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bInstituto de Cîencias Mateḿaticas e de Computação, Univ. de S̃ao Paulo, S̃ao Carlos, Brasil, e-mail:
gustavo.buscaglia@gmail.com

Keywords: Level Set Method, Reinitialization, Redistancing, Curvilinear Coordinates.

Abstract.
In this paper we describe and evaluate a geometric mass-preserving redistancing procedure for the

level set function on general structured grids. The proposed algorithm is adapted from a recent finite-
element-based method and preserves the mass by means of a localized mass correction. A salient feature
of the scheme is the absence of adjustable parameters. The algorithm is testedin two and three spa-
tial dimensions and compared with a state-of-the-art PDE-based redistancing method using structured
Cartesian grids. Through the use of quantitative error measures of interest in level set methods, we show
that the overall performance of the proposed geometric procedure is better than state-of-the-art PDE-
based reinitialization schemes. We also show that the algorithm is well–suited forthe highly–streched
curvilinear grids used in CFD simulations.
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1 INTRODUCTION

The level set method, introduced byOsher and Sethian(1988), has been extensively used in
the past few years to treat problems involving free surfaces, basically due to its simplicity to
deal with the complex topological changes that interfaces might undergo along their transport
in a general situation. Additionally, quantities such as the curvature of the interface and other
related information can be in principle extracted from the level set function making it a very
attractive tool for problems in two and three spatial dimensions.

As is well known, one of the main drawbacks of this method for free surface problems
involving incompressible flows is the lack of mass conservation and excessive diffusion, which
leads to unphysical motions of the interface that severely deteriorate the accuracy and stability
of the results. These difficulties have been addressed in basically three different ways:

• by improving the numerical algorithms used to transport thelevel set function;

• by combining the level set method with other computational techniques;

• by trying to keep the level set function as regular as possible, using the so called reinitial-
ization or redistancing procedures.

Regarding the first alternative, there are many methods to solve the level set equation, such as
finite volume and finite difference methods which combine total variation diminishing (TVD)
schemes in time, introduced byShu and Osher(1988, 1989), and essentially non-oscillatory
(ENO) schemes in space, based on the ideas firstly proposed byHarten and Osher(1987);
Harten et al.(1987) to solve Hamilton-Jacobi type equations. In this area, theTVD-Runge-
Kutta and Hamilton-Jacobi Weighted-ENO scheme developed in (Jiang and Peng, 2000) is con-
sidered to be state-of-the-art for solving the level set equation within the framework of eulerian
methods (Losasso et al., 2006). In this case, curvilinear coordinates can be used to deal with
complex geometries (see for instanceYue et al.(2003) andCarrica et al.(2006)). It should be
mentioned that TVD schemes can also be used in space as flux limiter methods, as done for
instance byOlsson and Kreiss(2005). Stabilized finite elements and discontinuous Galerkin
methods are used as well for treating the level set equation.In this case, unstructured meshes
can be employed and local grid refinement becomes an easy task. A comparison of such meth-
ods is done inDi Pietro et al.(2006). In Marchandise et al.(2006) a discontinuous Galerkin
method is proposed and compared with several other methods including the ENO/RK(3) scheme
presented inSussman et al.(1999) and the HJ-WENO(5)/RK(3) scheme used inEnright et al.
(2005, 2002). Finally, semi-Lagrangian schemes, which can be implemented in very simple and
efficient ways, are also used in level set methods (seeStrain(1999a,b); Enright et al.(2005)).

With respect to the second alternative in the bulleted list above, hybrid methods that combine
the level set method either with Lagrangian particles or with the VOF (volume of fluid) method
have been developed. The first option consists in moving massless particles forward in time in
order to redefine the level set function by means of some procedure at the end of each time step
or with a predefined frequency. See for instanceEnright et al.(2005, 2002) andZhaorui et al.
(2007). The other option uses the VOF method (see e.g.Hirt and Nichols(1981)), another
surface capturing method for free surface flows, to correct the level set function so as to locally
enforce mass conservation as done bySussman(2003) and Sussman and Puckett(2000) for
example.

In this article we focus on the redistancing procedure. Its purpose is to ensure that the level
set function remains smooth close to the interface. This is achieved by periodically redefining
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it, while trying to maintain the interface intact. It is not obvious whether the periodic reini-
tialization of the level set function is convenient or not incomputations. It strongly depends,
among other things, on the particular case considered, the method used to transport the level set
function, the level of discretization used and of course on the reinitialization algorithm itself.
However, most level set methods assume thatφ has to be reinitialized periodically for robust-
ness of computations. We will thus assume that reinitialization is performed, and concentrate
onhowto perform it economically and accurately on general meshes.

A natural choice to reinitialize the level set function is the signed distance function to
the interface. Several PDE-based methods have been devisedfor this purpose, which solve
the so-called reinitialization equation as originally proposed bySussman and Fatemi(1999);
Sussman et al.(1994, 1999).

It should be pointed out that, in general, it is not possible to reinitialize the level set function
maintaining the interface intact in a discrete problem. In fact, the space of level set functions
that share the same given interface is extremely reduced (Lew and Buscaglia, 2008) and it is
likely that none of its elements provides a reasonable approximation to the distance function.
The consequence of this is that each reinitialization distorts the interface to some extent, imply-
ing a local numerical creation/destruction of fluid mass. However, this distortion is not explicit
in PDE-based methods but embedded in the discretization adopted for the reinitialization equa-
tion. The use of high-order schemes, together with ad-hoc correction terms, are needed to
minimize the interface distortion during reinitialization, which otherwise completely destroys
the accuracy of the computations (Losasso et al., 2006). Though suitable implementations of
PDE-based reinitialization methods exist for Cartesian grids, they are not well–suited for the
highly–streched curvilinear grids used in turbulent flow simulations.

In this article we adapt the finite-element-based reinitialization scheme ofMut et al.(2006) to
the case of structured, curvilinear finite difference grids. The scheme was originally developed
for unstructured meshes of linear finite elements, and a simple subdivision of each quadrilateral
(or of each hexahedron in 3D) is used to build a mesh suitable for applying it. The advantages
of the proposed reinitialization scheme are its simplicity, its flexibility to handle arbitrarily
distorted meshes, and the absence of adjustable parameters.

In Section 2 we describe the proposed method, together with the TVD Runge-Kutta third-
order ENO scheme that is used to evolve the level set equation, for which we use a finite volume
implementation very similar to that presented byYue et al.(2003). Since the proposed method
is based on a piecewise-linear representation of the level set function, concerns may arise as to
its accuracy. This section also contains a brief summary of awidely used PDE-based method,
the HJWENO-RK scheme ofJiang and Peng(2000), that will be used for comparison.

In section 3, numerical experiments are shown in two and three spatial dimensions, including
the rigid rotation of Zalesak’s disk and the deformation of aball under a swirling flow vortex,
which are classical benchmark cases in level set methods. Specific measures of error of interest
in free surface problems are used to evaluate the results. Finally, to illustrate the versatility of the
proposed geometric redistancing scheme, we couple it with afinite difference upwind method
in curvilinear coodinates that uses a second order TVD van Albada scheme as flux limiter for
the transport of the level set function, similar to the one used in CFDShip-Iowa (Carrica et al.,
2006). We present a numerical example using curvilinear grids that have appreciable distortion
in order to be able to test the mass-preserving scheme in relevant situations that might appear
in real CFD computations. We draw some conclusions in section4.
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2 NUMERICAL FORMULATION

2.1 Level Set Method

We adopt the conservation form of the level set equation for adivergence-free velocity field;
i.e.,

∂φ

∂t
+∇ · (~uφ) = 0, (1)

whereφ is the level set function whose zero isocontour represents the interface and~u =
(ux, uy, uz) is the velocity field. Both, the level set function and the velocity field are func-
tions of(~x, t), ~x ∈ Ω, t > 0.

We use a finite volume method similar to that adopted inYue et al.(2003), in which the level
set equation is convected by means of a TVD Runge-Kutta scheme. The value ofφ at time level
n+ 1 is obtained as follows

φ(1) = φn − δt L(φn, tn),

φ(2) =
3

4
φn +

1

4
φ(1) −

1

4
δt L(φ(1), tn + δt), (2)

φn+1 =
1

3
φn +

2

3
φ(2) −

2

3
δt L(φ(2), tn +

1

2
δt),

whereφn is the value ofφ at the time leveln, δt is the time step andL(φ, t) is the spatial
operator in equation (1), i.e.

L(φ, t) = ∇ · (~uφ). (3)

Now, in order to obtain a fully discrete method, that for the sake of simplicity is presented here
in two spatial dimensions, we subdivide the computational domainΩ = [0, Lx] × [0, Ly] into
I andJ uniform cells in thex andy directions respectively, such that the grid spacing will be
given byδx andδy. Then, the discrete form of (3) for the control volume(i, j) will be simply
given by

L(φ) =
(uxφ)i+1/2,j − (uxφ)i−1/2,j

δx
+

(uyφ)i,j+1/2 − (uyφ)i,j−1/2

δy
. (4)

The extension to three spatial dimensions is straightforward. In this scheme,ux anduy are com-
puted at the cell faces, butφ is given at the cell centre of the control volume, from which,the
cell face values ofφ (φi+1/2,j, φi,j+1/2, ...) are built by using a third-order accurate ENO interpo-
lation. Details for the construction of the corresponding stencils can be found inShu and Osher
(1989) or Yue et al.(2003).

2.2 Geometric mass-preserving redistancing scheme

The geometric mass-preserving reinitialization algorithm proposed here was originally de-
vised to be used within the finite element framework (Mut et al., 2006), in which the level set
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function is linearly interpolated over each simplex of an arbitrary triangulationTh (triangles in
2D and tetrahedra in 3D).

To adapt it to finite volume structured meshes we thus define a finite element partitionTh of Ω
and assign the values ofφ, computed at the center of gravity of the finite volume cells,as nodal
values onTh. In 2D, the triangulationTh is obtained by dividing each cell into two triangles as
shown in Figure1, whereas in 3D each hexahedral cell is divided into six tetrahedra. Therefore,
the number of simplices in this partition will be two (respectively, six) times the number of cells
used for the finite volume discretization in the 2D (respectively, 3D) case.

Triangulation used
for redistancing algorithmFinite Volume cells used

for transport algorithm

Computed values ofφ
Zero-level set ofφ

~y

~x

Figure 1: Schematic showing the finite volume discretization cells and the corresponding triangulationTh for the
redistancing algorithm.

We now proceed to describe the geometric redistancing algorithm. Let Vh be the space of
continuous functions that are linear inside each simplex ofTh. Let φh ∈ Vh be a function,
and letSh be its zero-level set. Our aim is to find a functionφ̃h ∈ Vh which approximates the
signed distance functiond to Sh defined by

d(~x) = sign[φh(~x)] min
~y ∈Sh

‖ ~x− ~y ‖ , (5)

noting that, in general,d does notbelong toVh. As an example, consider the problem of
computing the distance to a square as sketched in figure2. In this simple case, we can clearly
see that the exact distanced to the interface, for any point such as~x (see figure2), will not be a
function that belongs toVh as indicated by the contours ofd (continuous red lines).

The algorithm is divided into two different stages

1. Reinitialization of nodes that belong to interface simplices(First Neighbors ofSh).

2. Reinitialization of nodes not belonging to interface simplices(Rest of the mesh).

2.2.1 Reinitialization of First Neighbors

LetP be the set of nodal points that are adjacent to the zero-levelset ofφh, in the sense that
they are vertices of simplices inside whichφh changes sign.
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~y Square interfaceShd(~x)

~x

Contours of the distance function

Figure 2: Contours of the distance functiond to a square. Example showing that the distance to the interface from
outside the square region (contours drawn with continuous red lines) does not belong to the spaceVh.

Step 1:: We begin by computing

φ∗

h( ~X) = d( ~X) ∀ ~X ∈ P, (6)

so that the nodal values of the intermediate functionφ∗
h coincide with the exact (signed) distance

d. This computation is also divided into two different substeps:
Substep 1-A:: Let us defineK as the set of simplices in whichφh changes sign, so that

Sh ⊂ K. Notice that the nodes inP are the vertices of the simplices inK. We start by
computingd̃, such that, for nodeI we compute its distance only considering those parts ofSh

that are inside simplices of which nodeI is a vertex.
Substep 1-B:: The simplices inK are swept untild̃ no longer changes. For each simplex,

and for each nodeI (coordinates denoted by~XI) of the simplex,d̃ is interpolated linearly on
the opposite faceFI , using the current values at the nodes. Then, a tentative newvalueηI of d̃
at nodeI is calculated as

ηI = min
~x∈FI

[

d̃(~x) + | ~XI − ~x|
]

(7)

andd̃( ~XI) is updated to the valueηI if the current value is greater thanηI . When this process
is finished,φ∗

h(
~XI) is updated to the valuẽd( ~XI) which at this point is in fact the exact distance

d to Sh. The procedure is illustrated in figure3 and Table1.
Equation (7) is the key operation in the computation of the distance. It is computedexactly.

This is not difficult sinced is here a linear function and the minimum is calculated overFI ,
which is a simplex (a segment in 2D, a triangle or a quadrilateral in 3D). The possibilities of the
minimum being attained in the interior ofFI or at its boundary have of course to be considered
(in 3D, this latter case decomposes in turn into attaining the minimum either inside an edge or
at a vertex).

Onceφ∗
h is known, we must introduce a correction, since the volume enclosed by its zero-

level set is different from that enclosed bySh, leading to a mass loss (or gain) that is unaccept-
able for practical purposes.

We now describe how to compute the correction functionψh such that the final function

φ̃h = φ∗

h + ψh, (8)

is the desiredreinitialized level–set function. The zero–level set of̃φh, in particular, encloses
the same volume as that ofφh.

R.F. AUSAS, E.A. DARI, G.C. BUSCAGLIA18

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



| ~XI − ~x|

~x

~XI

FI

φ∗h(
~XI) = min~x∈FI

[

φ∗h(~x) + | ~XI − ~x|
]

φ∗h(~x)

Second Neighbors ofSh

~x→ Intersection withFI

Th → Finite element partition ofΩ

Sh → Zero-level set ofφ∗h

Sh

First Neighbors ofSh

Figure 3: Schematic ofSubstep 1-Bfor the reinitialization of the nodes that are first neighbors ofSh.

It is easy to check that the difference in the volumes defined by φh andφ∗
h is given by

∆V (φh, φ
∗

h) =

∫

K

[H(φh(~x))−H(φ∗

h(~x))] d~x, (9)

whereH is the Heaviside function (H(s) = 1 if s > 0, H(s) = 0 otherwise). So that our
objective is to determineψh such that∆V (φh, φ

∗
h + ψh) = 0.

For this purpose, we first notice that∆V is the sum of contributions of the simplicesK ∈ K,
namely,

∆V (φh, φ
∗

h) =
∑

K ∈K

∆VK(φh, φ
∗

h) =
∑

K ∈K

∫

K

[H(φh(~x))−H(φ∗

h(~x))] d~x, (10)

leading us to the second step:
Step 2:: Determine thepiecewise constantfunction ηh, with constant valueηK inside each
K ∈ K such that

∆VK(φh, φ
∗

h + ηK) = 0. (11)

Notice that Eq.11 is a nonlinear equation forηK , which is solved independently for eachK
using a simple Regula Falsi procedure that converges in very few iterations.

The piecewise-constant functionηh computed in this way contains the information of how
much volume loss or gain is contributed by each simplex inK. It is not possible, however, to
defineφ̃h asφ∗

h + ηh, becauseηh is a discontinuous function and is thus multiply valued at the
nodes inP.
Step 3:: We now compute a continuous functionξh as an orthogonal projection ofηh onto
the space of piecewise continuous functions inK. This is implemented in practice by simply
computing the nodal values ofξh averaging over the simplices that share a node. LetI be a
node inP, and letNI be the number of simplices inK that containI, then we define

ξh( ~XI) =
1

NI

∑

K ∈ K
I ∈ K

ηK . (12)
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Table 1:Substeps 1-A and1-B for the Reinitialization offirst Neighbors ofSh. Nomenclature:NP
nod: number

of nodes inP, NK
el : number of elements (simplices) inK, Nnpe: number of nodes per single element (three for a

triangle, four for a tetrahedron).

Substep 1-A::

• Setd̃( ~Xn) = +∞ for n = 1, 2, ..., NP
nod

do (iel = 1, NK
el )

• FindSiel, the reconstruction ofSh inside elementiel
do (I = 1, Nnpe)
• Setdt as the distance from nodeI to Siel

if (d̃( ~XI) > dt)
• Setd̃( ~XI) = dt

end do
end do

Substep 1-B::

• Setchanges = 1
do while(changes == 1)
• Setchanges = 0
do (iel = 1, NK

el )
do (I = 1, Nnpe)
• FindFI , the opposite face of nodeI in iel

• FindηI s.t.ηI = min~x∈FI

[

d̃(~x) + | ~XI − ~x|
]

if (d̃( ~XI) > ηI) then
• Setd̃( ~XI) = ηI

• Setchanges = 1
end if

end do
end do

end do while
• Setφ∗

h(
~Xn) = d̃( ~Xn) for n = 1, 2, ..., NP

nod

Step 4:: Finally, the correctionψh is computed onP as

ψh = C ξh, (13)

whereC is the constant that globally preserves volume; i.e.,C satisfies

∆V (φh, φ
∗

h + Cξh) = 0. (14)

This nonlinear equation forC is again solved by a simple Regula Falsi method and converges
in very few iterations. From the description above it is evident that there are no adjustable
parameters in the scheme, except for the numerical tolerance in the Regula Falsi algorithms,
which does not play any significant role since convergence tomachine precision takes place
quickly. Steps 2,3 and 4 are also explained in Table2.
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The main advantage of the algorithm, as compared to previousones, is thatξh localizes the
correction in those regions where the mass loss/gain produced byφ∗

h is largest; correctingφ∗
h

by a constant, as done by other authors (Aliabadi and Tezduyar, 2000), corresponds to taking
ξh = 1 and unphysically distributes the correction uniformly over the interface simplices.

Table 2:Steps 2,3and4 for the Reinitialization offirst neighbors ofSh, computation of the mass correction.NI

is the number of simplices inK that contain nodeI.

Step 2:: Findηh, a piecewise constant function

do (K = 1, NK
el )

• SetδVK = ∆VK(φh, φ
∗
h)

do while(|δVK | > 10−15)
• FindSK , the reconstruction ofSh in K usingφ∗

h + ηK

• SetηK = −δVK/size(SK)
• SetδVK = ∆VK(φh, φ

∗
h + ηK)

end do while
end do

Step 3:: Find ξh, the orthogonal projection ofηh

do (I = 1, NP
nod)

• Setξh( ~XI) = 0
do (K = 1, NI)
• Setξh( ~XI)← ξh( ~XI) + ηK/NI

end do
end do

Step 4:: Findψh = φ∗
h + C ξh

• Initialize δV (i), C(i) for i = 1, 2
• Seti = 3
do while(|δV (i)| > 10−15)
• Setm(i) = (C(i−1) − C(i−2))/(δV (i−1) − δV (i−2))
• SetC(i) = C(i−2) −m(i) δV (i−2)

• SetδV (i) = ∆V (φh, φ
∗
h + C(i)ξh)

• Seti← i+ 1
end do while
• SetC = C(i)

2.2.2 Reinitialization of the rest of the mesh

As discussed byCarrica et al.(2007), the most critical part of the reinitialization procedureis
the reinitialization of first neighbors. Onceφ∗

h is known onP, these values are used as boundary
conditions for the reinitialization of the rest of the mesh points. This can be done using a
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PDE-based scheme, as the one described in the next section. We however adopt the geometric
scheme introduced by (Mut et al., 2006), for which the mesh is subdivided into simplices as in
the previous section. We briefly recall the procedure below.

We will describe the calculation of̃φh just on the positive side ofSh; i.e., for the set of nodes
R at whichφh is positive and that do not belong toP. We assume that̃φh is already known in
P.

Step 5 (Initialization):
Let I be a node inR, and letCI be the set of nodes connected toI, I not included (notice

thatCI ⊂ (P ∪ R). The initial guess we use for̃φh is a distance-along-edges approximation,
i.e., the unique function satisfying

φ̃h( ~XI) = min
J ∈CI

[

φ̃h( ~XJ) + | ~XI − ~XJ |
]

.

In the process of initializing̃φh with this option, the elements can be ordered so as to render
the algorithm more effective. Also, if one wants to calculate φ̃h up to a distanceδ from Sh, one
simply initializesφ̃h as equal toδ overR.
Step 6 (Evaluation): This is the same procedure explained inSubstep 1-B: the simplices in
the mesh, excepting those inK, are swept until̃φh no longer changes. For each simplex, and
for each nodeJ of the simplex (coordinates denoted by~XJ ), φ̃h is interpolated linearly on the
opposite faceFJ , using the current values at the nodes. Then, a tentative newvalueηJ of φ̃h at
nodeJ is calculated as

ηJ = min
~x∈FJ

[

φ̃h(~x) + | ~XJ − ~x|
]

. (15)

Finally, φ̃h( ~XJ) is updated to the valueηJ if the current value is greater thanηJ . This is also
illustrated in figure4.

~x→ Intersection withFJ

First Neighbors ofSh

Sh → Zero-level set of̃φh

Th → Finite element partition ofΩ

~XJ

FJ ~x

| ~XJ − ~x|
φ̃h(~x)

φ̃h( ~XJ) = min~x∈FJ

[

φ̃h(~x) + | ~XJ − ~x|
]

Second Neighbors ofSh

Sh

Figure 4: Schematic ofStep 2for the reinitialization of the rest of mesh.
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2.3 PDE-based redistancing scheme

For the sake of completeness we briefly describe the PDE-based redistancing method that
will be used for comparison, together with its discretization as proposed by (Jiang and Peng,
2000).

Let φ0 be a level set function with zero-level set denoted byS. Our aim is to compute from
this initial dataφ0 an approximatioñφ for the distance functiond to the zero–level setS of φ0,
defined as in (5) (with φh replaced byφ0 andSh replaced byS)
The property‖∇d‖ = 1 motivates the method firstly proposed by (Sussman and Fatemi, 1999),
in which the following hyperbolic partial differential equation is solved

∂φ̃

∂τ
+ sign(φ0)

(

‖ ∇φ̃ ‖ −1
)

= 0 in Ω,

(16)

φ̃(~x, 0) = φ0(~x),

whereτ is a fictitious time. The steady state solution of equation (16) is an approximation of
the signed distance function to the interface implicitly defined byφ0.

Now, the PDE-based reinitialization method considered here discretizes equation (16) by
a RK-HJWENO (weighted essentially non-oscillatory) scheme (seeJiang and Peng(2000))
which can be considered to be state-of-the-art for solving this type of equations. The approach
is very similar to that presented in the previous section forthe discretization of the level set
equation (1). First, the semidiscrete form of equation (16) for node(i, j), that for simplicity is
presented again in two spatial dimensions reads

∂φ̃i,j

∂τ
= −Ĥ(xi, yj, φ̃i,j, φ̃

+
x,i,j, φ̃

−

x,i,j, φ̃
+
y,i,j, φ̃

−

y,i,j), (17)

whereĤ is the discrete form of the spatial operator sign(φ0)
(

‖ ∇φ̃ ‖ −1
)

. Then, for the

construction of̃φ±

x,i,j andφ̃±

y,i,j, that are the WENO approximations to∂φ̃
∂x

(xi, yj) and ∂φ̃
∂y

(xi, yj)
respectively, we follow exactlyJiang and Peng(2000). Finally, we use a fourth order Runge-
Kutta method to explicitly advance the system of ODE’s givenin (17), which reads

φ̃(1) = φ̃n −
1

2
δτ Ĥ(φ̃n),

φ̃(2) = φ̃n −
1

2
δτ Ĥ(φ̃(1)),

φ̃(3) = φ̃n − δτ Ĥ(φ̃(2)),

φ̃n+1 = −
1

3
φ̃n +

1

3
φ̃(1) +

2

3
φ̃(2) +

1

3
φ̃(3) −

1

6
δτ Ĥ(φ̃(3)).

For all the numerical experiments we present, the time stepδτ will be taken asδx/2 and the

reinitialization will be carried out as long as the quantity
∣

∣

∣
‖ ∇φ̃ ‖ −1

∣

∣

∣
remains greater than a

numerical tolerance of10−5.
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3 RESULTS

To assess the behavior of the proposed reinitialization procedure, the following two measures
of error will be used:

em = max
t
|V (φc)− V (φe)|, (18)

ep = max
t
D(Sc(t),Se(t)) = max

t
max
xe∈Se

min
xc∈Sc

||~xc − ~xe||, (19)

with the subindexc denoting the computed result and the subindexe the exact one, and where
V (φ) is computed according to

V (φ) =

∫

Ω

H(φ(~x)) d~x. (20)

The first measure of errorem is the classical “mass error”. The second measureep provides
information on the position of the computed interface with respect to the exact one and will be
refered to as the “position error”. It should be pointed out that linear interpolation will be used
to evaluateem andep. These two measures of error are useless if the level set is not reasonably
resolved by the mesh. We have thus chosen cases in which localfeature sizes of the level set are
not smaller than the grid resolution. Finally, we must mention that the reinitialization procedure
will be applied every10 time steps for all the simulations to be presented.

3.1 Numerical Experiments in 2D

Two examples will be presented in the two dimensional case: the Zalesak’s problem (Zalesak
(1979)) and the stretching of a circle under a deformation vortex (LeVeque(1996)).

3.1.1 Zalesak’s disk

The initial data is a slotted disk centered at(0.5, 0.75) with a radius of0.15, a slot width of
0.075 and a slot lenght of0.25 in a unit square computational domain. The disk is convectedby
the following velocity field

ux =
π

3.14
(0.5− y),

(21)

uy =
π

3.14
(x− 0.5),

which represents a rigid body rotation with respect to(0.5, 0.5). The disk completes one revo-
lution after6.28 units of time.

In figure5we compare the final stage of the Zalesak’s disk with the exactresult after one turn,
for different grid resolutions. The time step for the first case (h = 1/64) is 6.28/600. For the
rest of the grids we mantain the same Courant number. As it can be seen the geometric scheme
performs similarly to the PDE-based one when the grid resolution is good enough (h = 1/256
andh = 1/512), while the former outperforms the latter when the grid resolution is poor. In
Figure6 we compare the evolution of the disk for the mesh with128 × 128 cells, when both
reinitialization algorithms are used. On the left, we show the results for the PDE-based scheme
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(thin blue line) and on the right the results for the Geometry-Based algorithm (thin red line).
Finally, in Table3 we present the two measures of error for both algorithms and for the different
grids considered. It should be noted that the mass error of the PDE-based algorithm is smaller
than that of the geometric algorithm whenh = 1/128, 1/256 and1/512, which results from a
compensation of the mass gain near the top of the slot with themass loss near the corners at the
bottom of the slot.

 0.6

 0.7

 0.8

 0.9

 0.3  0.4  0.5  0.6  0.7

64x64

 0.6

 0.7

 0.8

 0.9

 0.3  0.4  0.5  0.6  0.7

128x128
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 0.9

 0.3  0.4  0.5  0.6  0.7

256x256

 0.6

 0.7

 0.8

 0.9

 0.3  0.4  0.5  0.6  0.7

512x512

Figure 5: Final stage of the Zalesak’s disk after one revolution for different grids. The thick black line corresponds
to the exact solution, the thin blue line to the PDE-based andthe dashed red line to the geometry based algorithm.

3.1.2 Swirling flow vortex

The initial data consists of a disk centred at(0.5, 0.75) with a radius of0.15. The compu-
tational domain is again a square of size[0, 1] × [0, 1]. The disk of fluid is convected by the
following time dependent divergence-free velocity field
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Figure 6: Evolution of the Zalesak’s disk using the PDE-based (left) and the Geometry-based (right) redistancing
procedures. The thick black line corresponds to the exact solution.

Table 3: Measures of error for the Zalesak’s disk after one revolution.

em[%] ep

Mesh PDE-based GEO-based PDE-based GEO-based

64× 64 7.790 4.564 0.0709 0.0352

128× 128 0.940 2.065 0.0291 0.0137

256× 256 0.210 0.470 0.0126 0.0103

512× 512 0.014 0.266 0.0065 0.0070

ux = −sin2(πx)sin(2πy) cos(πt/T ),

(22)

uy = sin(2πx)sin2(πy) cos(πt/T ).

In this case, the initial disk is stretched out into a filamentand after a certain timeT it comes
back to its initial state. This reversal periodT is taken equal to2, so that the size of the tale of
the filament will be reasonably well resolved for all times bythe mesh used for computations.

First, in figure7 we compare the interface att = T/2 (maximum deformation) andt = T
(final time) for all the grids previouly considered. Now, thetime step for the case withh = 1/64
was equal to2/300 and as done before the Courant number was kept the same for the other grids.
Again, both algorithms perform quite similar by when the grid resolution is good. Actually, for
the case withh = 1/512 the difference cannot be seen with the naked eye. For this reason, as
done before, in Table4, we present the different measures of error. In this case, wecan see that

R.F. AUSAS, E.A. DARI, G.C. BUSCAGLIA26

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



the Geometric mass-preserving scheme has a better performance than the PDE-based scheme.
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Figure 7: Intermediate (t = T/2) and final stage (t = T ) of the disk under a swirling flow vortex with reversal
periodT = 2 for different grid resolutions. The thick black line corresponds to the exact solution, the thin blue
line to the PDE-based and the dashed red line to the geometry based algorithm.

3.2 Numerical Experiments in 3D

For the three dimensional case, we present, on the one hand, results using Cartesian co-
ordinates and comparing both redistancing procedures and,on the other hand, results using
curvilinear coordinates with the Geometric mass-preserving redistancing scheme coupled with
a finite difference second order TVD van albada scheme for thetransport of the level set func-
tion, similar to the one used in CFDShip-Iowa as already mentioned in the introduction.

Mecánica Computacional Vol XXVII, págs. 13-32 (2008) 27

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Table 4: Measures of error for the streatching of a disk undera swirling flow vortex with reversal periodT = 2.

em[%] ep

Mesh PDE-based GEO-based PDE-based GEO-based

64× 64 5.172 0.797 0.0641 0.0150

128× 128 1.624 0.417 0.0272 0.0035

256× 256 0.400 0.256 0.0100 0.0017

512× 512 0.081 0.133 0.0021 0.0006

3.2.1 Deformation vortex - Cartesian coordinates

In this example, the initial data consists simply of a sphere, centered at(0.35, 0.35, 0.35) and
with a radius of0.15. The computational domain is the unit cube. The sphere is then convected
by the following solenoidal field

ux = 2 sin2(πx)sin(2πy)sin(2πz) cos(πt/T ),

uy = −sin(2πx)sin2(πy)sin(2πz) cos(πt/T ), (23)

uz = −sin(2πx)sin(2πy)sin2(πz) cos(πt/T ),

again, as in the2D case, the velocity field is modulated by a periodic function,such that the
sphere will recover its initial state after a timeT = 2.

In Table5 we present the two measures of error, in this case just for twodifferent grids of
64 × 64 × 64 and128 × 128 × 128 cells. The time step was taken equal to2/400 and2/800
respectively. In figure8 we plot the level set at different times for both algorithms for the case
with h = 1/128. In the top (red colour) are the results for the Geometry-based redistancing and
in the bottom (blue colour) the results for the PDE-based redistancing. From both, the figure
and the table we can see that the Geometry-based redistancing has a better performance.

Table 5: Measures of error for the deformation of a sphere under a three dimensional vortex. Cartesian coordinates.

em[%] ep

Mesh PDE-based GEO-based PDE-based GEO-based

64× 64× 64 66.40 2.432 0.0673 0.0261

128× 128× 128 11.95 1.593 0.0355 0.0049
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Figure 8: Evolution of a sphere under a three dimensional deformation vortex. Comparison of the Geometry-based
redistancing scheme (top-red) with the PDE-based redistancing scheme (bottom-blue). Cartesian grid128×128×
128.

3.2.2 Sphere approaching a bump - Curvilinear coordinates

For this last example, the initial condition corresponds toa sphere centred at(−0.05, 0.4, 0.25)
of radius0.15. The computational domain is the region[−0.25, 1.25] × [0, 1] × [0, 0.5] trans-
formed under the following mapping (seeLeVeque(1997))

x(ξ, η, ζ) = ξ,

y(ξ, η, ζ) = B(ξ) + η (1−B(ξ)) , (24)

z(ξ, η, ζ) = ζ,

where the functionB is given by

B(ξ) =
1

2
e−50(ξ−0.5)2 , (25)

which represents a bump centred atx = 0.5. The sphere is then transported by the following
divergence free velocity field based on the shape of the bump
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ux =
1

1−B(x)
,

uy =
B

′

(x)(1− y)

(1−B(x))2 , (26)

uz = 0.

In this numerical test the grid have128× 102× 62 cells and the time step is equal to1/800.
Results are shown in figure9, where a detail of the curvilinear grid can be observed. In this

case, the mass changeem was4.438% and the value ofep = 0.0370. We should mention that
the error reported here (which is the maximum overt) happens when the level set passes near
the cusp of the bump, where the maximum distortion of cells ispresent, as seen in the detail of
the grid.

Figure 9: Evolution of the sphere approaching a bump using the geometric mass-preserving redistancing scheme.
Curvilinear grid of128× 102× 62 cells.

4 CONCLUSIONS

In this paper we have discussed some issues related to the reinitialization of the level set
function and we have focused on the description and evaluation of ageometric mass-preserving
redistancing scheme that was originally introduced in the framework of finite elements.

The geometric mass-preserving algorithm proposed can be used on an arbitrary triangula-
tion of the computational domain, making it a very attractive tool to be used on any type of
discretized domains such as the structured curvilinear grids widely used in CFD computations.
A salient feature of the scheme is its robustness, since it lacks of adjustable parameters, which
is an important difference as compared to other available methods.
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As a main feature, the scheme is designed to preserve the mass(or the volume) limited
by the zero level set by means of localized mass corrections,once the triangulation of the
computational domain is provided. Of course, this is done atthe price of having to detect the
level set by means of linear interpolation which is unnecesary in other methods.

In the numerical tests we have presented, using Cartesian coordinates in two and three spatial
dimensions, we have observed in general a better performance of the geometric mass-preserving
redistancing scheme with respect to the PDE-based method used for comparison. This was illus-
trated qualitatively by means of plots of the level set and quantitatively be means of computing
relevant measures of error for level set methods.

We have also tested the geometric mass-preserving algorithm using curvilinear grids with
appreciable distortion and we have observed a good performance of the scheme.
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