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Abstract. Direct numerical simulations (DNS) of air entrainment by breaking bow waves of
naval surface ships are outside of the computational reach of the most powerful computers in
the foreseeable future. This creates a need for models of air entrainment for applications in
numerical simulations for ship design. We present a model that is based on the local liquid ve-
locity and the distance to the interface, which determines whether air entrainment should occur.
Using this model and the bubble size distributions measured by Deane and Stokes1 we simu-
late the air entrainment in the breaking bow wave experiments of Wanieski et al.2 Comparison
against these experimental data is good. We then apply this model to simulate the flow around
naval combatant DTMB5415. The model predicts air entrainment in all the regions where it
is actually observed at sea, namely the breaking bow wave, along the water/air/hull contact
line and around the transom stern. To the best of our knowledge this is the first model of air
entrainment that compares favorably with data at laboratory scale and presents the right trends
at full-scale conditions.

Administrador
Cuadro de texto
Mecánica Computacional Vol. XXIVA. Larreteguy (Editor)Buenos Aires, Argentina, Noviembre 2005



1 INTRODUCTION

The simulation of air entrainment flows is of interest in ship hydrodynamics due to its implica-
tion for stealth capabilities, drag reduction and general design purposes. It is not only desirable
to know where the bubbles are produced but also how their presence affects the flow fields that
are normally calculated neglecting the presence of the bubbles, although very high void frac-
tions (i.e., 10 % or higher) are to be expected in some regions of the flow. Air entrainment is
also of importance for the design of spillways, hydraulic jumps and other facilities designed by
civil engineers.3 Finally the formation of air bubbles by ambient oceanic breaking waves plays
an important role in the exchange of gases between the ocean and the atmosphere.

In all these applications very large numbers of bubbles are formed, the air/water interface is
highly unstable and its length scales range from those dominated by surface tension and turbu-
lence (typically in the order of microns) to those of the mean flow (typically with length scales
of the order ofseveral meters). Given these features it is not surprising that few researchers have
tried to conduct Direct Numerical Simulations (DNS) of flows with air entrainment. Due to
its agreement with the macroscopic features of experimental data the work of Iafrati et al4 is
particularly significant. These authors used a level set technique to simulate the air entrainment
by a two-dimensional plunging liquid jet in a grid of approximately one million cells. They had
to stop the simulation immediately after the formation of the first air cavity due to lack of spatial
resolution and were unable to capture the formation of the multitude of small bubbles around
the main air cavity, again presumably due to lack of sufficient spatial resolution. Since we are
interested in continuing the simulation until the main air cavity has broken up and a statistical
equilibrium in the bubble population has been achieved, it is to be expected that a considerably
higher spatial resolution than that used by Iafrati et al is needed. It should be noted that the
successful capture of the macroscopic features of the interface for the 3D flow around a ship
model for tow tank conditions requires of the order of two million cells.5 Obviously this num-
ber would increase dramatically if the grid is refined sufficiently to resolve the formation of air
bubbles. Based on these arguments we believe that the DNS simulation of air entrainment flows
will remain so computationally expensive that its main use will be as a tool to develop subgrid
models of air entrainment process.

The main objective of this paper is to present a subgrid model that detects the location of
the air bubble entrainment region. Here our use of the term “subgrid” implies that the model is
designed to work in grids that do not have sufficient spatial resolution as to capture the details
of the air entrainment process. Rather, it has to be modeled. In this sense the situation is com-
pletely analogous to that of turbulence modeling in which Reynolds Averaged Navier Stokes
(RANS) models are often used when there is not sufficient spatial and temporal resolution to
capture all the flow features. In our case the grid will be insufficient to resolve the free surface
at the scales of the bubble formation. Yet if the description of the problem in terms of the free
surface location, average fluid velocities, turbulent kinetic energy and turbulent dissipation car-
ries enough information to detect the location of the bubble source such that a subgrid model for
the determination of the air entrainment region should be possible. In this work we show that

MECOM 2005 – VIII Congreso Argentino de Mecánica Computacional

2550



using a subgrid model for the location of the bubble source it is possible to obtain reasonable
quantitative agreement with the measurements of air entrainment by bow waves conducted by
Wanieski et al.2 Moreover, the model properly identifies the location of all the bubble sources
in the flow around a naval surface ship. Although no quantitative data are available in the open
literature for the air entrainment around ship flows, there is an abundance of qualitative data.

Once the location of the air entrainment region has been calculated using our subgrid model,
a two-fluid model can be used to compute the transport of the bubbles. Due to the need for
specifying a bubble size distribution and a source intensity (i.e., the number of bubbles entrained
per unit time and per unit volume generated by the air entrainment) at the source location our
simulations have not reached a completely predictive stage. However, our subgrid model greatly
advances the state-of-the-art of two-fluid model simulations of the flow around surface ships in
which not only the bubble size distribution and source intensity but also the source location is an
input for the simulation instead of being part of the computational results. For more description
of the current state-of-the art of the source specification for two-fluid model simulations of the
flow around ships see the work of Moraga et al6,7 and Carrica et al.8

High void fractions and strong turbulence-induced breakup are expected in the air entrain-
ment region.1 This fact calls for a two-fluid model that can handle polydisperse bubble popu-
lations, two-way coupling and turbulence-induced bubble breakup in close proximity to a free
surface. Although other researchers have developed two-fluid models with some of these fea-
tures,9 we are not aware of any implementation of a two-fluid model that combines all of them
in a single implementation.

2 TWO-FLUID MODEL

2.1 Mass conservation of the dispersed phase

To simulate polydisperse flows we separate the bubbles of different sizes intoG classes, or
groups, having a characteristic equivalent bubble diameter ofDg; g = 1, 2, ..G. In absence of
bubble coalescence and dissolution the conservation equation for the bubble number density,
N ′′′

g , for bubbles of characteristic diameter,Dg moving with velocityug, can be derived from a
Boltzmann-type transport equation, often referred to as the population balance equation:10,11

∂ N ′′′
g

∂ t
+∇ · (ug N ′′′

g

)
= Eg + B+

g − B−g , (1)

whereEg is the source of bubbles due to air ingestion and is one of the main focuses of this
work. The other sources/sinks of bubbles on the right hand side of equation (1) are due to
bubble breakup.
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2.1.1 The bubble source due to air entrainment

We model this source as,

Eg(x) = S0fE(Dg)∆Dg

∑
s

δ(x− xs), (2)

whereS0 is a constant that determines the bubble source intensity,fE(Dg) is a bubble size
probability density function and∆Dg is the width of the bin with characteristic diameterDg.
The sum over the Dirac delta function,δ(x − xs), is used to selectively activate the source
at the chosen points,xs, within the liquid region. Notice that in reality, air entrainment is an
interfacial process. We have two options to model the air entrainment, namely a boundary
condition at the interface or a volumetric source in a region close to the interface. Since we
do not resolve the small scales necessary to predict bubble entrainment, applying a boundary
condition to simulate the air entrainment process is problematic because bubbles are entrained
in short transient localized processes which are difficult, if not impossible, to simulate with a
RANS approach. The volumetric source, on the other hand, account for the fact that once the
bubbles are entrained, they’ll behave as a standard multiphase flow that obeys to the two-fluid
model approach that we follow.

Deane & Stokes1 measured the bubble size spectrum in breaking waves and found that,

fE(Dg) =

{
(Dg/2)α if Dg/2 < 1mm
(Dg/2)β if Dg/2 > 1mm

. (3)

where the constant exponentsα andβ depend on the age of the bubbly plume. Deane and
Stokes divide the lifetime of the bubbly plume into two phases; the acoustic phase where bub-
bles are born and the quiescent phase which begins when active bubble formation ceases. The
name of the acoustic phase is derived form the fact that bubble formation is accompanied by the
emission of audible noise. It is the short lived acoustic phase that determines the initial bubble
size distribution, while its evolution in the quiescent plume phase is controlled by advection,
turbulent transport and buoyancy. Since our two-fluid model is able to account for all these
phenomena, we are interested in the size distribution at the end of the acoustic phase. In other
words, our subgrid model of air entrainment by design aims at modeling the acoustic phase
with dealing with all the physics of bubble formation. This is made possible by the fact that the
time scale of the acoustic phase is at least one order of magnitude shorter than that of the quies-
cent phase. We also notice that most measurements of bubble size distribution below breaking
waves are for the quiescent phase and consequently they are less suitable to our purposes than
the measurements of Deane & Stokes. The exponents measured by Deane and Stokes for the
acoustic phase areα = −3/2 andβ = −10/3.

Before describing how we select the points,xs, where bubbles are injected, it is worth giving
a short description of the physical phenomena we aim to capture. Practically all air entrainment
flows are characterized by a region of very high void fraction below the interface separating the
continuous fluids. At the edge of this region the void fraction falls abruptly. See for examples
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the photographs in Figure 2 in the work of Deane & Stokes1 or Figure-1 of Clanet et al.12

As Clanet et al12 point out, this abrupt change of the void fraction is due to the fact that the
terminal velocity of bubbles is not a monotonous function of the bubble diameter, but presents a
minimum at about 0.22 m/s, independently of the Morton number of the bubbles.13 All bubbles
of diameter larger than a critical diameter,Dbc, have terminal velocities larger than 0.22 m/s, and
in the case of water,Dbc ≈ 1 mm. As a consequence, at the surface where the continuous liquid
is moving downward at the velocity 0.22 m/s there has to be an abrupt change of void fraction,
because only the small bubbles of diameterDb < Dbc can cross this surface. All other bubbles
will start to rise before or when they reach this surface. This idea is so robust that Clanet et al12

successfully used it to predict the functional dependence of the penetration depth of bubbles in
plunging liquid jets as a function of the jet diameter, velocity and incidence angle. Our subgrid
model of air entrainment aims at identifying the localized region of high void fraction bounded
by the surface at which the downward liquid velocity is 0.22 m/s at the place where bubbles
are originated. This is the volume where bubbles are formed either as a direct consequence of
the liquid jet impact or from the breakup of larger bubbles. Consistent with these ideas, in our
model the locations where air injection takes place,xs, satisfy the conditions,

0 < φ(xs) < φent (4)

and,
vc(xs) · g

|g| > vent ≈ 0.22 m/s (5)

whereφ andg are the distance to the interface and the gravity vector, respectively. The model
constant,φent, was used to select a band below the free-surface where the bubble source can
be non-zero and represents the maximum depth that bubbles can reach during the unresolved
acoustic phase. The model constant,φent, can be estimated from the depth of penetration of
bubbles entrained by plunging liquid jets. Reliable correlations exist for this depth.12 More-
over, in all flows such that the downward liquid velocity decreases monotonically with distance
from the interface, there is no penalty for overestimatingφent, which eliminates one adjustable
parameter. This is important because many air entrainment flows, plunging liquid jets among
them, are characterized by monotonically decreasing downward velocities. In particular the
steady breaking wave which we have simulated satisfy this condition. Thus in the breaking
bow wave simulations presented below there is no need to adjust the parameterφent. Only for
complex flows, such as those of ship flows is it necessary to introduce the parameterφent to
ensure that no bubbles are ingested too far from the interface, but even in this situation this
parameter has a clear physical interpretation. The other model constant,vent ≈ 0.22 m/s, is not
an adjustable parameter but is the terminal velocity at which there is a relative minimum in a
terminal velocity vs. bubble diameter plot.13 Thus, the only adjustable parameters in our model
for the bubble source due to air entrainment,Eg, areS0 in equation (2), and for some flows,φent.
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2.1.2 The bubble source due to bubble breakup

The termsB+
g andB−g in Equation (1) represent the net gain and loss, respectively, of bubbles of

sizeDg due to bubble breakup and are modeled using the turbulence-induced bubble breakup
model of Martinez-Bazan et al,10,14,15

B+
g =

∫ ∞

Dg

m(D0)f(Dg, D0)g(D0)N
′′′
0 dD0 (6)

and
B−g = g(Dg)N

′′′
g . (7)

The symbolg(Dg) represents the bubble breakup frequency of bubbles of equivalent diameter
Dg, m(D0) is the mean number of bubbles resulting from the breakup of a mother bubble of
sizeD0, andf(Dg, D0) is the size distribution of daughter bubbles formed from the breakage
of a mother bubble of sizeD0. Martinez-Bazan et al10,14 give the breakup frequency and the
probability density function of the daughter bubbles for binary breakup (m(D0) = 2), as,

g(ε,D0) = KgD
−1
0

√
β (εD0)

2/3 − 12σ/ (ρD0) (8)

and,

f(D∗) =

[
D∗2/3 − Λ5/3

] [
(1−D∗3)2/9 − Λ5/3

]

∫ D∗max

D∗min
[D∗2/3 − Λ5/3]

[
(1−D∗3)2/9 − Λ5/3

]
dD∗

(9)

where the model coefficientsKg = 0.25 andβ = 8.2 were found experimentally10,16 and the
nondimensional critical bubble diameter is given by,

Λ = Dc/D0 = (12σ/ (βρ))3/5 ε−2/5D−1
0 . (10)

The dimensionless daughter bubble diameter,D∗ = D/D0, ranges from a minimum value

of, D∗
min =

(
12σ
βρ

)3/2

ε−1D
−5/2
0 , to a maximum value of,D∗

max = [1−D3
min/D

3
0]

1/3. In the

equations above,ε is the turbulent dissipation,σ the surface tension of the air/water system and
ν is the kinematic viscosity of the liquid.

2.2 Momentum conservation of the dispersed phase

Conservation of the ensemble-averaged momentum equations for the bubble group of sizeDg

may be expressed as,11,17

∂vgN
′′′
g ρdug

∂t
+∇ · vgN

′′′
g ρdugug = ∇ · vgN

′′′
g

(
Tg + TRe

g

)
+ vgN

′′′ρd g + Mg . (11)

wherevg is the average volume of a bubble of diameterDg. The interfacial force density,
Mg, the microscale tensor,Tg, and, the Reynolds stress,TRe

g , for the dispersed phase need to
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be constituted to achieve closure. Based on the large density ratio between the phases in an
air/water bubbly flow we neglect the Reynolds stress of the dispersed phase in the remainder of
this work. We also neglect viscous shear stresses and assume that the pressure varies little in the
interior of bubbles18 and that the ensemble averaged pressure of both phases are approximately
equal (i.e.,pg ≈ pgi ≈ pc, where the subindexi indicates interfacial magnitude). With these
assumptions, which are routinely used for air/water bubbly flows,17 equation (11) becomes,

∂vgN
′′′
g ρdug

∂t
+∇ · vgN

′′′
g ρdugug = vgN

′′′
g ∇pc + vgN

′′′ρd g + M′
g . (12)

where the interfacial force density,Mg was split into two forces, one dependent on the mean
field values and another,M′

g, on the fluctuating values. The mean force is modeled taking into
account only the mean pressure forces on the mean bubble, and neglecting viscous stresses.
Because it is not the main focus of this work, we have moved the description of the closure for
the fluctuating interfacial force density to Section 2.6.

2.3 Mass conservation of the continuous phase

The continuity equation for the liquid phase reads,18

∂αcρc

∂t
+∇ · αcρcuc = 0 (13)

It should be noted here that, although the liquid is assumed incompressible, the ensemble av-
eraged liquid velocity,uc, has non-zero divergence if the void fraction varies in time or space.
When no bubbles are present,αc = 1, and consequently Eq.(13) reduces to the mass conserva-
tion equation of an incompressible fluid. Given the geometrical restriction,

αc = 1−
G∑

g=1

αg (14)

the liquid volume fraction can be calculated after the void fractionsαg were related to the
calculated number densityN ′′′

g using equation(15), which is valid far away from walls,

αg(x, t) = vgN
η′′′. (15)

wherevg is the mean bubble volume. The case of proximity to a wall was of little interest in this
work, since the bubbles are all away from the wall. The interested reader is referred elsewhere.17

2.4 Momentum conservation of the continuous phase

Conservation of momentum for the continuous phase in the average sense is expressed as,18

∂αcρcuc

∂t
+∇ · αcρcucuc = ∇ · αc(Tc + TRe

c ) + αcρcg + Mc , (16)
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The reader interested in the modeling of the shear stress tensor,Tc is referred to the work of
Larreteguy et al.19 The Reynolds stress tensor is modeled as if it were a single-phase flow, that
is,

TRe
c = −(

2

3
ρck)I + 2µtDc (17)

whereI is the identity tensor, and we introduce the turbulence-induced pressure as,

pRe
1φ =

2

3
ρlk , (18)

and the turbulence-induced shear stress as,

τRe
1φ = 2µtDc = µt

[∇uc + (∇uc)
T
]

, (19)

Here,k = 1
2
u′ · u′ is the turbulent kinetic energy andµt is the so called turbulent viscosity.

Finally, the interfacial force density,Mc, of the continuous phase is related to that of the discrete
phase by the interfacial jump condition,18,19

Mc +
G∑

g=1

Mg = mσ (20)

wheremσ accounts for the interfacial surface tension contribution to the momentum jump. Our
closure model formσ has been described elsewhere.18,19 Here it suffices to mention that the
contribution ofmσ is negligible in the simulations presented herein. This is consistent with the
work of other researchers that found good agreement with experimental data for bubbly flows by
settingmσ = 0.9 It is clear from equations (16) and (20) that the presence of bubbles influence
the momentum balance of the liquid. Two-fluid models that account for this phenomenon are
referred as two-way coupled models to differentiate them form those in which the exchange of
momentum is allowed only from the liquid phase to the disperse phase, which are often called
one-way coupled models.

2.5 Turbulence modeling

The blended k-ω turbulence model developed by Menter20 was used to constituteTRe
c . This

model uses a blending function to behave as the k-ω or k-ε turbulence model close and away
from walls, respectively. In this manner it is possible to take advantage of the strengths of
both of these models. Namely,the k-ω model does not require wall damping functions and uses
simple Dirichlet boundary conditions and the k-ε model does not exhibit sensitivity to the level
of free-stream turbulence. Using indicial notation, the balance of turbulent kinetic energy,k,
and the turbulent specific dissipation rate,ω, are,20,21

αc
∂k

∂t
+αc

(
ucj − σk

∂νt

∂xj

− σk
νt

αc

∂αc

∂xj

)
∂k

∂xj

− αc

Rk

∇2k−αcτij
∂ucj

∂xj

+αcβ
∗ωk−αcΦk = 0 (21)
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αc
∂ω

∂t
+ αc

(
ucj − σω

∂νt

∂xj

− σω
νt

αc

∂αc

∂xj

)
∂ω

∂xj

− αc

Rω

∇2ω − αcγ
ω

k
τij

∂ucj

∂xj

+ αcβω2 + (22)

+2(1− F1)αcσω2
1

ω

∂k

∂xj

∂ω

∂xj

− αcΦω = 0

whereσk, σω, β, β∗ andγ are model coefficients and the effective Reynolds numbers,Rk =
1/(1/Re + σkνt) andRω = 1/(1/Re + σωνt) are defined using the Reynolds number,Re,
and the kinematic turbulent viscosity,νt. We have adapted the single-phase model for bubbly
flows following the work of Lahey.22 The original single-phase terms are now weighted by the
volume fraction of the continuous phase,αc, as expected for an ensemble-average derivation
of the equations. The sources of bubble-induced turbulent kinetic energy and bubble-induced
turbulent specific dissipation rate are modeled as,22

Φk = Cp

G∑
g=1

αg

v3
rg

Dg

(23)

wherevrg is the absolute value of the local relative velocity for bubbles of diameterDg and,

Φω =
β

β∗
ω

k
Φk, (24)

whereCp = 0.25 for potential flow around a sphere.23 The turbulent viscosity is modeled as,

νt =
k

ω
+ 0.6

G∑
g=1

αgDgvrg. (25)

The first and second terms in equation (25) are the standard single-phase eddy viscosity and the
bubble-induced turbulent viscosity, originally derived by Sato et al,24 respectively.

Although Lahey22 provides a k-ε bubbly flow model, the derivation of its k-ω counterpart is
straightforward because the change of variables,

ε = β∗ωk (26)

makes it possible to derive an equation forω given one forε.25 In fact, this change of variables
was used by Menter20 to derive the value of the coefficients of the blended model as,

s = F1s1 + (1− F1)s2

wheres1 ands2 are the k-ω model and the transformed k-ε model coefficients, respectively.
These coefficients can be found elsewhere.20,21 The blending function,F1, was designed to be
unity in the sublayer and logarithmic regions of boundary layers and gradually switches to zero
in the wake region,

F1 = tanh
(
arg4

1

)
(27)
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where,

arg1 = min

[
max

(
k1/2

0.09ωδ
;
500ν

δ2ω

)
;

4σω2k

CDkωδ2

]
, (28)

whereδ is the distance to the wall andCDkω is the positive portion of the cross-diffusion term
in equation (22),

CDkω = max

(
2σω2

1

ω

∂k

∂xj

∂ω

∂xj

; 10−20

)
(29)

As mentioned above we choose the same set of coefficients for the turbulent model as Menter,20

with the exception ofβ∗, for which we adopt,25

β∗ = 0.09fβ∗ (30)

with,

fβ∗ =

{
1, χk ≤ 0
1+680χ2

k

1+400χ2
k

χk > 0
(31)

and,

χk =
1

ω3

∂k

∂xj

∂ω

∂xj

(32)

As will be seen below the adoption of equation (30) greatly improves the agreement between
the measured turbulent dissipation in single-phase jets and the predictions of the model. This
finding is in agreement with the work of Wilcox,25 who justified the introduction of equation
(30) arguing that it greatly improves the agreement with experimental data for free shear flows
while maintaining the good agreement of the original k-ω model with data close to the wall.

We finish our discussion of the two-phase turbulence model by stressing that all its compo-
nents have been successfully tested by other researchers. Moreover, the blended k-ω model has
been widely used in naval hydrodynamics applications.5,26 The bubbly k-ε model has been used
to model a wide variety of bubbly conduit flows22,27,28and Wilcox25 strongly recommends the
adoption of equation (30).

2.6 Model for the interfacial force

The fluctuating interfacial force density is modeled in the usual way,17,18,22

M′
g
∼= MD

g + MTD
g + MV M

g + ML
g + MW

g (33)

where these forces are, respectively, those due to drag (D), turbulent dispersion (TD), virtual
mass (VM), lift (L) and wall-induced (W).

The virtual mass force accounts for the effect of acceleration of the liquid displaced by the
bubbles, and can be modeled as

MV M
g = αgρcCV M

[(
∂uc

∂t
+ uc · ∇uc

)
−

(
∂ug

∂t
+ ug · ∇ug

)]
, (34)
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where the virtual volume coefficient,CV M , is 0.5 for the dilute potential flow of spherical
bubbles.

The drag force may be expressed as,

MD
g = −αgρcCD

3

8

|ur|
Dg/2

ur (35)

where the drag coefficientCD is defined by Tomiyama,29 with a void fraction correction based
on that of Ishii30 to include interaction between the bubbles. For deformed bubbles in contami-
nated water, the expression forCD is,

CD =
1

αl

max

[
24

ReD

(
1 + 0.15 Re0.687

D

)
,
8

3

Eo

Eo + 4

]
, (36)

Here,ReD is the bubble Reynolds number based on the bubble diameter,Dg, the relative veloc-
ity, ur, and the Ëotvös number,Eo, is defined by:

Eo =
g(ρl − ρg)D

2
g

σ
, (37)

This non-dimensional number represents the relative importance of buoyancy forces and surface
tension, and has been included to take into account the increased drag observed in non-spherical
bubbles.

The lift force on a sphere in potential inviscid flow can be expressed as,31

ML
g = −αgρcCL ur × (∇× uc) . (38)

whereCL = 0.5 for inviscid flows. However, for ship flows the valueCL = 0.1 is typically
used.8

The turbulent dispersion force is modeled as:8

MTD
g = −αη

g ρc CTDCD
3

8

|uη
r |

Rb

νt

∇αη
g

αη
g

, (39)

where the turbulent dispersion coefficientCTD is defined by

CTD = Sc−1
b =

νb

νt

, (40)

whereScb = 0.833 is the bubble Schmidt number, which relates the turbulent diffusivityνt of a
passive scalar to the bubble diffusivityνb. This model has been validated against grid decaying
turbulence32 and jets.33 Moreover, it rests on a sound theoretical basis, as it is derived from the
Boltzmann transport equation for the bubble probability density function.34,35

The wall force is decomposed into its tangential and normal parts,

MW
g = MWt

g + MWn
g (41)
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The tangential force density,MWt
g , is a correction to be added to the bulk drag force density

due to the presence of solid walls. We define thiswall drag force density as:36,37

MWt
g = −αg ρc

3

4

νc

Rb

(ug − uc) · (I− nn)

δ
, (42)

whereδ is the gap between the bubble and the wall and the tensor(I− nn) is used to pick the
velocity tangential to the wall. (I andn are the identity matrix and the exterior normal to the
wall). Moraga et al17 assessed this model using the experimental data of Tsao and Koch38 who
measured the drag of a bubble sliding along a wall.

For the normal force,MWn
g , the bubble and its surrounding liquid is modeled as a damped

oscillator.11 The elastic force is due to the surface tension that resists the deformation of the
bubble and the virtual mass plays the role of the inertia. In this simple model, the viscous force
keeps the gas normal velocities under control during numerical iterations. The resultant linear
model for the normal force density, elastic and viscous, is,

MWn
g = −

[
CWEσ

CV MρcVb

(R∗
b −Rb) + (43)

CWV

√
CWEσ

CV MρcVb

(ug · n)

]
αgρcn

where the corrected bubble radius,R∗
b , is given by,

R∗
b = Rb

(
1− e

−
�

dw
R

b

�3

− dw
Rb

)
(44)

and the recommended values for the elastic and viscous coefficients are

CWE = 2.3 ; CWV = 5. (45)

The normal wall-induced force model used here is robust enough to handle inclined and hor-
izontal walls. In contrast the models of Antal et al39 and Moraga et al17 may underestimate the
force on an inclined wall.38 The latter is the only one that accounts explicitly for the effect of the
bubble Weber number and is based on an analytic solution40 without any adjustable coefficients.
Although there is empiricism in the wall-force model used, it is not expected to adversely im-
pact the quality of the results as all comparisons of bubble void fractions with experimental data
are done far enough away from walls as to ensure that wall forces are unimportant.

2.7 Surface capturing algorithm

A single-phase level set method was used to capture the interface position.5,26 Unlike the two-
phase level set, the one-phase level set technique does not solve the Navier-Stokes equations in
the air, neglects viscous stresses at the interface and keeps the sharp discontinuity of the density
at the interface. Moreover, the one-phase level set technique has been found to be much less
prone to the instabilities of high density ratio flows than the two-phase level set technique and
is capable of accurately predicting flows dominated by the liquid inertia.5,41
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Figure 1: Dimensionless turbulent dissipation along the centerline of a self-similar jet.

3 SIMULATIONS

3.1 Validation of the Bubble Break-up Model

Given the importance of accurately computing the turbulence dissipation,ε, for the prediction
of bubble breakup, which, in turn, has to be accurately modeled to predict the bubble size distri-
butions and void fraction distributions, it is desirable to simulate a simple canonical flow where
the predictions of the turbulence dissipation and the breakup model can be assessed. For this
purpose we present simulations of an upward turbulent polydisperse bubbly jet characterized
by Martinez-Bazan et al.10,14 The single-phase Reynolds number based on the jet diameter and
the inlet velocity wasRe = 25, 500. Since great care was taken by Martinez-Bazan et al10,14 to
ensure that the measurements were made in the self-similar region of the jet, and since the void
fractions were small enough to ensure a one-way coupled flow, there was no need to solve for
the mean liquid velocities, andk andω in a three-dimensional computational domain. Instead
the self-similar solution of the turbulent single phase jet,25 was copied into a 3D grid which was
used to calculate the evolution of the disperse phase. Figure-1 shows the dissipation profiles
obtained when usingfβ∗ = 1 as in the original k-ω model42 andfβ∗ as given by equation (31).25

The virtual origin is located atx0 = 5.4Dj whereDj is the jet diameter.
Unlike most models for binary breakup, the daughter bubbles are not assumed to be of the

same size. As a consequence, special care has to be given to the discretization of the bubble
diameters in a computer implementation of the model, to ensure that the breakup of small
bubbles is properly captured. We have found that a logarithmic distribution of bubbles sizes
Dg; g = 1, 2, ..G is preferable over an equally spaced distribution as it helps ensure that the
ratio ∆Dg/Dg is small even for smallDg, where∆Dg is the width of the bin centered at
Dg. For logarithmic spacing we found no considerable difference in the simulations results
for G = 15, 30 or 60. Figure-2 shows the downstream evolution of the number of bubbles
belonging to the largest classNG, which is scaled by the ratio of the local axial velocity,U , and
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Figure 2: Downstream evolution of the number of bubbles belonging to the largest classNG. Symbols: Experi-
mental data. Lines: Simulations. Red and black correspond to case 3a and 3b,10 respectively

the axial velocity at the first measurement station,U1. This scaling is necessary to present the
data in the same manner than in Figure 13 of the work by Martinez Bazan et al [10, ]. Figure-3
shows the downstream evolution of the total bubble flux,NtU/Lw. Due to the very high liquid
velocities the bubble velocities can be approximated by the liquid velocityU . The constantLw

is the width of the region used to collect statistics.10

3.2 Simulation of a breaking bow wave

We present in this section simulations of a steady breaking bow wave characterized by Waniewski
et al.2,43 Our interest in this experiment is based on the fact that to the best of our knowledge
it is the only published work that reports measurements of the air entrainment and enough in-
formation on the flow is given to unambiguously reproduce it in a computer simulation. A top
view of the channel where the breaking wave was produced can be seen in Figure-4. A flat
vertical plate was mounted forming an angle of 26◦ with the incoming flow. The depth of the
channel far away from the wall wasd = 7.89cm. The leading edge of the plate was mounted 12
cm away from the closest flume wall. Due to the finite length of the plate we choose to simulate
the flow on both sides of it.

The computational domain extended fromx/d = −5 to x/d = 40. The grid had approx-
imately 1,204,000 cells with approximately 680,000 cells belonging to chimera overset grids
concentrated in the breaking region. Although we did not conduct grid convergence studies, we
point out that our grid was designed as to have similar resolution in the breaking region to the
finest grid used by Broglia et al,41 who also simulated the same experiment using a one-phase
level set but neglected the bubbles entrained by the breaking wave. These researchers conducted
grid convergence studies and concluded that they had sufficient resolution. A uniform velocity
field with an upstream valueU = 2.48 m/s, zero pressure field and a flat free surface were used
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as the initial conditions to obtain a steady-state solution for the problem without bubbles. This
steady state-solution was used as the initial condition for the simulation of the bubbly flow.
The bubbly flow simulations are conducted for approximately 0.08 s of real time. During this
interval bubbles moving at the free stream velocity move approximately 20 cm, which gives
sufficient time for the bubbles to travel across the region having air entrainment measurements.
Since all the measurements conducted by Waniewski et al2 correspond to steady-state condi-
tions, we present results corresponding to the end of our simulations.

A uniform free stream velocityU = 2.48 m/s was imposed at the inflow plane,x/d = −5,
while zero pressure and velocity gradients were imposed at the outflow. No-slip boundary con-
ditions were used for all vertical walls. However, using a slip boundary condition at the bottom
wall, Broglia et al41 found satisfactory agreement with experimental data for the contact line,
the width and angle of the plunging jet and the jet impact velocity. Thus, we also chose not to



resolve the boundary layer at the bottom wall. This obviously presents the great advantage of re-
ducing the size of the final grid. Our primary interest is in the measurements of air entrainment,
which are expected to depend on the just mentioned width and angle of the plunging liquid
jet and the jet impact velocity (i.e., these parameters define the Reynolds and Froude number
which together with the jet angle determine the amount of ingested air3). Thus we believe that
neglecting the bottom boundary layer introduces a negligible effect on the air entrainment fea-
tures of the flow. Indeed the main consequence of not resolving the bottom boundary layer is
a shift of the position of the jet impact line which can easily be corrected for with a translation
offset. This shift is of approximately∆x = -13.8 cm and∆y = 15 cm, where the negative sign
indicates that in the simulations the origin of the jet impact line occurs at a value ofx lower than
in the experiment. We observe that despite of this shift it is still possible to compare the position
of the air entrainment region between experiment and simulation, because this shift is applied
to the whole flow. That is the position of the interface between continuous fluids is displaced
along with that of the air entrainment region.

The following distribution of bubble radii was used:Dg/2= 0.080, 0.100, 0.126, 0.159,
0.120, 0.251, 0.315, 0.397, 0.499, 0.627, 0.787, 1.000, 1.250, 1.500, 1.750, 2.000, 2.5000,
3.0000, 3.500 and 4.000 mm. All radii are given in mm. The upper boundary of the size
distribution was chosen based on the fact that Waniewski et al2 detected bubbles of chordal
lengths of 8 mm and higher, although their relative abundance decreased strongly with depth.
We have shown previously that 20 bubble sizes is a sufficient number to properly model the
bubble breakup provided that logarithmic spacing is used for small bubbles. We specify the
source intensity using the acoustic phase bubble size distribution measured by Deane & Stokes1

(i.e., α = −3/2, β = −10, 3). Although Waniewski et al2 conducted measurements of bubble
size distribution the characteristic width of each bubble class was∆Dg = 1 mm. We know
from the results in section 3.1 that this is insufficient to properly resolve the dynamics of bubble
breakup. Moreover, Waniewski et al2 make no distinction between the acoustic and the quies-
cent regions. As it was mentioned above, we think that the bubble source distribution specified
has to correspond to the acoustic phase, as the phenomena in the quiescent phase are modeled
by our two-fluid model.

Figure-5 shows the simulated contact line and that measured experimentally for the closest
experimental conditions. Unfortunately, Waniewski et al2,43 did not measure the contact line
for exactly the same conditions as used to measure air entrainment, but runs 4l, 5l and 6l in
the work by Waniewski et al43 are for similar conditions. These runs correspond to free stream
velocities,U =2.61, 2.40, 2.46 m/s and drafts,d = 6.45, 7.62 and 9.32 cm, respectively. In
contrast our simulations correspond to air entrainment runs withU =2.48 m/s andd = 7.89
cm. Thus, we expect our results to fall in between the experimental data. This is the case for
most of the range of the horizontal distance to the leading edge,r. Close to the leading edge
we tend to underestimate the height of contact line. Broglia et al41 also tend to underestimate
this height and speculated that the leading edge region is more sensitive to viscous effects. Our
runs conducted without bubble injection show virtually the same contact line as for runs with
injection. This is not surprising given that bubbles are being introduced far away from the



Figure 5: Comparison of simulated and measured contact lines (symbols). Line: simulations,U =2.48 m/s,d =
7.89 cm. Circles: Run 4l,U =2.61 m/s,d = 6.45 cm. Plus: Run 5l,U =2.40 m/s,d = 7.62 cm. Triangles: Run
6l, U =2.46 m/s,d = 9.32 cm.

contact line.
Figures-6 a,b and c show cuts of the wave at planesx = 73.4, 81.0 and 91.2 cm. The

shape of the wave is very similar to that of the experiments (See Figure 11 in the work by
Waniewski et al.43 For the first impact, atx = 73.4 cm the jet width is approximately 2.5 cm
and the jet impingement angle is 58◦, in agreement with the experimental data.43 The impact
velocities in the simulations range between 2.0 and 2.2 m/s depending on the position along
the jet where its measured. These numbers compare favorably with the value 2.3 m/s measured
by Waniewski et al.43 In these figures the calculated void fraction contours can also be seen in
continuous color, while the blue line indicates the top 1% void fraction from the experimental
data.43 It must be mentioned that because the free surface oscillates during the measurements
it was not possible to measure the void fraction at locations abovez =-1 cm without the free
surface dipping below the measuring probe or the probe entraining air.2 Thus, in agreement
with the simulations, the region of higher void fraction is above the 1% void fraction line from
the experimental measurements. Only a distance of a few centimeters in the vertical direction
separates the 1% void fraction line of experiments and simulations, while in the horizontal
direction there is excellent agreement. Given the simplicity of our air ingestion model and the
fact that it has just one adjustable constant,S0 in equation 2, this agreement is surprisingly good.
All other model parameters were taken from the work of other researchers. We believe that part
of the discrepancy between the void distribution of the simulation and the experiment is due to
the fact that in the simulations the same source intensity is used for all points at which bubbles
are ingested, while that is probably not the case for the experiments. Nevertheless, we point
out that a shift of dimensions comparable to the width of the plunging bow wave is negligible



in the length scales of a ship and ship simulations are the main intended purpose of our model.
We also point out that this level of accuracy is a considerable improvement over previous work
in which the source location was specified by a human expert6–8 after examining the solution
for the problem without bubble ingestion. The main drawback of the injection algorithm is that
a region of void fractions of about 1 or 2% can be observed in the top region of the plunging
jet (z > 5 cm), where a single phase jet was expected. However, this void fraction is small
enough to have little impact on the final results for the void fraction downstream of the breaking
wave. Moreover, we point out that in the region of air entrainment the liquid is decelerating
in the vertical direction, while in the top portion of the jet it is accelerating. Thus, we believe
that the injection at the top of the jet could be avoided if not only the local velocity is used for
the injection criterion but also the local acceleration. Future versions of the model will aim at
including the sign of the acceleration.

Maximum values of the dissipation in the region of jet impact are approximately ofε = 7
m2/s3. Unfortunately Waniewski et al2 did not measure dissipation, so we compare with the
dissipation estimates and measurements of Deane & Stokes1 and Lowen & Meville,44 respec-
tively. In both works the cited value of the dissipation isε = 13 m2/s3. Given the differences in
flow configuration between the breaking waves we simulate and those of Deane & Stokes1 and
Lowen & Meville44 we believe this level of agreement is quite satisfactory.

3.3 Simulation of the bubbly flow around a naval surface ship

In this section we present simulations of the bubbly flow around the unappended naval com-
batant, DTMB 5415, in steady forward motion at a velocityU = 3.5 m/s, Reynolds number,
Re = UL/ν = 1.57 × 107 and Froude numberFr = U/

√
gL = 0.35, whereL = 142 m is

the ship length. The values of the Reynolds and Froude number were chosen so as to generate
a strong breaking bow wave with a moderate computational cost. The grid consists of approxi-
mately 1,600,000 cells with approximately 650,000 cells concentrated in chimera overset grids
at the bow wave region. This level of resolution is insufficient to capture all the details of the
flow particularly at the transom and the bow wave where 3 levels of nesting of chimera over-
set grids and unsteady simulations are necessary to be able to make quantitative comparisons
with experiments at tow tank conditions.26 Given that there are no void fraction measurements
around ship hulls in the open literature, the main purpose of this simulation was to evaluate the
qualitative trends. In particular we want to asses whether our model can identify the locations
of air ingestion. We believe that the spatial resolution adopted is sufficient for this purpose. For
similar reasons no efforts were made to adjust the source intensity to produce a predetermined
void fraction. Similarly only 6 different bubble sizes were considered (Dg = 100, 126, 158,
199, 250 and 314µm) and the bubble-induced source of turbulent kinetic energy was set to
zero,Φk = 0.

Figure-7 shows a perspective of the ship hull and the near-hull portion of the free surface.
Dark blue is used to indicate the portion of the free surface where bubbles can be observed.
Notice the qualitative resemblance with the flows at sea. The bubbles were given approximately
80 s to travel along the computational domain. Figure-8 shows a bottom view. The hull and free



surface are shown in the same colors than in the previous figure. The top portion of the figure
shows isosurfaces of total void fraction at and below the free surface (Dark blue), while the
bottom portion shows the void fraction contours at approximately 200µ from the hull. The pink
squares indicate the points where bubbles are injected. In agreement with visual observations
at sea, both below and above the free surface, the mode predicts that bubbles are injected at
the impact line of the breaking bow wave, at the contact line behind the bow wave and at the
transom stern. To the best of our knowledge this is the first time that a numerical simulation
predicts that there is air entrainment at the transom stern and below the contact line behind the
breaking bow wave.

4 CONCLUSIONS

We have developed a 3-D, two-fluid model which is capable of simulating air entrainment flows.
A subgrid model was developed to determine the location of the bubble source due to air in-
gestion. This model is based in the simple observation that the non-linear dependence of the
terminal velocity with bubble diameter originates at a region of high void fraction in and around
the air entrainment region. Combined with a model for bubble breakup, and a bubbly k-ω model,
the subgrid model can reproduce experimental results for a steady breaking bow wave. Even
though the source intensity is adjusted to match experimental data, the new model represents
considerable improvement in the field of bubbly flow simulations for naval hydrodynamics as it
eliminates the need to estimate the location of the air entrainment region. Moreover, this model
opens new possibilities. For example, it makes it possible to conduct parametric studies on the
impact of the void fraction on many flows of interest. This is particularly important for flows
in which high void fraction regions are known to occur ( 10 or 20 % are typical values) and
are currently modeled as single-phase flows by practically all the design tools available to naval
architects. The model also diminish the uncertainties related to bubbly flow simulations around
naval ship hulls aimed at determining the acoustic signature of the bubbly wake.

Comparison with the experimental data of Wanieski et al was favorable, with the verti-
cal location of the predicted 1% void fraction line approximately just half a jet width away
from that of the measurements. The model was also applied to simulations of naval combatant
DTMB5415, where it qualitatively identified the right location for the air entrainment regions.

It is possible that using other flow parameters, more sophisticate versions of an injection
algorithm can be applied. For example it has been suggested that the air entrainment region
correlates with high turbulence intensity and high turbulent dissipation. However, the increase
of these quantities is a direct consequence of the bubbles and consequently it is difficult to
detect in the initial single phase flow. For this reason we believe that a model based on the
averages liquid velocities is more robust. Once bubbles are present in the flow the turbulent
kinetic energy and dissipation can be used to introduce improvements.
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(a)
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Figure 6: Wave profile (black line) and total void fraction distribution (colored contours) at (a)x = 73.4 cm, (b)
x = 81 cm and (c)x = 91.2 cm. The blue line indicates the measured 1% void fraction line from experiments.



Figure 7: View of the unappended hull of DTMB5415 (gray) and the free surface (grayish blue) with the region of
the free surface covered by bubbles indicated in dark blue.

Figure 8: Bottom view of the bubbly flow around the unappended DTMB5415. For details see the text.




