about 1/17 long. D was set equal to 1 in all the examples. Figure 10 and Figure 11 
show the values of the local Pe along the subdomain. Figure 10 shows that the local Pe is 
below 0.34 and 0.09 for k equal to 5 and 0, respectively, when using the coarser mesh. As the 
transport is mainly diffusive along the whole domain, the accuracy would not improve by 
refining the mesh. And this is what has been observed in both CODES A and B. Under these 
conditions, the results in Table 4 and Table 6 show that internal DRM nodes are not of much 
help for CODE B. Table 3 and Table 5 show that adding internal DRM nodes can improve the 
accuracy of CODE A. 
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Figure 10: Local Peclet number distribution for the 

coarser mesh. 
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Figure 11: Local Peclet number distribution for the 
finer mesh. 

When k is equal to 20, in vast parts of the domain the problem is advective enough as to 
show convergence with mesh refinement. When k is above 20, adding DRM nodes improves 
the accuracy for the same reason, and although at a first sight the results of the CODE B seem 
not to be in agreement with this conclusion, it shall be seen that they are not an exception. 

Figure 12 and Figure 13 show the distribution of the absolute and relative error when k = 
40 and the problem is solved with CODE B. The crosses correspond to NO internal DRM 
nodes, the triangles correspond to 1 internal DRM node and the dots to 5 internal DRM 
nodes. Figure 14 and Figure 15 show the same for CODE A. Figure 12 shows that adding 
internal DRM nodes in the case of CODE B reduces the absolute error where it is higher: in 
the zone where advection is more important, and slightly increases it in the middle of the 
domain, where diffusion is dominant. In the advective part of the domain, the absolute error is 
two orders of magnitude higher than in the middle. But, it is in the middle of the domain 
where the relative error is higher because the concentrations are the lowest, and that is why 
the maximum relative error increases with internal DRM nodes in Figure 13. Conversely, 
Figure 15 shows that in the CODE A case the relative error is distributed more evenly, then, 
adding internal DRM nodes improves both absolute and relative errors. 
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Figure 12: CODE B. Absolute error distribution for k 

= 40. 
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Figure 13: CODE B: Relative error distribution for k = 

40. 

According to the previous analysis, internal DRM nodes can be used to improve the 
accuracy but they should be placed only in those subdomains where advection is important. 
For instance, the test problem was solved with CODES A and B , with k = 40 and using the 
finer mesh with interior DRM nodes only in those subdomains where Pe > 0.65. Table 7 
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compares the obtained results with the ones of the codes using DRM nodes in every 
subdomain. Results of both codes show that similar accuracy is achieved in both situation, 
that is, when using internal nodes inside every subdomain and when using internal nodes only 
where Pe > 0.65; but in the later situation a good deal of solver time is gained compared with 
the former one. 
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Figure 14: CODE A. Absolute error distribution for k = 
40. 
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Figure 15: CODE A: Relative error distribution for k = 
40. 

 
CODE A - k = 40 CODE B - k = 40 

Internal DRM 
nodes in every 

subdomain 

Internal DRM 
nodes only where 

Pe > 0.65 

Internal DRM nodes in 
every subdomain 

Internal DRM nodes only 
where Pe > 0.65 

 

1 
IDRMN 

5 
IDRMN 

1 
IDRMN

5 
IDRMN 1 IDRMN 5 IDRMN 1 IDRMN 5 IDRMN 

Solver time 
[s] 

802 1115 777 927 201 637 174 381 

Maximum 
error [%] 

6.08 4.41 6.11 4.53 26.3 30.1 25.9 29.0 

Table 7: Comparison of the performance of the both codes using internal DRM nodes in every subdomain and 
only where Pe > 0.65. 

6.3 Comparison of performance of CODES A and B 

Table 3–Table 6 show that as long as the same mesh is used, CODE A is more accurate 
than CODE B, specially when the problem is dominated by advection, but the time required 
by CODE A to reach the solution is one order of magnitude higher than the time needed by 
CODE B. Let us recall that CODE A produces 24 equations for every subdomain while 
CODE B produces 10, provided no internal DRM nodes are added. In order to compare the 
performance of both codes having a similar number of degrees of freedom, a mesh of 413 
subdomains was produced and the example was solved with code B, with no internal DRM 
nodes (Table 8). In this case, CODE B produces a system of equation of 4130 degrees of 
freedom, which is very close to the 4152 degrees of freedom of the system produced by 
CODE A when using the 173 subdomain mesh (Table 3). If the comparison is done in this 
way, the difference between both codes regarding both accuracy and solver time is reduced, 
being the reduction more important as the problem is more advective. However, the trend is 
the same as it was observed previously, the CODE A shows to be more accurate and slower 
than CODE B. 

Note that the time appearing in Table 1–Table 8 corresponds only to the time needed by 
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the solver to converge to a solution; it does not compute the time required by other tasks of 
the codes such as the assembling of the system of equation. Let us recall that CODE A 
produces a regular system of equations while CODE B produces an overdetermined system, 
hence they use different solvers (Section 5). There is no simple argument to explain the 
magnitude of the difference observed between the solvers time. For example, the efficiency of 
the solvers is influenced by factors such as the condition number and the structure of the 
matrix of coefficients of the system. The two codes produce different matrices, which affects 
the efficiency of the solvers. A proper answer requires further research, similar to the one 
already completed for 2D DRM-MD codes (see Portapila and Power, 2001, 2005), which is 
currently being carried out. 

CODE B 

 k = 40 k = 20 k = 5 k = 0 

Solver time [s] 28 29 35 37 

Maximum error [%] 46.2 5.52 0.73 1.01 

Table 8: Solver time and maximum error for CODE B using a mesh of 413 subdomains. 

7 CONCLUSIONS 

In this paper, the sensitivity of the 3D implementation of the boundary element dual 
reciprocity method—multidomain approach (DRM-MD) to the continuity of the elements, 
scaling, mesh refinement and number of internal nodes, has been tested in an advection–
diffusion problem with non-uniform velocity field. 

It has been shown that implementation of scaling is essential for these kind of problems. 
The examples presented here are sensitive to length scaling, but it must be noted that when 
changing the governing equation other scales can become relevant. Tests were made on an 
advection–diffussion problem with non-uniform velocity field using both discontinuous and 
continuous elements (CODES A and B, respectively). The size of the subdomains, which 
depends on the size of the problem and the degree of refinement of the mesh, affects the 
condition number of the resulting system of equations and consequently the time needed by 
the iterative solvers to converge. By using scaling of the equations, the solver time was 
reduced by three and by ten times for the CODES A and B, respectively. 

For the examples tested, interior DRM nodes in every subdomain improved the accuracy 
of both codes provided they are used in subdomains where the advective transport, that is, the 
non-homogeneous term, plays a noticeable role, for instance, where the local Pe is above 0.5. 
Adding interior DRM nodes where the local Pe is lower than 0.5 would only increase the 
CPU time required by the iterative solvers without improving or even worsening the 
accuracy. The same can be said about mesh refinement. Every time the mesh is refined the 
DRM formulation becomes more diffusive at the level of every subdomain, and as the 
diffusive term is computed by the Laplacian, it does not make sense to refine the mesh further 
in areas where the local Pe is below 0.5. 

Regarding the use of continuous and discontinuous elements, it is difficult to say which 
strategy is better. The discontinuous element code offers higher accuracy, especially for 
highly advective transport, but it is much slower than the continuous element code. At the 
present stage, the discontinuous element code has the advantage that it can solve non-
homogeneous domains. The most convenient strategy is to have a choice to use both types of 
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elements in a single mesh, which would preserve the versatility of dealing with non-
homogeneous domains, while offering possibility for CPU and memory usage reduction. 
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