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Abstract. Python is a modern but mature, easy to learn, powerful programming language. It
has efficient high-level data structures and a simple but effective approach to object-oriented
programming. Python codes are quickly developed, easily debugged and maintained, and can
achieve a high degree of integration with other libraries written in compiled languages. Those
characteristics make Python an ideal candidate for writing the higher-level parts of large-scale
scientific applications and driving simulations in parallel architectures like clusters of PC’s or
SMP’s.

In this work, we present some parallel finite element simulations driven in a cluster of
PC’s using the Python programming language. Our previously developedMPI, PETScand
ParMETISpackages are used together to deploy a model parallel FEM framework, integrat-
ing an important subset ofOOFELIE toolkit, a sequential C++ code for FEM simulation and
development. Our main concern is in showing the advantages of using high-level scripting lan-
guages for the high-level part of that kind of codes, where parallelization introduces some extra
complexities.
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1 INTRODUCTION

Over the last years, high performance computing has become an affordable resource to many
more researchers in the scientific community than ever before. The conjunction of quality open
source software and commodity hardware strongly influenced the now widespread popularity
of Beowulf1 class clusters and cluster of workstations.

Among many parallel computational models, message-passing has proved to be an effective
one. This paradigm is specially suited for (but not limited to) distributed memory architectures
and is used in today’s most demanding scientific and engineering application related to mod-
eling, simulation, design, and signal processing. However, portable message-passing parallel
programming used to be a nightmare in the past because of the many incompatible options
developers were faced to. Fortunately, this situation definitely changed after the MPI Forum2

released its standard specification.
High performance computing is traditionally associated with software development using

compiled languages. However, in typical applications programs, only a small parts of codes
are time-critical enough to require the efficiency of compiled languages. The other parts are
generally related to memory management, error handling, input/output, and user interaction,
and those are usually the most error prone and time-consuming lines of code to write and debug.

Interpreted languages can be really advantageous for implementing the high-level parts of
any application. They are well established in the scientific community. In the commercial
side, MATLAB is the dominant interpreted programming language for implementing general
numerical computations. In the open source side, Octave and Scilab are well known, freely
distributed software packages providing compatibility with MATLAB language. Even in a
specialized application domain like multi-physics simulations by finite element methods, the
developers ofOOFELIE3,4 toolkit had early realized the importance of providing end-users with
a high-level, interpreted, interactive language in order to simplify access to its object oriented
library written in C++.

In this work, we describe our experiences using Python,5 a well established interpreted pro-
gramming language, in parallel environments. We also present a set of packages that can be
used to develop parallel FEM applications under Python.

The next section presents a brief overview of Python and related tools, and our Python ports
to MPI, PETSc, ParMETIS, and OOFELIE. Section 3 describes design, implementation and
provided functionality of these packages. Section 4 presents some efficiency comparisons be-
tween MPI for Python and C codes communicating numeric arrays. Section 5 shows a example
of a parallel FEM simulation. Finally, section 6 presents our conclusions and plans for future
work.

2 BACKGROUND

2.1 Python

Python5,6 is a modern but mature, easy to learn, powerful programming language with a con-
stantly growing community of users. It has efficient high-level data structures and a simple
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but effective approach to object-oriented programming with dynamic typing and dynamic bind-
ing. Python’s elegant syntax, together with its interpreted nature, make it an ideal language for
scripting and rapid application development in many areas on most platforms.

The Python interpreter and its extensive standard library are available in source or binary
form without charge for all major platforms, and can be freely distributed. It can be easily
extended with new functions and data types implemented in C or C++7 and is also suitable as
an extension language for customizable applications that require a programmable interface.

Python is an ideal candidate for writing higher-level parts of large-scale scientific applica-
tions and driving simulations in parallel architectures8–10 like clusters of PC’s or SMP’s. Python
codes are quickly developed, easily maintained, and can achieve a high degree of integration
with other libraries written in compiled languages.

2.2 MPI

MPI,11,12theMessage Passing Interface, is a standardized and portable message-passing system
designed to function on a wide variety of parallel computers. The standard defines the syntax
and semantics of library routines (MPI is not a programming language extension) and allows
users to write portable programs in the main scientific programming languages (Fortran, C, or
C++).

Since its release, the MPI specification has become the leading standard for message-passing
libraries in the world of parallel computers. Implementations are available from vendors of
high-performance computers as a component of the system software, and also from well known
open source projects like MPICH13,14 and LAM.15,16

MPI follows an object oriented design. Among the different abstractions introduced,com-
municatorsplay the most important role. Basically, communicators specify a communication
domain between an ordered set of processes orgroup. This abstraction enables division of pro-
cesses, avoids message conflicts between different modules, and permits extensibility by users.

2.3 PETSc

PETSc17–19 is a suite of data structures and routines for the scalable (parallel) solution of scien-
tific applications modeled by partial differential equations. It employs the MPI standard for all
message-passing communication.

PETSc is intended for use in large-scale application projects, and several ongoing computa-
tional science projects are built around the PETSc libraries. With strict attention to component
interoperability, PETSc facilitates the integration of independently developed application mod-
ules, which often most naturally employ different coding styles and data structures.

PETSc is easy to use for beginners. Moreover, its careful design allows advanced users to
have detailed control over the solution process. PETSc includes an expanding suite of parallel
linear and nonlinear equation solvers that are easily used in application codes written in C,
C++, and Fortran. PETSc provides many of the mechanisms needed within parallel application
codes, such as simple parallel matrix and vector assembly routines that allow the overlap of
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communication and computation. In addition, PETSc includes growing support for distributed
arrays.

2.4 ParMETIS

ParMETIS20 extends the functionality provided by METIS21 and includes routines based on a
parallel multilevel k-way graph-partitioning algorithms that are especially suited for parallel
computations and large-scale numerical simulations involving unstructured meshes.

In typical FEM/FVM computations, ParMETIS dramatically reduces the time spent in inter-
process communication by computing mesh decompositions such that the number of interface
nodes/elements is minimized. In particular, ParMETIS provides functionalities for graph and
mesh partitioning, dual graph construction, graph repartitioning, partitioning refinement, and
sparse matrix reordering.

2.5 OOFELIE

OOFELIE,Object Oriented Finite Elements Led by an Interactive Executor, is a multi-physics
software toolkit written in C++ with focus in modeling electro-thermo-mechanical systems.
Simulation capabilities include fluids, heat transfer and phase change, stress and deformation,
acoustics, and electrostatics. OOFELIE provides containers and routines to construct a system
of linear or nonlinear equations to be solved for the unknowns of the physical problem.

The standard way of using OOFELIE is through scripts. Users define their problems in plain
text files which are parsed and executed by a built-in interpreter. This interpreter also provides
a command-line interface for interactive usage. OOFELIE can also be available as a library for
development of new applications and has interfaces for pre- and post-processing software like
SAMCEF FieldandGID.

3 IMPLEMENTATION

Developed Python modules consist of Python code defining all constants, class hierarchies and
functions. These codes call simpler, lower-level functions from extension modules written in
C/C++, which provide access to native C/C++ objects, constants and function in libraries.

C/C++ extension modules were developed with the help of SWIG22 wrapper generator. This
tool simplifies the wrapping of C/C++ libraries as it automate the generation of complete exten-
sion modules by parsing header files and providing flexible customization mechanisms to define
object conversion and type checking from C/C++ to Python and vice-versa. After a compilation
step, generated extension modules are ready for access in the Python side.

4 EFFICIENCY MEASUREMENTS

Some efficiency tests were run on the Beowulf class clusterGeronimo23 at CIMEC. Hard-
ware consisted of ten computing nodes with Intel P4 2.4GHz processors, 512KB cache size,
1024MB RAM DDR 333MHz and 3COM 3c509 (Vortex) Nic cards interconnected with an En-
core ENH924-AUT+ 100Mbps Fast Ethernet switch. All Python modules were compiled with
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Python 2.4.1andNumarray 1.3.3.
The first test was a bi-directional blocking send and receive between pairs of processors. MPI

implementation used wasMPICH 1.2.6. Messages were numeric arrays (NumArrayobjects) of
double precision (64 bits) floating-point values. A basic implementation of this test using MPI
for Python (translation to C or C++ is straightforward) is shown below.

from mpi4py import MPI
import numarray as array

rank = MPI.COMM_WORLD.Get_rank()
sbuff = array.array(shape=2**20,

type= array.Float64)
wt = MPI.Wtime()
if MPI.even:

MPI.COMM_WORLD.Send(buffer, rank+1)
rbuff = MPI.COMM_WORLD.Recv(rank+1)

else:
rbuff = MPI.COMM_WORLD.Recv(rank-1)
MPI.COMM_WORLD.Send(buffer, rank-1)

wt = MPI.Wtime() - wt

timing = MPI.WORLD.Gather(wt, root=0)

Results are shown in figure 1. Maximum bandwidth in Python is about 85% of maximum
bandwidth in C.
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Figure 1: MPI for Python bandwidth in blocking Send/Receive

The second test was the sequential solution of a model transient three-dimensional heat trans-
fer problem on the unit boxΩ = (0, 1)3 with Dirichlet boundary conditions at the boundaryΓ
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and an uniform initial condition.

U̇ = ∇2U onΩ × (0, T )

U(x, t) = 0 atx ∈ Γ, 0 < t < T

U(x, t) = 1 atx ∈ Ω, t = 0

Finite differences with standard 7-points stencil on a structured, regularly spaced grid were used
for the spatial discretization. Discrete Laplace operator was implemented with a matrix-free
approach.

[Lh(U)]i,j,k =
Ui−1,j,k − 2Ui,j,k + Ui+1,j,k

h2
1

+

+
Ui,j−1,k − 2Ui,j,k + Ui,j+1,k

h2
2

+

+
Ui,j,k−1 − 2Ui,j,k + Ui,j,k+1

h2
3

Backward-Euler method for time integration was chosen. The solution process amounts to
the solution of a system of linear equations in each time-step. Conjugate gradients algorithm
without preconditioning is employed.

1

∆t
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)
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)
Un+1 =

1

∆t
Un

Results are shown in figure 2. Vertical axis indicates the Python overhead, horizontal axis
indicates the number of grid points in each dimension. Clearly, the time overhead in using
Python decreases when the problem size grows.

5 FEM SIMULATIONS

This section describes the numerical solution of a temperature-based model to simulate an un-
steady heat conduction problem in a media undergoing mushy phase change.

During phase change, a considerable amount of latent heat is released or absorbed, causing
a strong non-linearity in the enthalpy function. In order to model such phenomenon, we distin-
guish the different one-phase subregions at each side of the solidification front. Contributions
from different phases are integrated separately in order to capture the sharp variations of ma-
terial properties between phases. This approach, also calleddiscontinuous integration, avoids
regularizing the phenomenon and allows accurate evaluation of heat flux terms in discrete non-
linear equations.

The thermal model is first validated by solving a problem with analytical solution. Finally,
results of a parallel simulation on a three-dimensional domain with linear tetrahedral finite
elements are shown.
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Figure 2: Efficiency measurements for a transient 3D heat transfer problem

5.1 Problem definition

Under assumptions of linear dependence of heat flux on temperature gradient (Fourier’s law)
and no melt flow during solidification process, the energy balance for each phaseΩi is governed
by equations of the form:

ρ
∂H
∂t

−∇ · (κ∇T ) = 0 ∀(x, t) ∈ Ωi × (0, θ) (1)

whereT denotes the temperature,H the enthalpy (per unit volume) andκ = κ(T ) the material
thermal conductivity (assumed isotropic). Equation (1) is supplemented by the following initial
condition

T = T0 ∀x ∈ Ωi, t = t0

and boundary conditions at∂Ω:

T =T̄ at∂ΩT (2)

−κ∇T · n =q̄ at∂Ωq (3)

−κ∇T · n =henv(T − Tenv) at∂Ωc (4)

being∂ΩT , ∂Ωq and∂Ωc non-overlapping portions of∂Ω, with prescribed temperature, con-
ductive and convective heat flux, respectively. In the above,T̄ andq̄ refer to imposed temper-
ature and heat flux fields, andTenv is the environment temperature, whose film coefficient is
henv; n denotes the unit outward normal to∂Ω.

Further, the following conditions must hold at the interface(s)Γ :

T = TΓ (5)

〈Hu(η) + κ∇T · η〉 = 0 (6)
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whereTΓ is a constant value (for isothermal solidification, it is the melting temperature; oth-
erwise, it is the solidus or liquidus temperature),〈∗〉 denotes the jump of the quantity(∗) in
crossing the interfaceΓ , which is moving with speedu in the direction given by the unit vector
η. Note that the second equation states the jump energy balance at the interface.

In order to retrieveT as the only primal variable, we define the enthalpy as

H(T ) =

∫ T

Tref

ρcdτ + ρLfl (7)

beingρc andρL the unit volume heat capacity and latent heat, respectively, andTref an arbitrary
reference temperature;fl is a characteristic function of temperature, called volumetric liquid
fraction, defined as

fl(T ) =


0 if T < Tsol

0 ≤ fm
l (T ) ≤ 1 if Tsol ≤ T ≤ Tliq

1 if T > Tliq

(8)

whereTsol andTliq denote the solidus and liquidus temperatures, respectively, i.e., the lower
and upper bounds of the mushy temperature range.

5.2 Numerical solution scheme

After obtaining the temperature-based form of of equation (1), spatial discretization is done
using standard Galerking finite element method. This leads to a set of nonlinear system of
ordinary differential equations, that is stated in matrix form as:

Ψ = C
∂T

∂t
+

∂L

∂t
+ KT − F = 0 (9)

whereT is the vector of unknown nodal temperatures,C the capacity matrix,L the latent heat
vector,K the conductivity (stiffness) matrix andF the force vector.

Time integration in transient problems is done with the unconditionally stable first-order
backward Euler method. This implicit scheme is applied on equation (9), which leads to a set
of non-linear equations to be solved for the values of the temperatures at finite element nodes,
at the end of the time increment considered:

Ψn+1 = Cn+1
Tn+1 − Tn

∆t
+

Ln+1 −Ln

∆t
+ Kn+1Tn+1 − Fn+1 = 0 (10)

The solution of this highly non-linear discrete balance equation (10) is achieved by means of
the well-known Newton-Raphson method. At each new iterationi, Ψ is approximated by using
a first order Taylor expansion,

Ψ(T (i)) ≈ Ψ(T (i−1)) + J(T (i−1))∆T (i) = 0 (11)
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beingJ = dΨ/dT the Jacobian or tangent matrix, and∆T (i) = T (i) − T (i−1), the search
direction. Iterative correction of temperatures is defined by:

∆T (i) = −[J(T (i−1))]
−1Ψ(T (i−1)) (12)

All terms in the tangent matrix for transient heat conduction can be found in classical texts,24

and the latent heat contributiondL
dT

is detailed in Anca et al.25

5.3 A benchmark problem

Model validation has been performed by comparing analytical and numerical solutions for a
transient non-linear heat transfer problem.26

This problem is concerned with solidification of a material which is initially at a temperature
just above its freezing point and subject to a line heat sink in a infinite medium with cylindrical
symmetry. The substance presents a wide freezing temperature range between the solidus and
liquidus temperatures. Solid fraction is assumed to vary linearly with the temperature.

The cylindrical domain is initially at a uniform temperatureT0. The cylinder surface is
maintained at a constant temperature which equalsT0. Because of symmetry, only a circular
sector of the cylinder was discretized, forming a wedge.

As the material has a high latent heat, severe numerical discontinuities are present at the
liquid-solid boundary. The use of a concentrated heat sink leads to large thermal gradients
as r tends to zero. This singularity explains the error increment in the vicinity of the axis.
Nevertheless, numerical results are in good agreement with analytical solution. In figure (3) we
show exact and FEM adimensional temperatureT/Ti together with the percentage error along
the radius.
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Figure 3: Analytical solution, FEM solution, and relative error of a model phase change problem
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5.4 Parallel simulations

Using PETSc and OOFELIE modules, the solidification of an aluminum-copper alloy was sim-
ulated in parallel. This alloy has solidus and liquidus temperatures of approximately 540◦C
and 640◦C respectively. Initial temperature was set to 800◦C, temperature at the boundary was
imposed to 200◦C. The domain was a regular cube with 2 meters long edges. Because of sym-
metry, only one-eighth of the domain was discretized with a million degree of freedom. The
mesh was obtained from a regular, structured mesh of hexahedra by splitting each hexahedron
in six tetrahedra.

Results are shown in figure 4 for two representative time steps. Black lines are solidus and
liquidus temperature isolines; they clearly indicate the separation of solid, mushy, and liquid
phases.

6 CONCLUSIONS

Python is a very attractive language for rapid development of small scripts and code prototypes
as well as large applications and highly portable and reusable modules and libraries. Unfortu-
nately, like any scripting language, Python is not as efficient as compiled languages. However,
it was conceived and carefully developed to be extensible in C (and consequently in C++). This
exceptional characteristic enables Python to achieve performance in the time-critical parts of de-
manding applications. Moreover, Python can be used as a glue language capable of connecting
existing software components in a high-level, interactive, and productive environment.

Efficiency tests have shown that performance degradation is not prohibitive, even for moder-
ately sized problems. In fact, the overhead introduced is far smaller than the normal one associ-
ated to the use of interpreted versus compiled languages. Running Python on parallel computers
is a good starting point for decreasing the large software costs of using HPC systems.

Future work will be directed towards the improvement of Python packages by extending
they functionalities. Furthermore, the higher-level portions of our parallel multi-physics finite
elements code PETSc-FEM27,28developed at CIMEC are planned to be implemented in Python
in its next major rewrite. This work has already started and preliminary results are promising.
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Figure 4: FEM solution: temperature (◦C) for a phase change problem on a 3D domain
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A OTHER EXAMPLES

A.1 Conjugate Gradients Algorithm

Figure 5 shows a snippet of code using PETSc to implement a basic version of conjugate gradi-
ents algorithm for the solution linear equation systems .

i ⇐ 0

r ⇐ b− Ax

d ⇐ r

δ0 ⇐ rT r

δnew ⇐ δ0

While i < imax andδnew > δ0ε
2 do

q ⇐ Ad

α ⇐ δnew

dT q

x ⇐ x + αd

r ⇐ r − αq

δold ⇐ δnew

δnew ⇐ rT r

β ⇐ δnew

δold

d ⇐ r + βd

i ⇐ i + 1

def cg(A,b,x,imax=50,eps=1e-6):
"""
A, b, x : matrix, rhs, solution
imax, eps : max iters, tolerance
"""
r = b.Duplicate()
d = b.Duplicate()
q = b.Duplicate()
i=0
A.Mult(x,r); r.AYPX(-1,b)
d.Copy(r)
delta_0 = r.Norm()
delta_new = delta_0
while i<imax and \

delta_new>delta_0*eps**2:
A.Mult(d,q)
alfa = delta_new/d.Dot(q)
x.AXPY(alpha,d)
r.AXPY(alpha,q)
delta_old = delta_new
delta_new = r.Norm()
beta = delta_new/delta_old
d.AYPX(beta,r)
i= i+1

Figure 5: Basic conjugate gradients algorithm

A.2 One-dimensional Poisson’s Problem

Figure 6 shows a Python script using PETSc for the numerical solution of 1D Poisson problem
in the unit segment. Finite differences method is used for spatial discretization, discrete Laplace
operator is implemented following a matrix-free approach, and the resulting linear system of
equations is solved with conjugate gradients algorithm and Jacobi preconditioner.

A.3 Parallel Mesh Partitioning

Figure 7 shows partitioning results obtained with ParMETIS for a unstructured mesh of 1.65
millions of triangular elements.
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from petsc import PETSc

class Poisson1D:

def __init__(self, N):
self.h = 1.0/(N+1)
self.u_i = PETSc.ScalarArray(N)
self.uxx = PETSc.ScalarArray(N)

def Mult(self, U, U_xx):
u_i, uxx = self.u_i, self.uxx
U.GetArray(u_i)
uxx[:] = 0
uxx[1:] -= u_i[:-1]
uxx[:-1] -= u_i[1:]
uxx += 2 * u_i
uxx /= self.h**2
U_xx.SetArray(self.uxx)

MultTranspose = Mult

def GetDiagonal(self, D):
D.Set(2/self.h**2)

nnods = 50
poisson1d = Poisson1D(nnods)
A = PETSc.Mat.CreateShell(nnods)
PETSc.MatShell.SetContext(A, poisson1d)
x, b = A.GetVecs()
b.Set(1)

ksp = PETSc.KSP(’cg’, pc_type=’jacobi’)
PETSc.Options.Set(’ksp_monitor’)
PETSc.Options.Set(’ksp_vecmonitor’)
ksp.SetFromOptions()
ksp.SetOperators(A)
ksp.Solve(b, x)

Figure 6: Matrix-free FDM for solving 1D Poisson equation
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