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Abstract. Data from vibration measurements opens a way to damage assessment by correlating 
changes in system dynamic parameters with damage indicators. Most methods proposed in the 
literature are based on the measurement of natural frequencies or modal shapes and modelling damage 
as local reduction in structural stiffness. In some particular applications these methods, however, have 
several practical limitations on account of their low sensitivity to damage.  This paper shows that 
damping can be used as a damage-sensitive system property and presents a procedure for 
instantaneous natural frequencies and damping identification from free vibration response using the 
wavelet transform. Experimental and simulated examples show that in the structures analyzed damage 
causes important variations of damping parameters. 
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1 INTRODUCTION 

The interest in structural monitoring and damage detection is shared by the civil, 
mechanical and aerospace engineering communities. Current damage-detection methods are 
visual or localized experimental procedures such as acoustic or ultrasonic methods, magnet 
field methods, radiographs, eddy-current and thermal field methods. All these experimental 
techniques require that the location of damage be known a priori and that the portion of the 
structure being inspected be easily accessible. These limitations led to the development of 
global monitoring techniques based on changes in the vibration characteristics of the 
structure. 

Damage or fault detection, by monitoring changes in the dynamic properties or response of 
the structure, has received considerable attention in recent literature. The basic idea springs 
from the notion that modal parameters (notably frequencies, mode shapes, and modal 
damping) are functions of the physical properties of the structure (mass, damping, and 
stiffness). Therefore, changes in the physical properties will cause changes in the modal 
properties. Literature reviews on damage identification and health monitoring of structures 
based on changes in their measured dynamic properties may be found, for example, in 
Doebling et al. (1996, 1998), Zou et al. (2000), Sohn et al. (2003), Salawu, (1997) and  Chang 
et al. (2003). 

Structural damage usually results in a decrease in mass, stiffness and strength of structural 
elements. In consequence, its detection and localization have great practical importance and 
led to the development of a research field rather incorrectly known as Structural Health 
Monitoring (SHM) (Chang, 1999) since it would sound awkward to qualify any structure as 
healthy. At any rate, four SHM categorical levels were proposed to quantify damage in 
Engineering Structures: Level 1: damage detection; Level 2: damage location; Level 3: 
quantification of the degree of damage; Level 4: estimation of the remaining service life. For 
such purpose, one of the most frequently used SHM techniques are vibration-based methods 
(Rytter, 1993). 

Vibration methods are based on the observation that the presence of damage in a structure 
produces a local increase in flexibility, which induces changes in its dynamic properties. 
These changes can be used for damage identification. 

The amount of literature related to damage detection using shifts in natural frequencies is 
quite large.  The forward problem, which usually falls into the category of Level 1 damage 
identification, consists of calculating frequency shifts for a known type of damage. Typically, 
damage is modelled numerically by a reduction in the stiffness and then the measured 
frequencies are compared to the frequencies predicted by the model. Moreover, this technique 
is used extensively in damage diagnosis and health monitoring of existing highway bridges, 
seismic behaviour and residual capacity of structures.  

It should be noted that frequency shifts have some practical limitations in several 
applications, especially in case of large structures (Farrar et al, 1994, Doebling et al, 1996 and 
Sohn et al, 2003), although ongoing research may help circumvent these difficulties. The 
usually small frequency shifts caused by damage require either very precise measurements or 
high levels of damage. 

Damping properties, on the other hand, have rarely been used for damage diagnosis. Crack 
detection in a structure based on damping, however, has advantages over detection schemes 
based on frequencies and modal shapes. In fact, damping changes may render the detection of 
the nonlinear, dissipative effects that cracks produce feasible, while cracks usually lead to 
small or no frequency variations.  Modena, Sonda and Zonta (1999) show that visually 
undetectable cracks cause very little change in resonant frequencies and require higher mode 
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shapes to be detected, while these same cracks cause larger changes in damping. In some 
cases, damping changes of around 50% were observed. Their study focuses on identifying 
manufacturing defects or structural damage in precast reinforced concrete elements. The 
particular dynamic response of reinforced concrete justifies the use of damping as a damage-
sensitive property, proposing two new methods based on changes in damping to detect 
cracking.  These techniques are employed to locate cracks in a 1.20 × 5.80 m precast hollow 
floor panel excited with stepped sins and shocks, and the diagnosis results are compared with 
those of frequency and curvature based approaches.  

Kawiecki (2000) measures damping in a 90 × 20 × 1 mm metal beam and metal blanks 
used to fabricate 3.5-in. computer hard disks, noting that damping can be a useful damage-
sensitive indicator. Modal damping is determined using the half-power bandwidth method 
applied to the FRF within the frequency range of 5 kHz to 9 kHz obtained from measured 
data. Kawiecki (2000) claims that the approach should be particularly suitable for structural 
health monitoring of lightweight and microstructures.  

After conducting prestressed reinforced concrete hollow panels vibration tests, Zonta et al, 
(2000) observe that cracking produces a frequency splitting in the frequency domain and the 
beat phenomenon of the free decay signals in the time domain. It is argued that crack 
formation in prestressed reinforced concrete causes a nonviscous dissipative mechanism, 
making damping more sensitive to damage, and they propose to use this dispersive 
phenomenon as a feature for damage diagnosis. Zonta et al. (2000) point out that the 
dispersive phenomenon cannot be represented by the standard linear model of a single degree 
of freedom system and emphasize that the oscillator has a variable stiffness, and this 
variability is proportional to the frequency. They recognize the need for further research using 
the dispersion phenomenon for damage detection because additional effects such as hysteresis 
and other nonclassical dissipative mechanisms must be considered.  

In large civil engineering structures it is usually unfeasible to measure all components of 
the input excitation. Experimental modal identification through ambient vibration response 
records has consequently become a very attractive technique. Within this context, this paper 
discusses the changes in modal frequencies and damping on structures progressively 
damaged, applying the wavelet transform.  Because the wavelet estimation technique requires 
free decay response observations, which is rarely feasible on large structures, the modal 
identification herein proposed is indeed an appealing technique. Ambient excitations such as 
traffic or wind have the advantage that no equipment is needed to excite the structure. To 
convert ambient random response to free decay responses the well established Random 
Decrement Technique was used. 

2 INTRODUCTION TO IDENTIFICATION OF MODAL FREQUENCIES AND 
DAMPING  

Although various complex phenomena occur when different materials / structural members 
are damaged, principally under seismic excitation, only two are commonly associated with 
damage: stiffness and strength deterioration. Hence most models describing the hysteretic 
behaviour of structural members have been derived from the shape of experimental force-
displacement relationship (hysteretic curves). Examples of macro models proposed to 
represent this complex behaviour are Takeda-type (Takeda et al. 1970) and their variations 
(Tang and Goel, 1988 and Hueste and Wight, 1999), which simulate phenomena such as 
stiffness and strength degradation and pinching in concrete beams and columns. An oscillator 
with this type of behaviour can be approximated by second-order systems with nonlinear 
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restoring force k(x)x and nonlinear damping force ( ) x xh && and represented by the equation 
, which leads to a free response of the form:  ( ) ( ) 02 =++ xxkxxhx o &&&&

 x(t) = A(t) cos(ϕ(t))        (1) 

Note that functions ho and k represent apparent (viscous) damping and apparent (elastic) 
stiffness coefficients, respectively. In the following they will be referred to simply as damping 
and stiffness coefficients. In the identification technique, the envelope A(t) (instantaneous 
amplitude) and the instantaneous phase ϕ(t) or the instantaneous angular frequency 
( ) ( )tϕ&=tω , can be extracted from the vibration signals employing the wavelet transform, as 

described in  appendix A. (Chuang and Chen, 2003, 2004; Lu and Hsu, 2002; Wang and 
Deng, 1999; Minh-Nghi and Lardies, 2006; Lardies and Gouttebronze, 2002; Kim and 
Melhem, 2004). Feldman (1994, 1997) showed, by applying the multiplication property of the 
Hilbert Transform for overlapping functions to the equation of motion for viscous damping 
systems, that the instantaneous undamped natural frequency and the instantaneous damping 
coefficient may be calculated according to the formulas: 
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where ωo(t), is the instantaneous undamped natural frequency and ho(t) the instantaneous 
damping coefficient of the system. A(t) and ω(t) are the envelope (instantaneous amplitude) 
and the instantaneous angular frequency of the vibratory system solution with their first and 
second time derivatives ( )A,A,ω &&&& . These two equations establish an identification technique to 
determine the undamped natural frequency and damping parameters of the systems as 
instantaneous functions of time at every point of the vibration process. Employing this 
procedure, the evolution of the system parameters with increasing damage will be analyzed in 
several illustrative examples. 

3 CHANGES IN FREQUENCY AND DAMPING WITH DAMAGE  

In non-linear systems (non-linear dissipative and elastic forces) the damping coefficient 
and the natural frequency become functions of the vibration amplitude. With the aim of 
determining the evolution of the system parameters (natural frequency and damping 
coefficient) with vibration amplitude and increasing damage, four examples were analyzed. 

3.1 The bilinear oscillator 

The simple hysteretic bi-linear model (elastic and elasto-plastic spring and damper) shown 
in Figure 1 will be considered first. In order to simulate low levels of damage, three cases 
with different yield force and post-yield to initial stiffness ratio were considered. Table 1 
presents the yield force and the ratio between post-yield and initial stiffness in each case. The 
yield displacement was taken equal to one millimetre, while an additional internal viscous 
damping equal to 0.5% was adopted in all cases. The system motion analyzed in the following 
is the free vibration ensuing an initial displacement 5 times larger than the yield displacement. 
 

2398



Case 

Yield Force 
(fraction of 

total weight) 
[%]* 

Post to 
pre-yield 
stiffness ratio 

[%] 
1 5 99 
2 15 97 
3 25 95 

Table 1. System parameters for cases 1 to 3. 
* Yield displacement dy = 1mm, initial displacement = 5 dy

MC

K

K0

 
Figure 1. Non linear (bilinear) oscillator (Cases 1 to 3). 

In Figure 1, Fy denotes the yield force, dy the yield displacement, K + Ko the initial 
stiffness and K the post-yield stiffness. Figures 2 (a-c), show the free vibration response and 
the envelope determined by the identification technique. 

a)      b) 

 
c) 
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Figure 2. Free vibration response and envelope. (a) case 1, (b) case 2, (c) case 3. 

Figure 3 shows the dependence of the instantaneous natural frequency on the 
instantaneous amplitude of vibration, which represents a kind of skeleton (or backbone) curve 
of the system. Figure 4 shows the dependence of the instantaneous damping coefficient on the 
instantaneous vibration amplitude. 

 
Figure 3. Instantaneous undamped natural frequency vs instantaneous amplitude. (Backbone curves)  

Cases:                1,                2,                3. 

 
Figure 4.  Instantaneous damping coefficient vs instantaneous amplitude.  

Cases:             1,                2,               3. 

Figure 3 shows that the instantaneous undamped natural frequency has a minor change due 
to the low degree of damage considered. However, figure 4 shows that damping changes 
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significantly. It seems quite clear than in this case damping could be advantageously used as a 
damage indicator because it is more sensitive to damage than the instantaneous frequency. 
However, it is probable that the statistical variations of natural frequencies are lower than the 
damping. It is important to point out that the relationship between instantaneous frequency 
and vibration amplitude and between instantaneous damping coefficient and vibration 
amplitude are similar to those obtained earlier by harmonic linearization of a bilinear 
oscillator (Curadelli, 2003). 

3.2 Numerical simulation of the response of 2D reinforced concrete frame with strength 

s in the system parameters caused by damage in a more complex 
str

and stiffness degradation 

In order to assess change
ucture, a 2D reinforced concrete frame modelled with inelastic elements described by 

constitutive rules capable of representing hysteresis stiffness degradation and pinching was 
analyzed next. The example is a three bays, six-stories high reinforced concrete frame, 
designed for a PGA of 0.17 g (value from a seismic hazard curve that presents a 10% 
probability of exceedance in 50 years), in accordance with the provisions of the Argentine 
Code INPRES-CIRSOC 103 or ACI, which in this case result in similar designs (Curadelli 
and Riera, 2004). The total mass per floor is 100t, Young’s modulus of concrete E = 24.8 GPa 
which lead to a fundamental period T1 = 1s. The internal damping ratio was assumed equal to 
5% of critical. In the non-linear constitutive relations, the yield strength of reinforcing steel 
and the compressive strength of concrete were assumed equal to fy = 413 MPa and fc = 27.6 
MPa, respectively. Figure 5 shows the basic dimensions of the frame. 
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Figure 5. Reinforced concrete 2D frame structure. 

The structure was submitted to the Caucete, San Juan, Argentina 1997 seismic acceleration 
tim

 envelopes, 
determ

e history. From the last 10 s of the roof response, which is actually a free vibrations 
record, changes in the system parameters were determined by the procedure described above. 
In order to assess different degree of structural damage, the accelerograms were normalized to 
four intensity levels (1, 2, 3 and 4m/s2 (collapse)), defined in terms of their PGA. 

 Figures 6a and 6b show the free response and the corresponding
ined by the identification technique, for the first and ultimate degrees of damage. 
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a)      b) 

    
 

Figure 6.  Free vibration response and envelope. (a) first and (b) ultimate degree of damage of 2D Frame 
Structure. 

Figures 7 and 8 show the dependence of the instantaneous fundamental frequency and 
instantaneous damping coefficient on the amplitude of vibration, respectively, for each 
damage level.  

 
Figure 7. Instantaneous undamped fundamental frequency vs. instantaneous vibration amplitude. 
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Figure 8. Instantaneous damping coefficient vs instantaneous amplitude of vibrations. 

Figures 7 and 8 provide valuable evidence on the influence of damage on dynamic 
properties of the reinforced concrete frame. The maximum undamped fundamental frequency 
reduction, observed for a 0.4g PGA, reaches nearly 25%, increasing lineraly with the PGA. 
Damping, on the other hand, presents more pronounced and typical variations. 

3.3 Experimental study of reinforced concrete beam 

The performance of the identification procedure was also assessed using experimental 
data, for which purpose a reinforced concrete beam tested by Palazzo (2000) was analyzed. 
The specimen was a 0.20 m × 0.10 m × 5.60 m reinforced concrete beam in flexure under two 
points loading (figure 9a and b). The yield strength of reinforcing steel bars and the 
compressive strength of concrete were fy = 420 MPa and fc = 17 MPa, respectively. Loads 
were increased monotonically until the intensities indicated in Table 2 were reached, as 
schematically shown in Figure 10. At that point loads were removed and free vibration tests 
conducted to determine dynamic properties. The procedure was then repeated for the next 
loading step. Figure 11 (a-b) shows the observed free vibration response after the first and the 
last loading step, respectively. 

a) 

 

20 x 10 cm 

1φ 4.2 @ 10 cm

b) 

 
Figura 9 (a) Sketch of reinforced concrete simply supported beam tested (b) load location. 
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Figure 10. Reinforced concrete beam test setup.  

 
Load step

  

Load 

 [kN] 

Fundamental frequency 
measured after each 

load step 
0 0 4.55 

1 2 x 1,46 4.34 

2 2 x 2,25 4.29 

3 2 x 3,23 4.25 

4 2 x 5,19 4.01 

5 2 x 7,25 * 3.81 

Table 2. Load step values (from Palazzo, 2000) 
* Maximum load considered (correspond to 3.5 0/00 , maximum compress strain, INPRES-CIRSOC 201) 

a)       b) 

 
Figure 11.  Free vibration response and his envelope after: (a) Test after load step 1 and (b) test after 
load step 5. (Palazzo, 2000). 
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The correlation between the instantaneous fundamental frequency and instantaneous 
damping coefficient and the amplitude of vibration, for the damage condition after Load Step 
1 and after Load Step 5, is presented in Figure 12 and 13, respectively.  

 
Figure 12. Instantaneous undamped fundamental frequency vs instantaneous amplitude of vibrations. 

 
Figure 13. Instantaneous damping coefficient vs instantaneous amplitude of vibrations. 

Figures 12 and 13 show the instantaneous modal parameters along time for two different 
level of damage. It is clear that damping has an important variation.   

3.4 Experimental 3D frame model 

As second experimental example, the one bay, six-storeys high aluminium 3D frame model 
tested by Amani (2007) was analyzed (Figure 14). Geometric properties are indicated in 
Table 3 (more details are reported in Amani, 2004).  Structural damage was caused by 
subjecting the model to a horizontal unidirectional base motion in a shaking table. The 
excitation consisted of a series of 9 simulated acceleration time histories (Gaussian white 
noise) with increasing intensity. The standard deviations of the base acceleration in the tests 
were σa = 1.8; 2.1; 6.1; 12; 20; 32; 38; 44; and 48 m/s2. As it was mentioned before, the 
wavelet transform procedure for modal parameters identification operates on the free 
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vibration. Thus, in order to obtain free decay response, the measured horizontal acceleration 
response at top floor was processed by random decrement technique (Ibrahim, 1986, Ibrahim 
et al, 1996). Follow figures show the changes of investigated parameter along time for both, 
lowest excitation level (σa = 1.8 m/s2, undamaged) and highest excitation level (σa = 48 m/s2, 
severe damage). 

 
Total height 0.50 m 

Story height 0.083 m 

Span length 0.10 m 

Stories1&2 0.6 x 18 (mm) 

Stories3&4 0.6 x 12 (mm) Columns 
cross section 

Stories5&6 0.6 x 6 (mm) 

Total mass 0.665kg 

Mass density 2698 kg/m3

Young’s modulus 67 GPa 

Table 3. Geometrical and mechanical properties of the model. 

 

Figure 14. One bay, six-storeys high aluminum 3D frame model tested by Amani 2007. 

Figure 15 a-b show measured free vibration acceleration response at top floor obtained 
from random decrement technique for the lowest and highest excitation level, respectively.  

a)       b) 
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Figure 15.  Free vibration acceleration response and the envelope for: a) lowest and b) highest excitation level. 
One bay, Six-storeys high aluminium 3D frame model tested by Amani 2007. 

Figure 16 and 17 show the dependence of instantaneous fundamental frequency and 
instantaneous damping coefficient on the instantaneous amplitude of vibrations, respectively, 
for the lowest and highest excitation level, respectively. 

 
Figure 16. Instantaneous undamped fundamental frequency vs instantaneous amplitude of vibrations.  

             lowest excitation level (σa = 1.8 m/s2, undamaged),  
- - - - -      highest excitation level (σa = 48 m/s2, severe damage) 
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Figure 17. Instantaneous damping coefficient vs instantaneous amplitude of vibrations.  

             lowest excitation level (σa = 1.8 m/s2, undamaged),  
- - - - -      highest excitation level (σa = 48 m/s2, severe damage) 

Similarly, figures 16 and 17 show that increasing excitation yield to a damage level 
reducing the undamped fundamental frequency about 9%, while damping reveal more marked 
variations. 

4 CONCLUSIONS 

For the kind of structures analyzed, damage detection technique using damping, as 
sensitive-damage feature, has shown that is potentially useful. It seems quite clear than; in 
systems as analyzed, damping is a promising damage indicator in structural health monitoring 
because it has more sensibility to damage than the natural frequency. However, it is likely that 
the statistical variations of natural frequencies are lower than the damping. The paper also 
describes an approach, based on wavelet transform, to determine instantaneous natural 
frequencies and damping from free vibration response of the non-linear systems.   

With examples using experimental results and numerical simulation on structures 
subjected to seismic base excitation it was demonstrated that the identification technique 
based on wavelets is useful to assess changes in the vibration characteristics due to 
incremental damage of non-linear systems.   

It is also stressed that this work is a start point for damage identification based on damping 
measurement, and it is needed further research in the subject. 
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APPENDIX A 
THE CONTINUOUS WAVELET TRANSFORM 

A.1 Theoretical background 

A localized decomposition in the frequency and time domain can be obtained using the 
continuous wavelet transform. Under assumptions that the function x(t) meets the condition: 

( ) ∞<∫
+∞

∞−

dttx 2       (A.1) 

which implies that x(t) decays to zero at ± ∞, the idea of the continuous wavelet transform is 
to find a function g(t) which can generate a basis for the entire space of functions x(t). If the 
decay of this function is very fast, this function is called a small wave or a wavelet. The fast 
decay introduces locality into the analysis, which is not the case of the Fourier transform 
where a global representation is obtained. Using a family of basis functions, wavelets can be 
formulated to describe x(t) in a localized time and frequency format. The continuous wavelet 
transform gives time and frequency information about the analyzed data. The continuous 
wavelet transform of the function x(t) is defined as (Chui C.K. ,1992):  
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where g(t) is the analyzing or mother wavelet and g*(t) the complex conjugate of g(t); b is the 
parameter localizing the wavelet function in the time domain: Wg[x](a,b) shows the local 
information about x(t) at the time t = b and a is the dilatation or scale parameter defining the 
analyzing window stretching. The idea of the continuous wavelet transform is to decompose a 
function x(t) into wavelet coefficients Wg[x](a,b) using the basis of wavelet functions. The 
wavelet coefficients represent a measure of the similitude between the dilated and shifted 
wavelet and the function x(t) at time b and scale a. Any function g(t) can be used as an 
analyzing wavelet if it satisfies the admissibility condition (Chui C.K.,1992): 

( )
+∞<= ∫

+∞

∞−

dω
ω
ωG

cg

2
          (A.3)  

where G(ω) is the Fourier Transform of g(t). It follows that G(ω) is a continuous function, so 
that the finiteness of cg implies that G(0) = 0, or also that the mean value of g(t) in the time 
domain is zero. The admissibility condition is necessary to obtain the inverse of the wavelet 
transform (Chui C.K.,1992). The wavelet g(t) must be also a window function to enable the 
possibility of time–frequency localization: g(t) decays at infinity, which means that 
additionally: 

( ) ∞<∫
+∞

∞

dttg
-

        (A.4) 

If it is assumed that g(t) is a rapidly decaying function in time domain, that is the values of 
g(t) are negligible outside the interval (tmin, tmax), the transform becomes local. 

It is possible to see the frequency localization when the continuous wavelet transform is 
expressed in terms of the Fourier Transform. Using the Parseval identity (Chui C.K.,1992), 
we can define the frequency domain formulation of the continuous wavelet transform: 

[ ]( ) ( ) ( ) dω eaω GωX
π
aa,bxW jωω 

-

*
g ∫

+∞

∞

=
2

       (A.5) 

This localization depends on the dilatation or scale parameter a. 
A number of different analyzing functions have been used in the wavelet analysis. One of 

the most known and widely used is the complex Morlet wavelet defined in the time domain 
as: 

( )  tj ω
t

 e  e
π

tg 0

2

2
2
1 −

=        (A.6) 

where ωo is the wavelet central frequency. The dilated version of the Fourier Transform is 

( )
( )2

02
1 ωaω

eaωG
−−

=        (A.7) 
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In practice the value of ωo is chosen ωo ≥ 5 which meets approximately the requirements 
given by condition A.3. Note that G(aω) is maximum at the central frequency when aω = ωo 
and the Morlet wavelet can be viewed as a linear band-pass filter whose bandwidth is 
proportional to 1/a or to the central frequency. Thus, the value of the dilatation parameter a 
corresponding to the pseudo-frequency at which the wavelet filter is focused ωf, can be 
determined from a = ωo/ωf. 

In summary, the continuous wavelet transform analyses an arbitrary function x(t) only 
locally at windows defined by a wavelet function. The continuous wavelet transform 
decomposes x(t) into various components at different time windows and frequency bands. The 
size of the time windows is controlled by the translation parameter b while the length of the 
frequency band is controlled by the dilatation parameter a. Hence, one can examine the signal 
at different time windows and frequency bands by controlling translation and dilatation. 
However, constrained by the uncertainty principle (Chui C.K., 1992), a compromise usually 
has to be made choosing either a narrow time windows for good time resolution, or a wide 
time windows for good frequency resolution. The resolution of the wavelet decomposition in 
the time-frequency domain is determined by the duration ∆tg and bandwidth ∆fg of the 
analyzing wavelet and by the value of the dilation parameter a as follow: 

ga ∆ ∆t =    
a
∆f

∆f g=         (A.8) 

The resolution of the analysis is therefore good for high dilation in the frequency domain 
and for low dilation in the time domain. 

A.2 Natural Frequencies and modal damping ratios  
Ridge and skeleton of the continuous wavelet transform 

Torresani, B. (1995) give the definition of a class of signals called asymptotic and presents 
some results for the time–frequency analysis of such signals. A signal is asymptotic if the 
amplitude A(t) varies slowly compared to the variations of the phase. The analytic signal 
associated with the asymptotic signal is xa(t) = A(t) e jϕ(t) and from this definition, the concept 
of instantaneous angular frequency as the time varying derivative of the phase can be derived: 
( ) ( )ttω ϕ&= . The continuous wavelet transform of an asymptotic signal x(t) is obtained by 

asymptotic techniques and can be approximated by (Torresani, B. (1995)): 

[ ]( ) ( (b)aGA(b) eaa,bxW *(b)j
g ϕ

ϕ
&

2
= )       (A.9) 

Using the complex Morlet wavelet, 

[ ]( )
( )2

02
1

2

ω(b)a-(b)j
g eA(b) eaa,bxW

−
=

ϕϕ
&

     (A.10) 

The square of the modulus of the continuous wavelet transform can be interpreted as an 
energy density distribution over the time-scale plane. The energy of the signal is essentially 
concentrated on the time-scale plane around a region called the ridge of the continuous 
wavelet transform. In other words, the ridge of the continuous wavelet transform is the region 
containing the points defined by a = a(b), where the amplitude of the continuous wavelet 
transform is maximum. The ridges are identified by seeking out the points where the 
continuous wavelet transform coefficients take on local maximum values: for each value of b, 
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we obtain a value as [ ]( ) [ ]( )a,bxWa(b),bxW gag max= . To obtain the ridge, the dilatation 

parameter a = a(b) has to be calculated in order to maximize the analyzing wavelet  
( (b)aG* )ϕ& , that is, using the modified Morlet wavelet, for a = a(b) = (b)/ωo ϕ& . We obtain: 

[ ]( ) ( ) (b)j
g A(b) e

ba
a(b),bxW ϕ

2
=        (A.11) 

The values of the continuous wavelet transform that are restricted to the ridge are the 
skeleton of the continuous wavelet transform.  

It is important to note that the real components of the continuous wavelet transform along 
the ridge are directly proportional to the signal given by Eq. (1) and from Eq. (A11) we obtain 

[ ]( )
a(b)

a(b),bxW
A(b)

g
2=        (A.12) 

[ ]( )( )a(b),bxWArg(b) g=ϕ       (A.13) 

Finally, using the A.12 and A.13 it is possible to estimate the instantaneous amplitude A(t) 
and the phase ϕ(t). Being the derivative of A(t), and the derivative of ϕ(t), the 
instantaneous angular frequency 

(t)A&

( ) (t)tω ϕ&= , in conjunction with the equations (2), it can be 
determined the instantaneous undamped natural frequency and damping of the system.  
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