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Abstract. Natural dissimilarity or de-correlation of axial velocity and temperature fluctuations, in a tur-
bulent channel flow, is studied using direct numerical simulation, DNS. Buoyancy effects were neglected,
thus the temperature was considered as a passive scalar. A uniform energy source case for the thermal
field has been used. Results for molecular Pr or Sc numbers equal to 1.0 and 0.71 are presented. More
evidences of the strong correlation of axial velocity and temperature in the wall layer are shown, like as
the similar patter of the skin-friction and streamwise vorticity correlation, with thatbetween wall heat
flux and streamwise vorticity correlation. The importance of the most energeticevents on the dissimi-
larity between the axial velocity and temperature fluctuations is examined using conditional probability.
It is shown that although the most energetic events are responsible of the strongest instantaneous dis-
similarities, their contribution to the mean dissimilarity is less than a half in the whole channel. As a
complement to many previous results in the literature analyzing fluctuations of longitudinal velocity and
temperature in frequency domain, spectral density functions is used in order to study dissimilarity. The
results presented here include new variables, as the spectra of the fluctuations of axial velocity and tem-
perature difference, and the spectra of the fluctuations of the pressure field. Spectral density functions at
different distances from the wall show, that the main cause of dissimilarity between axial velocity and
temperature fluctuations is the shift toward higher frequencies of temperature in comparison to any ve-
locity components, and specially to axial velocity, in the viscous, buffer, and beginning of the logarithmic
region. However, in contrast with this situation next to the wall, there is a general tendency to spectral
convergence at the center of the channel. Based on the spectra of the fluctuations of the pressure field,
it appears that one can conclude that such actions next to the wall and atthe center region are driven by
the pressure field. It is speculated, however, that the commented convergence at the center region can be
greater for higher Reynolds numbers than that used in the present work.
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1 INTRODUCTION

Turbulent heat transfer is a phenomenon of fundamental interest and technological relevance to
a range of mechanical, aerospace, and chemical engineeringprocesses in addition to a range
of applications encountered in physics, biological and environmental sciences. Nevertheless,
heat transfer predictions for most applications in practice utilize simplistic approaches based
on Reynolds analogy, which implies similarity between momentum and heat transfer. This
approach is computationally efficient since heat transfer predictions are essentially obtained
from the turbulent velocity field at relatively little additional computational cost. However, most
flows encountered in practice are far from equilibrium, the direct analogy between momentum
and heat transfer fails, and use of the Reynolds analogy for predicting turbulent heat transfer can
be very inaccurate (Spalart and Strelets, 2000; Kong, Choi, and Lee, 2001; Inaoka, Yamamoto,
and Suzuki, 1999). Previous works show that there is a clear need to examine in detail the
dissimilarities between heat and momentum transfer in non-equilibrium turbulent flows.

But in order to understand heat and momentum dissimilarity innon-equilibrium turbulent
flows, however, it seems appropriate first, starting from previous results in the literature, look at
this phenomenon in fully developed turbulent flow, trying tounderstand the way axial velocity
and temperature correlates in this kind of turbulence. And also trying to see more deeply how
this correlation degrades from high to lower values, from the wall toward the center region of
the flow.

Similarity or dissimilarity between momentum and heat transfer means, similarity or dis-
similarity between axial velocity and temperature fluctuations. The correlation between these
fluctuations in wall bounded turbulent flow has been intensively investigated in the last three
decades, first experimentally and then numerically. And as it has been shown in the literature
with experimental works (Bremhorst and Bullock 1970; Orlando, Moffat, and Kays, 1974; Zaric
1975; Fulachier and Dumas, 1976; Hishida and Nagano 1979; Iritani, Kasagi, and Hirata 1985;
Antonia, Krishnamoorthy, and Fulachier 1988), and numerical works (Kim and Min, 1989;
Kasagi, Tomita, and Kuroda, 1992; Kawamura, Abe, and Matsuo1999; Na, Papavassiliou, and
Hanratty 1999; Na, and Hanratty 2000; Kong, Choi, and Lee 2000, and Kong, Choi, and Lee
2001), the similarity between the axial velocity and temperature fields, is very strong in the vis-
cous and buffer region of a turbulent boundary layer. In those cases, for instance, with similar
boundary conditions for the axial momentum and thermal fields, the normal fluxes of axial mo-
mentum and heat have the same direction, and the similarity is stronger. Although some minor
differences in the first experimental works, nowadays it is known that the correlation coefficient
is almost 1 next to the wall, decreasing as the the distance from the wall increases.

In order to justify this strong correlation between fluctuations of axial velocity and temper-
ature, in previous works some explanations have been given based on the kind of turbulence
structures that exists in the wall layer. Nowadays it is known that turbulence, and moreover
bounded turbulence, has a high degree of organization (Kline, et al. 1967; Kim, Kline, and
Reynolds 1971; Nychas, Hershey, and Brodkey, 1978; Swearingen and Blackwelder 1987;
Corino and Brokey 1969; Hamilton, Kim, and Waleffe, 1995), andit has been some attempts to
explain this close behavior of axial velocity and temperature on the wall layer based on coher-
ent structures and intermitency. For example Bremhorst and Bullock (1970) has noted that the
structures of velocity and temperature have a high degree ofcorrelation next to the wall. And
Orlando et al. (1974) suggested that the strong axial velocity and temperature correlation can be
explained based on the long time identity of the near wall structures. Also Zaric (1975) trying to
explain this similarity, computed the probability densityfunction of axial velocity and temper-
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ature, splitting the flow in a background turbulence and an intermittent phase in the wall layer.
And Antonia, Krishnamoorthy, and Fulachier (1987), have speculated that the joint probability
function of axial velocity and temperature fluctuations, from data in the viscous layer, reflect
the presence of longitudinal vortices which lie on either side of the low-speed streaks next to
the wall. These last authors, as also Fulachier and Dumas(1976) in a previous work, have used
spectral analysis of axial velocity and temperature fluctuations. In Antonia et al’s paper the
spectral analysis is limited to the buffer and beginning of the logarithmic region. In this region
they found that as the distance from the wall increases spectras became less and less similar, but
in contrast next to the wall these differences disappeared.This last work was a kind of exten-
sion of Fulachier and Dumas’s paper, who used also spectral analysis to study temperature and
velocity fluctuations similarity in a boundary layer. Fulachier and Dumas’ main conclusions
were that afar from the wall there was a better correlation between temperature and the velocity
vector, rather than axial velocity. Also they have suggested that temperature spectra has afar
from the wall a closer behavior to normal velocity spectra, rather than to axial velocity.

The main focus of the present paper is to analyze the natural dissimilarity of fluctuations
of axial velocity and temperature in the wall layer. The dataare generated with a DNS of
a fully developed turbulent channel flow with heat transfer.The scalar field is solved using
a uniform energy source case. As regarding the Pr number, duePr plays an important role
in the limit of heat and momentum similarity (Na and Haritonidis 2000), most results in this
paper are forPr = 1, avoiding Prandtl number effects on dissimilarity. In the first part of
the paper a short detail of the numerical procedure is given,and then results that show the
strong correlation betweenu′ andθ′ commented above are presented. In the second part of the
paper the importance of the most energetic events in the walllayer, inu′ andθ′ dissimilarity
is presented. Then the spectral density functions of the fluctuations of velocity components,
pressure and temperature fields are used in order to explain the possibles causes ofu′ andθ′

correlation degradation afar from the wall. Then at the end the main conclusions are given.

2 NUMERICAL PROCEDURE

In this section a short description of the numerical aspectsis presented. In Pasinato, and Squires
(2006) a validation of the DNS of developed channel flow with heat transfer is presented. In this
paper,u, v, andw are the instantaneous velocities in the streamwise(x), wall-normal(y), and
spanwise(z) directions, respectively. All instantaneous variables are decomposed in a mean
value and a fluctuation; e.g.u = U + u′. And the root mean square of any fluctuation is
denoted with a plus symbol; e.g.u+ for u′. Also it is used the plus symbol in order to denote
nondimensionalization with the wall parameters,uτ andν; e.g.y+ = y uτ/ν.

A DNS of a turbulent channel flow with periodic boundary condition in x andz was per-
formed. The computational domain is shown in Figure 1. The governing equations in di-
mensionless form are the continuity, the unsteady Navier-Stokes and the energy equations for
incompressible flow and heat transfer,

∂ui

∂xj

= 0 (1)

∂ui

∂t
+

∂

∂xj

ujui =
1

Rτ

∂2

∂xj∂xj

ui −
∂p

∂xi

(2)
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∂θ

∂t
+

∂

∂xj

ujθ =
1

PrRτ

∂2

∂xj∂xj

θ + Se (3)

where the non-dimensionalization was done using the friction velocity vτ and half channel
distance between wallsδ, and the friction temperatureTτ = qw/ρ cp uτ . Whereθ is the di-
mensionless temperature,qw is the heat flux at the wall, andcp andρ are the constant pressure
specific heat coefficient and the density, respectively. In these equationsPr, andRτ are the
molecular Prandtl and turbulent Reynolds numbers based on the vτ wall friction velocity and
half channel distance between wallsδ, respectively, andSe is a dimensionless energy source
term.

Figure 1:Computational domain for fully developed turbulent channel flow.

The computational domain is equal to4π and4π/3 (1885, and 628 in wall units) inx andz
directions, respectively. This computational domain is discretized with a128× 128× 128 grid,
which in wall units means∆x+ = 14.72, ∆y+ = 0.09 − 6.72, and∆z+ = 4.90, in the three
directions respectively. The time step was0.0008δ/uτ or 0.12ν/u2

τ .
The unsteady Navier-Stokes equations were solved numerically at a Reynolds numberRτ

equal to 150. The numerical code used in the present work for the velocity fields was origi-
nally developed by Prof. Kyle Squires’ group at ASU. In this code the incompressible momen-
tum equation are discretized by the second-order accurate central-difference scheme. For the
DNS with periodic boundary condition, the Poisson equationfor the pressure field is Fourier-
transformed with respect to the streamwise and spanwise periodic directions and the resulting
three-diagonal equations are solved directly for each timestep. The flow field is advanced
in time using a fractional-step method, with the Crank-Nicolson second-order scheme for the
viscous terms and the Adams-Bashforth scheme for the non-linear terms. The thermal field is
solved with a numerical code with the same space, and time discretization, and the same scheme
used for the flow field.

Periodic boundary conditions are used for the homogeneous direction x, and z, streamwise
and spanwise, respectively, and non-slip boundary conditions at both walls. As initial condition,
an instantaneous velocity field of a developed turbulent flowwas supplied from a previous
calculation for a turbulent channel flow with the same DNS code.

After the velocity field is calculated at each time step, the temperature field was obtained
integrating the energy equation. Any buoyancy effect was neglected, thus temperature was
considered as a passive scalar. For temperature a uniform heat source was used. The uniform

3647



scalar source case solved in the present work is similar to case I solved in Kim and Moin
(1989), who used a source term equal to2/ReτPr. In the present study, however, the source is
a constant energy source uniformly distributed in the domain, equal toqw/δ. Thus, in this case
the dimensionless temperatureθ = (Tw − T )/Tτ is zero at the walls, and the dimensionless
sourceSe = 1. As initial conditions for the thermal field a developed thermal field from
a previous calculation was giving. The statistics time integration was taken equal to32δ/uτ ,
40, 000 computational time step approximately, or3, 600ν/u2

τ , in order to define mean values.

3 RESULTS AND DISCUSSION

It is worth to mention that for the special case ofPr = 1 the Reynolds averaged form of
equations (2-3) are,

∂

∂xj

(UjUi) =
1

Rτ

∂2Ui

∂xj∂xj

−
∂

∂xj

〈u′

iu
′

j〉 −
∂P

∂xi

(4)

∂

∂xj

(UjΘ) =
1

Rτ

∂2Θ

∂xj∂xj

−
∂

∂xj

〈θ′u′

j〉 + Se (5)

where in these equations the source terms−∂P/∂xi andSe are equal to1 in dimensionless
form.

Thus in this work for analysis porpoise of the special case with Pr = 1, the difference
between axial velocity and temperature is defined as a new variable φ = u − θ, and used as
measure of dissimilarity, whereφ = Φ + φ′ = (U − θ) + (u′ − θ′) as all variables. Also it is
used the variance ofφ normalized by the product of the root mean square of the fluctuations of
axial velocity and temperature,u+, θ+, as a normalized measure of mean dissimilarity,

V ARφ,norm =
〈φ2〉

u+θ+
=

〈uu〉 − 〈uθ〉

u+θ+
+

〈θθ〉 − 〈uθ〉

u+θ+
(6)

which is zero whenρuθ = 1.
It is used this measure of dissimilarity, because it seems easier to look at an instantaneous

measure like asφ′ = u′ − θ′, rather than to a productu′θ′ of these fluctuations.

3.1 Longitudinal velocity and temperature correlation

(a)Mean values:In this item mean values taken in space and time for the homogeneousx − z
plane are presented. Figure 2(a) shows the normal to the walldistribution ofρuθ, ρ−uv, and
ρ−vθ, the Reynolds and thermal stresses, the second moments〈uu〉, 〈uθ〉, and〈θθ〉, and the
normalized variance ofφ. The results in this figure confirm the strong similarity between the
axial velocity and temperature fields in the wall layer, as itwas commented in the introduction.
The values presented here agree very well with the DNS results presented by Kasagi, Tomita
and Kuroda(1992), as it is shown in the Figure, and with Kim and Moin (1989)’s results for a
channel flow, and Kong, Choi, and Lee (2001)’s results for a boundary layer. These results also
agree with the experimental data of Antonia, Krishnamoorthy, and Fulachier (1988), although in
this last work the correlation coefficient has its maximum equal to 1 at the wall. In Figure 2(a),
ρuθ has a values of0.95 at the wall, a local maximum approximately aty+ = 5 equal to0.97
and a local minimum at the center of the channel equal to0.58.
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Figure 2: (a) Wall normal distribution of second moments and correlation coefficients,for developed
turbulent channel flow withReτ = 150. Solid line,ρuθ; ◦ · · ◦ · · ◦ , ρuθ from Kasagi et al. (1992);
· · · · · , V ARφ,norm; −.− .− , 0.05×〈u′θ′〉; + · ·+ · ·+ , 0.05×〈u′u′〉; �· ·�· ·� , 0.05×〈θ′θ′〉;∗··∗··∗ ,
ρ−vθ; − − − , −〈v′θ′〉; B · · B · · B , ρ−u′v′ ; C · C · C · C , −〈u′v′〉. (b) Distribution of mean
velocity and temperature for the uniform energy source casewith Pr = 1 andSe = 1. Solid
line, mean velocity;−−− , mean temperature;+ · · + · · + , U+ = y+ andln(y+)/0.41 + 6.0.

The conservation law forφ, from equations (2-3), Reynolds averaged for a fully developed
turbulent channel flow is,

0 =
1

Rτ

d2Φ

dy2
−

d

dy
(〈u′v′〉 − 〈v′θ′〉) (7)

Equation (7) shows that the dissimilarity in the mean velocity and temperature is different
from zero if the wall normal gradient of the difference of thenormal fluxes is different from
zero. From Figure 2(a) it is seen that these normal fluxes are only slightly different from zero
through the logarithmic sub-layer. And as it is shown in Figure 2(b), both the mean axial
velocity and temperature have almost the same distribution. As regarding this slight difference
between normal fluxes, on the other hand, it is worth to mention that is not possible to be
sure how much of it is physical and how much is numeric. In other words, the instantaneous
spatial and temporal gradients in the energy equation always are larger than those in the axial
momentum equation as a consequence of the pressure gradientin the last equation. The same is
to say that the energy equation is less stable in the numerical sense (Akselvoll and Moin, 1995).
Thus the numerical resolution of the energy equation shouldhave larger numerical errors, if the
same numerical scheme is used in both equations.

Figures 3(a) and 3(b) show the two-point correlations coefficient with streamwise, and span-
wise separation of velocity components and temperature,Ruu; Rvv; Rww, Rθθ, at four positions
from the wall,y+ = 4, 16, 38, 116. Once again these Figures, as commented previously,
clearly show the strong correlation of axial velocity and temperature in the viscous and buffer
regions. Then afar from the wall, toward the center of the channel, there is a departure between
axial velocity and temperature, as it is seen fory+ = 116. Also from both first locations, at
y+ = 4 and16, it is clear the presence of long streamwise structures in both fields, thermal and
axial velocity. The two-point correlations in the spanwisedirection, on the other hand, with its
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Figure 3:Two-point correlations coefficient. (a) Streamwise separation; (b) Spanwise separation. Solid
line, u′; ◦ · · ◦ · · ◦ , θ′; −−− , v′; −.− .− , w′. At four locations from the wall. (i)y+ = 4, (ii)
y+ = 16, (iii) y+ = 38, (iv) y+ = 116.

minimum aty+ = 50 in the viscous and buffer region, show the presence of streamwise vortices
in these regions (Kline, et al. 1967; Kim, Moin, and Moser, 1987). In contrast, in the center of
the channel this coefficient indicates a closer behavior ofw andθ in the spanwise direction.

The results presented in this item indicate, as it is remarked in the literature, theu′ and
θ′ close behavior in the viscous and buffer region. And a gradual de-correlation or increasing
dissimilarity as the wall distance increases.

(b)Local statistics: In this item statistics of the serial time of the turbulent fluctuations are
presented and discussed, at four positions from the wall.(1) y+ ' 4, at the top of the viscous
layer, which means approximately at the top of the low velocity streaky structure in the very
near wall (Kim, Moin, and Moser, 1987; Hamilton, Kim, and Waleffe, 1995); (2)y+ ' 16, at
the buffer region where approximately occurs the maxims of velocity fluctuations; (3)y+ ' 38,
at the end of the buffer region and beginning of the semi-log region, where it is expected to be
located approximately the top of the streamwise vortical structures in the wall layer, and (4) at
y+ ' 116, in the flow center region. The statistics time integrationswas taken on time interval
greater than15, 000ν/u2

τ or 90δ/uτ in all cases.

Statistics y+ = 4 y+ = 15 y+ = 38 y+ = 116

Su 0.64078 -0.17126 -0.54905 -0.53791
Fu 3.02714 2.18137 3.09128 3.53121
Sθ 0.70177 -0.11165 -0.45057 -0.72089
Fθ 3.13215 2.17178 2.81946 3.73155
Sφ -0.30437 -0.02992 0.06042 0.17884
Fφ 5.94181 4.21981 3.45856 3.18046

Table 1:Skewness,S, and flatness,F , factors forPr = 1.0, for u′, θ′, andφ′ .

Figures 4(a) and 4(b) show the probability density functions, pdf, for axial velocity and
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Figure 4:Probability density function of axial velocity and temperature at four positions from the wall,
for two Prandtl numbers. Solid linea = u′; − − − a = θ′. (a) Pr=0.71; (b) Pr=1.0. (i)y+ = 4; (ii)
y+ = 16, (iii) y+ = 38, (iv) y+ = 116.
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Figure 5: Probability density function of axial velocity and temperature difference,φ′, for Pr = 1.
Solid liney+ = 4; − − − y+ = 16; −. − .− , y+ = 38; · · · · · , y+ = 116. Vertical lines denotes
φ/ < φ2 >1/2= ±2.5.
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temperature fluctuations forPr = 0.71 and1, at the four positions from the wall. And Table 1
show the skewness factor,S, and flatness factor,F , for u′, θ′, andφ′ at the four positions.S is
positive in the viscous layer, and negative in both variables in the other locations. Both pdf are
almost symmetric for the second and third locations, at the buffer region and beginning of the
logarithmic sublayer. They show, however, that for very large values ofu′ its pdfp(u) is smaller
thanp(θ) in the four positions. These last results are consistent with experimental results in the
literature (Antonia, Krishnamoorthy, and Fulachier 1988;Zaric 1975). They show also that for
very low values ofu′, thep(u) is slightly greater than thep(θ) in the first three locations near
the wall, and almost the same in the center of the channel.

Thus the main characteristic of these figures is that the fluctuations of temperature are always
slightly larger than velocity fluctuations. When fluctuations are positive, the absolute value of
the temperature fluctuations are larger, and when fluctuations are negative, the absolute values
of the temperature fluctuations are smaller. In this worku and θ have the same boundary
conditions, therefore, positive fluctuations means inrushor sweeping movements of warm fluid
with high momentum toward the wall. Thus Figures 4(a) and 4(b) show that for those warm
high momentum movements toward the wall, temperature experiment stronger oscillations than
velocity. In contrast, for the ejections of cold fluid with low momentum from the near wall
region toward the center of the channel,u fluctuations are stronger.

Figure 5, which shows the pdf for the fluctuation of axial velocity and temperature differ-
ence,φ′, for the four positions from the wall forPr = 1, shows also the same difference in
negative and positiveu andθ fluctuations. In other words, the correlation betweenu andθ is
for positiveu′ and positiveθ′. There are only few events where these fluctuations have opposite
sign. Thus,φ′ < 0 means sweeping motions, andφ′ > 0 ejections. And Figure 5 shows, and
the same can be seen fromSφ factor in Table 1, largerp(φ) of negative fluctuations inφ in the
wall layer. Thus sweeping motions are more frequent than ejections next to the wall. Another
aspect in this figure is that pdf ofφ′ seems to be the results of two kind of flow, a background
turbulence and an intermittent phase, like as it was taken byZaric (1975) in his paper. One
phase forφ′ in the interval±2.5φ+ (whereφ+ means the rms ofφ), which can be associate with
a calm period of flow. And a second phase for|φ′| > 2.5φ+, for abrupt events like as ejections
or sweeping motions. Thatφ can reflect these two phase of turbulence is not a surprise, since it
is the instantaneous dissimilarity. In the last subsectionthis result is used as a criteria to detect
the dissimilarity in amplitude that cause the most energetic events at the wall layer.

More details of theu′ andθ′ correlation degradation from the wall toward the center of the
channel can be extracted from the joint probability densityfunction, jpdf, of both variables.
Figures 6(a), and 6(b) show the jpdf foru′ and θ′, for the four positions from the wall, for
Pr = 0.71, andPr = 1.0. Note that it was used a difference in scales. The results for
Pr = 0.71 show the effect of the lower Pr for all fluctuations at the viscous layer, and basically
for negative fluctuations at the buffer region. In other words, for those fluctuations coming from
the cold low momentum flow near the wall, where molecular transfer of momentum and heat
are important. Note that fluctuations in these Figures are not normalized by the rms. Based
on the fact that correlation equal1 is a linear function, Figures 6(b)-a to d, clearly show how
correlation change from high values at the viscous layer to more or less a half at the center of
the channel.

Same last results are presented in this subsection based on two-point correlation. They are
the comparison of the patterns of the two correlations: skinfriction-streamwise vorticity, and
wall heat transfer-streamwise vorticity. Some works have been published related with drag
reduction, where it was found that regions of high skin-friction at the wall are related with the
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Figure 6:Joint probability density function of axial velocity and temperature at four positions from the
wall, for two Prandtl numbers. (a) Pr=0.71; (b) Pr=1.0. (i)y+ = 4; (ii) y+ = 16, (iii) y+ = 38, (iv)
y+ = 116. Note the different scales in (i, ii, iii, and iv). Contour levels are in the interval 0 − 0.01 with
increment of 0.0033 in (a), and in the interval0 − 0.015 with increment of 0.005 in (b). Diagonal solid
lines denote45 degree tangent linear functions.
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Figure 7: Two-point normalized correlationQ(rx, y, rz) between the wall shear rate and streamwise
vorticity, in the plane(x+, z+) at four positions from the wall. (a)y+ = 0.016, (b)y+ = 4, (c)y+ = 16,
(d) y+ = 38. Contour levels are in the rage−2.5, +2.5 with increments of0.25. Positive and negative
contours are represented by solid and brokenlines, respectively. Doted lines denote detection point at the
wall.
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Figure 8: Two-point normalized correlationQ(rx, y, rz) between the wall heat rate and streamwise
vorticity, in the plane(x+, z+) at four positions from the wall. (a)y+ = 0.016, (b)y+ = 4, (c)y+ = 16,
(d) y+ = 38. Contour levels are in the rage−2.5, +2.5 with increments of0.25. Positive and negative
contours are represented by solid and brokenlines, respectively. Doted lines denote detection point at the
wall.

presence of streamwise vortical structures in the buffer region. First Choi, Moin, and Kim(1993)
have shown that regions of high skin-friction are associated with streamwise vortices right above
the wall. Then Kravchenko, Choi, and Moin(1993) shown that skin-friction correlates with
near-wall streamwise vortices.

Here the same kind of two-point correlation used by Kravchenko et al. was used for the
instantaneous wall normal gradient ofu andθ, with the instantaneous streamwise vorticity. The
objective of these results was to compare the gross pattern of these correlations. Note that in
this work the correlations are normalized. The two-point correlations were evaluated from24
instantaneous flow fields withPr = 1, that were equally separated in time30, 0ν/u2

τ . These
correlations are,

Q(rx, y, rz) =
〈A(x, yd, z)ωx(x + rx, y, z + rz)〉

ω+
x

(8)

where(x, yd, z) is the detection point and(x + rx, y, z + rz) the second point,A is equal to
(∂u′/∂y)(x, y = 0, z) for the skin-friction, and to(∂θ′/∂y)(x, y = 0, z) for wall heat transfer,
and〈 〉 denotes averaging inx, z, and time.

In this paper only a few results for these correlations are shown in Figures 7 and 8, where
they clearly show that normal temperature gradient at the wall correlates with streamwise vor-
ticity in almost the same way that wall normal gradient of axial velocity does.

More results using this two-point correlation technique, with φ′ at the detection point(x, yd, z)
and the streamwise vorticity〈φ(x, yd, z)ωx(x + rx, y, z + rz)〉, or the wall normal velocity,
〈φ(x, yd, z)v(x + rx, y, z + rz)〉, among other variables were calculated. And these correlations
were evaluated for different positions of the detection point, aty+ = 4, 16, 23, 38. The most
interesting results from these correlations, that will be reported elsewhere, is that dissimilar-
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Figure 9: Sample of filtered instantaneous fluctuations. (a)u′ + 35; (b) θ′ + 20; (c) φ′ + 10, (d)
(∂p′/∂x+) × 10. Vertical dots denote two particular events.

ity occurs basically between two regions with opposite streamwise vorticity inx − z planes,
and that it correlates basically with negative wall normal velocity in region immediately above
the detection point. This region with negative wall normal velocities is a vertical and narrow
region that begins near the center of the channel. These results give more support to the specu-
lation that dissimilarity is mainly associated with sweeping movements of warm flow with high
momentum toward the wall.

3.2 Mean contribution to dissimilarity from most energetic events

Figure 9 shows a sample with the filtered instantaneousu′, θ′, φ′, (∂p′/∂x) at y+ = 16. In
order to filter the fluctuations a moving mean was applied, using a short period of time,T+ =
tu2

τ/ν = 3.6, in comparison with the period of time of the most energetic events like as sweeping
or ejection motions near the wall (Luchik and Tiederman, 1987; Shah and Antonia 1988).

An interesting aspect in Figure 9 is that, eventually, thereare events in whichu′ and θ′

clearly show different behavior. For instance, in the events denoted as(i) and(ii), tempera-
ture fluctuations present, superimposed, small amplitude oscillations of high frequencies, at the
extremes of the main fluctuations. In contrast, these high frequency oscillations look almost
dumped in the axial velocity fluctuations. On the other hand,this Figure clearly shows, as it
was expected, that exists an association of the strongest dissimilarities, or big oscillations in
φ, with the most energetic events in the axial gradient ofp′ in the major part of the sample. It
is also important to remark thatφ′ clearly presents, as it was also expected, two phases. One
associated with the important oscillations of the flow, and other more calm, where dissimilarity
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Figure 10:Contribution to dissimilarity of the most energetic events in the wal layer. (a)∗· ·∗· ·∗ , ρuθ;
◦ · · ◦ · · ◦ , V ARφ,norm; + · ·+ · ·+ , V ARφ,norm from events that satisfy condition (9). (b)V ARφ,norm

from events that satisfy the following conditions:+ · · + · · + , condition (9);◦ · · ◦ · · ◦ , condition (11);
∗ · · ∗ · · ∗ , condition(12). (c)Same as in (b) butV ARφ,norm as% of total V ARφ,norm. (d) Events
with the following conditions in%. � · ·� · ·� , condition (9) over the whole sample;◦ · · ◦ · · ◦ condition
(11) over events that satisfy (9);∗ · · ∗ · · ∗ , events that satisfy (12) of events that satisfy (11);
C ·C ·C ·C , events that satisfy condition (13) of events that satisfy (9);B · ·B · ·B , events that satisfy
(14) of events that satisfy (9).

presents high frequency and small amplitude. Thus it seems appropriate to find out the contri-
bution to dissimilarity of the big oscillations, and those from differences in frequency. And this
is presented in this and next subsection.

Thus the idea in this subsection is to detect events characterized asimportant dissimilarity
eventwith some algorithm and evaluate their mean contribution tothe mean dissimilarity, as it
was defined in equation (6). As detection algorithms for animportant dissimilarity eventone
analogous to those used in the literature to detect burst or ejection events, was used. The most
common of these algorithms are theuv quadrant 2, the variable interval time average (VITA),
and theu−label techniques. And they have been used in order to investigate burst period and
high pressure peaks frequency in wall turbulence(Lu and Willmarth, 1973; Blackwlder and
Haritonidis, 1983; Luchik and Tiederman, 1987; Shah and Antonia 1988; Johansson, Her, and
Haritonidis 1987). In this work, however, the idea is not to relate the most important instan-
taneous oscillations inφ with events like as burst, ejections or sweeping motions. Rather than
the objective is only to identify the most energetic events in the wall layer. And then to evalu-
ate their importance in the production of axial velocity andtemperature mean dissimilarity, no
matter they are burst, ejections or sweeping motion events.And no matter if an events like as
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an ejection is split out in two or more events.
Then the algorithms used to detect important dissimilarityevents, based on the VITA and

the second quadrant algorithms, detect one events when the variance ofφ is,

φ̂′ 2 − φ̄2 ≥ kφ+ (9)

where as mean values forφ the mean values of the whole sample is used, which is almost zero
for the thermal case solved here, and the wide-hat symbol means a mean values in the time
filtering intervalT ,

φ̂(t, T ) =
1

T

∫ t+T/2

t−T/2

φ′(τ)dτ (10)

The algorithms above have two parameters, the filtering timeperiodT and the threshold
k. k was taken equal2, as a conservative value based on the pdf ofφ (values ofφ out of the
interval±2.5φ+) in Figure 5. As regarding the second parameter, the period of filtering T , this
period in dimensionless form used in this work wasT+ = 1.2, which is well out the range,
6 < T+ = tu2

τ/ν < 13, for dimensionless burst period found in the literature. Onthe other
hand, because the mean and the rms values ofφ, φ+ andφ̄, used in the algorithms are evaluated
for the whole sample, the algorithms can be used for instantaneous values without any filter.
Moreover, numerical tests were done which shown that results were only slightly sensible to
the filtering period for values ofT+ < 10.

Therefore, using the algorithms above, once an event that qualify as important dissimilarity
event was detected, conditional probability with different conditions were used in order to char-
acterize whether these events with strong dissimilarity inaxial velocity and temperature, satisfy
a second, or a second and a third condition. Some of the conditions used were,

P (φ̂′ 2 − φ̄2 > kφ+, û′v′ < 0) (11)

aiming at to detect how many of the events detected as important dissimilarity events, also
belong to events in the second quadrant, Q2.

P (φ̂′ 2 − φ̄2 > kφ+, û′v′ < 0, v̂′ < 0) (12)

aiming at to detected events in Q2 and also with negative fluctuation of normal velocity.

P (φ̂′ 2 − φ̄2 > 2φ+, ∂̂p′/∂x < 0) (13)

P (φ̂′ 2 − φ̄2 > 2φ+, ∂̂p′/∂x > 0) (14)

aiming at to detect whether dissimilarity is associated with favorable or adverse instantaneous
axial pressure gradient.

Figure 10 show some of the most relevant results. In first place, Figure 10-a shows the
correlation coefficientρuθ, the total dissimilarity, equation (6), and the dissimilarity owing to
those events that qualify as the most energetic events in thewall layer, at the four positions from
the wall used in this work. The first conclusion from this figure is that the most energetic events
are responsible of a part of total dissimilarity, but it is inthe four locations less than a half of
the total. In other words, as it is shown in Figure 10-c, the contribution of these big events to
the total dissimilarity is alway smaller than50% in the whole wall layer.
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Hence, the main features of Figures 10-(a), (b) and (c), indicate, as it commented above,
that the most energetic events have a part in dissimilarity,but the major contribution are due to
another physical causes. On the other hand, this contribution to dissimilarity by the energetic
events in the wall layer decreases toward the center of the channel. At the center of the channel
its contribution is less than30% of the total dissimilarity as it is shown by Figure 10-(c).

Figure 10-(d) shows the frequency of events detected as important dissimilarity event, with
a second or a second and a third condition. It is seen that the inrushes or movements of high
momentum toward the wall are felt in the whole flow, and that the number of events detected
with this condition is more or less equal to75% in the viscous layer, decreasing slowly afar
from the wall. Looking now to the frequency of events that satisfy also a condition on the
pressure gradient, the results show that at the viscous layer and at the center of the channel the
important dissimilarity events are almost not related withthe sign of the pressure gradient. On
the other hand, the sign of the pressure gradient has, although slightly, an effect in the buffer
region and in the beginning of the logarithmic sub-region. In this Figure 10-(d) is seen also
that there are approximately a70% of events that qualify as important dissimilarity events in
the viscous layer, which are in the second quadrantu′v′ < 0, and the90% of them satisfy also
v′ < 0. Then both percentage decrease toward the center of the flow,and at the center region
of the channel less than50% of theu′v′ < 0 events are alsov′ < 0 events. And a surprising
result is seen from condition in equation (12), which detectthose important dissimilarity event
in the second quadrant that have negative normal velocity. The results in Figure 10-b show that
in the viscous layer this kind of events are nearly the90%. In other words, the most important
dissimilarity events in the second quadrant are owing to sweeping motion and not to burst or
ejections. Nevertheless, this percentage change quickly toward the center of the channel, where
there the contribution of burst/ejection and sweeping motions to the most important dissimilarity
events are almost the same.

In conclusion, therefore, the contribution to dissimilarity of the most energetic events in the
wall layer is important, but do not explain the major causes of correlation degradation between
axial velocity and temperature toward the center of the channel. Neither they explain the major
fraction of dissimilarity in the viscous and buffer regionswhere these events are the strongest.

3.3 Spectral density functions

Figures 11 and 12 show the spectra for the fluctuations of velocity components, temperature,
the difference between axial velocity and temperature,φ, and pressure, normalized by their rms,
at four locations from the wall. Note the small difference ofposition of data at the center of
the channel, Figures 11-d and 12-d, related to previous figures. The spectra forp′ is in both
Figures in order to improve comparison, and also because it is thought thatp′ has fundamental
importance in the energy distribution among velocity components and thermal field. In order
to obtain the spectra the data set, of approximately19, 000ν/u2

τ in dimensionless time, was
segmented into 92 segments with 1024 time-steps everyone. Then the periodograms were av-
eraged together to obtain the spectral density function at 1024 frequencies. The segments were
overlapped by one half of their length. On the other hand, forthe frequency leakage the data
were windowed with a Welch window. There were selected the four positions aty+ = 4, 16,
38, and126, because they give a more or less complete picture of the spectra modification in
the wall layer. It is plotted the decimal logarithmic ofωδ/uτ in the abscissa, and the product
of (ωδ/uτ )Φa in ordinate, whereΦa is the spectral density function of the variablea normal-
ized to unity. The area under any section of Figures 11 and 12 is proportional to the fraction
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Figure 11:Spectral density function ofu′, θ′, φ′, andp′, at four positions from the wall, (a)y+ = 4; (b)
y+ = 16; (c) y+ = 38; (d) y+ = 126. Solid line,a = u′/u+; − − − , a = θ′/θ+; · · · · · , a = φ′/φ+;
◦ · · ◦ · · ◦ , a = p′/p+.
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Figure 12:Spectral density function ofv′, w′, andp′, at four positions from the wall, (a)y+ = 4; (b)
y+ = 16; (c) y+ = 38; (d) y+ = 126. Solid line,a = v′/v+; − − − , a = w′/w+; ◦ · · ◦ · · ◦ ,
a = p′/p+.
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of total 〈a′ 2〉/a+2 in that particular frequency range. In other words, spectrashow the energy
distribution of normalized fluctuations.

From these Figures it can seen from the spectra ofu′ andθ′ at the four positions, that there
is a shift toward higher frequencies of both spectras. But those in θ′ is always greater, and
this difference increases quickly in the first three positions from the wall. Then this difference
decreases slightly toward the center region. In both spectras, as positiony+ increases for the
first three positions, the peaks decreases as its position tends to shift toward higher frequency.
This results agree with was found by Antonia et al. (1987), who did observations in a heated
turbulent boundary layer fory+ < 40. At the center of the channel the peaks ifu′ and θ′

spectras increases as regarding those in the beginning of logarithmic layer,y+ = 38. On the
other hand, spectras forφ′ andp′ show thatp andφ have a very similar spectra at the viscous
region,y+ = 4. Actually, they are almost the same in the whole extension. Thenφ′ spectra
suffers a shift toward higher frequencies in comparison top′ spectra, but at the second and
third position from the wall, buffer and beginning of the logarithmic regions, the peaks ofφ′

spectra shows a slight tendency toward lower frequencies. Then at the center of the channel,
both spectras present the lowest peaks. Looking now to the spectras forv′ andw′ in comparison
with p′ spectra, they cleary show that there is a tendency of both velocity components spectra
to follow those ofp′. This tendency is maximum at the beginning of the logarithmic region
y+ = 38. Then at the centerp′ spectra shows a tendency toward lower frequencies, and its
peaks has quickly decreased. And at the center of the channelalso, unlike in the buffer and in
the beginning of the logarithmic region, spectra ofv′ andw′ present the steepest right tail. But
most important, the right tails ofv′ andw′ spectras are toward higher frequencies as regarding
p′ spectra.

One possible explanation for these behavior in spectra of fluctuations of turbulence is that
the intermittent phase of turbulence introduces high frequency perturbations in the pressure
field. And, because it is through the pressure field that such energy is redistributed among the
different velocity components (Tennekes and Lumly 1976), these perturbations activate high
frequencies in the normal and spanwise velocities. Moreover, this high frequency energy com-
ing from the most energetic events in the wall layer is introduced into the scalar or thermal
field through the convective terms, generating even higher frequencies, e.g. eventsi andii at
Figure 9. It seems that without any ’buffer’ term like as the pressure gradient in the momentum
equations, the energy equation generates higher gradient and thus faster oscillations on thermal
field.

It is worth to note also that the spectras forp fluctuations at the four positions from the
wall, have the peaks at almost the same frequency. Based on this result it appears that one
can conclude that pressure field acts driving energy in velocity components, from low to high
frequencies near the wall (in the viscous, buffer, and beginning of the logarithmic region), and in
opposite direction in the center region. At the center of thechannel pressure field drives energy
toward lower frequencies in the momentum equations, and so on thermal field, enforcing a kind
of spectras convergence in the center region. Although it isspeculated that in the present paper
there is only a small tendency to convergence owing to the lower Reynolds number,Reτ = 150.
In this sense, it would be appropriate to check low Reynolds number effects in the present
results.

Finally, it is important to remark that without the use of thenew variableφ, it would be
difficult to figure out how the difference in temperature and axial velocity fluctuations was
conformed in the frequency domain. And, although it was expected it would be difficult, to link
the origin of natural dissimilarity in the frequency domainto the action ofv andw fluctuations
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through the convective terms. Figure 11-a clearly shows that dissimilarity in the viscous region
is driving byp fluctuations, through normal and spanwise velocity fluctuations.

4 CONCLUSION

In this paper the causes of natural dissimilarity of axial velocity and temperature in a turbulent
channel flow were analyzed based on data generated by DNS. Thetemperature was considered
as a passive scalar, and the thermal field is generated with a uniform energy source case.

The paper is thought to be a complement of previous contributions in the literature oriented
to investigate correlation of temperature and longitudinal velocity fluctuations. It is mainly ori-
ented to quantify the importance of the most energetic movements in the wall layer, those in the
intermittent phase of turbulence, in the fluctuations of temperature and axial velocity dissimilar-
ity. It is also oriented to present more evidences of spectral dissimilarity. For instance, the origin
or causes of dissimilarity in the frequency domain, owing tothe pressure field fluctuations and
the action of wall normal and spanwise velocity fluctuations. And finally it shows that natu-
ral dissimilarity between axial velocity and temperature fluctuations has its major contributions
from frequency domain.

Thus, the main conclusions from this work are that the most energetic events in the wall
layer, as a consequence of sweeping and ejection motions, donot contribute significantly in
a direct way to the de-correlation between axial velocity and temperature afar from the wall.
The major part of dissimilarity occurs in the frequency domain. The natural dissimilarity in the
wall layer increases afar from the wall, mainly owing to the shift toward higher frequencies of
temperature fluctuations, in comparison with axial velocity fluctuations. Temperature spectra
departs from those of axial velocity as the distance from thewall increases, but at the center
region of the channel all velocity and temperature spectrasshow a tendency to convergence.
And it is speculated that such action is driven by the fluctuations of the pressure field. It is
thought that this convergence can be greater for higher Reynolds numbers. Therefore it would
be appropriate to check the present results for higher Reynolds numbers.
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