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Abstract. The present work compares the Yee, Warming and Harten, the Harten, the Yee and 
Kutler and the Hughson and Beran schemes applied to the solution of aeronautical and 
aerospace problems. The schemes are of TVD (“Total Variation Diminishing”) flux 
difference splitting type and are second order accurate in space. The Euler equations in 
conservative form, employing a finite volume formulation and an unstructured spatial 
discretization, in two-dimensions, are solved. The time integration is performed by a Runge-
Kutta method, second order accurate. The steady state physical problems of the supersonic 
flows along a ramp and around a blunt body configuration are studied. The results have 
demonstrated that the Harten scheme has presented more accurate results in the ramp 
problem, whereas the Hughson and Beran scheme has presented more accurate solutions in 
the blunt body problem. In the ramp problem, the Yee, Warming and Harten and the Yee and 
Kutler schemes predicted more severe pressure fields. The shock angle was best predicted by 
the Harten scheme, which presented a percentage error of 4.91%. In the blunt body problem, 
the pressure field generated by the Hughson and Beran scheme was the most severe. The 
stagnation pressure ahead of the configuration was best estimated by the Hughson and Beran 
scheme, which presented a percentage error of 3.7%. The best value of the lift coefficient was 
evaluated by the Yee, Warming and Harten and by the Yee and Kutler schemes. As can be 
observed, errors below 5.0% were obtained in the determination of the physical parameters of 
the two problems. The Harten scheme is the cheapest one, being approximately 27.5% 
cheaper than the Yee, Warming and Harten scheme, the most expensive. As final conclusion, 
it is not possible to highlight the best scheme in terms of these two example-cases, being 
necessary more studies. This is the purpose of the next paper to be written by this author. 
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1 INTRODUCTION 

High resolution upwind schemes have been developed since 1959, aiming to improve the 
generated solution quality, yielding more accurate solutions and more robust codes. The high 
resolution upwind schemes can be of flux vector splitting type or flux difference splitting 
type. In the former case, more robust algorithms are yielded, while in the later case, more 
accuracy is obtained. Several studies were performed involving high resolution algorithms in 
the international literature, as for example: 
 Roe (1981) presented a work that emphasized that several numerical schemes to the 
solution of the hyperbolic conservation equations were based on exploring the information 
obtained in the solution of a sequence of Riemann problems. It was verified that in the 
existent schemes the major part of this information was degraded and that only certain 
solution aspects were solved. It was demonstrated that the information could be preserved by 
the construction of a matrix with a certain “U property”. After the construction of this matrix, 
its eigenvalues could be considered as wave velocities of the Riemann problem and the UL-UR 
projections over the matrix’s eigenvectors are the jumps which occur between intermediate 
stages. 
 Yee, Warming and Harten (1982) implemented a high resolution second order explicit 
method based on Harten’s ideas. The method had the following properties: (a) the scheme 
was developed in conservation form to ensure that the limit was a weak solution; (b) the 
scheme satisfied a proper entropy inequality to ensure that the limit solution would have only 
physically relevant discontinuities; and (c) the scheme was designed such that the numerical 
dissipation produced highly accurate weak solutions. The method was applied to the solution 
of a quasi-one-dimensional nozzle problem and to the two-dimensional shock reflection 
problem, yielding good results. An implicit implementation was also investigated to one- and 
two-dimensional cases. 
 Harten (1983) developed a class of new finite difference schemes, explicit and with second 
order of spatial accuracy to calculation of weak solutions of the hyperbolic conservation laws. 
These schemes highly non-linear were obtained by the application of a first order non-
oscillatory scheme to an appropriated modified flux function. The so derived second order 
schemes reached high resolution, while preserved the robustness property of the original non-
oscillatory scheme. 

Yee and Kutler (1985) presented a work which extended the Harten (1983) scheme to a 
generalized coordinate system, in two-dimensions. The method called “TVD scheme” by the 
authors was tested to the physical problem of a moving shock impinging a cylinder. The 
numerical results were compared with the MacCormack (1969) scheme, presenting good 
results.  

Hughson and Beran (1991) proposed an explicit, second order accurate in space, TVD 
scheme to solve the Euler equations in axis-symmetrical form, applied to the studies of the 
supersonic flow around a sphere and the hypersonic flow around a blunt body. The scheme 
was based on the modified flux function approximation of Harten (1983) and its extension 
from the two-dimensional space to the axis-symmetrical treatment was developed. Results 
were compared to the MacCormack (1969) algorithm’s solutions. High resolution aspects, 
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capability of shock capture and robustness properties of this TVD scheme were investigated. 
On an unstructured algorithm context, Maciel (2007a) has presented a work involving the 

numerical comparison of the algorithms of Roe (1981) and of Harten (1983). The Euler 
equations in conservative form, employing a finite volume formulation and an unstructured 
spatial discretization, were solved. Both schemes were flux difference splitting ones and 
accurate solutions were expected. The time integration was performed by a Runge-Kutta 
method of five stages. Both schemes were upwind ones and first order accurate in space and 
second order accurate in time. The steady state physical problems of the transonic flow along 
a convergent-divergent nozzle and of the supersonic flows along a ramp and around a blunt 
body were studied. A spatially variable time step procedure was implemented to accelerate 
the convergence of the numerical schemes. The results have demonstrated that the Roe (1981) 
scheme has presented more severe pressure fields in the ramp and blunt body problems and a 
more accurate value of the stagnation pressure in the blunt body case than the Harten (1983) 
scheme. Still in this line of analysis, Maciel (2007b) has presented another work involving the 
numerical comparison of the Steger and Warming (1981) and of Van Leer (1982) algorithms. 
The Euler equations in conservative form, employing a finite volume formulation and an 
unstructured spatial discretization, were again solved. Both schemes were flux vector splitting 
ones and more robustness properties were expected. The time integration was again 
performed by a Runge-Kutta method of five stages. Both schemes were upwind ones and first 
order accurate in space and second order accurate in time. The same problems studied in 
Maciel (2007a) were analyzed in this work. The results have demonstrated that the Van Leer 
scheme presents more severe pressure fields in the ramp and in the blunt body problems, as 
well more accurate values in the determination of the shock angle, ramp problem, and of the 
stagnation pressure, blunt body problem, than the Steger and Warming scheme, 
recommending the former to project calculations. 

In this work, the Yee, Warming and Harten (1982), the Harten (1983), the Yee and Kutler 
(1985) and the Hughson and Beran (1991) schemes are implemented, on a finite volume 
context and using an upwind and unstructured spatial discretization, to solve the Euler 
equations, in two-dimensions, and are compared with themselves. The implemented schemes 
are second order accurate in space. The time integration uses a Runge-Kutta method of five 
stages and is second order accurate in time. All schemes are applied to the solution of the 
steady state physical problems of the supersonic flows along a ramp and around a blunt body 
configuration. The algorithms are accelerated to the steady state solution using a spatially 
variable time step. The effective gains in terms of convergence ratio with this procedure are 
reported in Maciel (2005). The results have demonstrated that the Hughson and Beran (1991) 
scheme yields more accurate solutions than the other schemes. 

An unstructured discretization of the calculation domain is usually recommended to 
complex configurations, due to the easily and efficiency that such domains can be discretized 
(Mavriplis, 1990, and Pirzadeh, 1991). However, the unstructured mesh generation question 
will not be studied in this work. 
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2 EULER EQUATIONS 

The fluid movement is described by the Euler equations, which express the conservation 
of mass, of linear momentum and of energy to an inviscid medium, heat non-conductor and 
compressible, in the absence of external forces. In integral and conservative forms, these 
equations can be represented by: 
 

                                          ( ) ( )[ ] 0=++∂∂ ∫∫ S yexeV
dSnFnEQdVt ,                                       (1) 

 

with Q written to a Cartesian system, V is the cell volume, nx and ny are the components of the 
normal versor to the flux face, S is the flux area, and Ee and Fe are the convective flux vector 
components. The Q, Ee and Fe vectors are represented by: 
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being ρ the fluid density; u and v the Cartesian components of the velocity vector in the x and 
y directions, respectively; e the total energy per fluid volume unity; and p the static pressure 
of the fluid medium. 

In the studied problems, the Euler equations were nondimensionalized in relation to the 
freestream density, ρ∞, and in relation to the freestream speed of sound, a∞. Hence, the 
density is nondimensionalized in relation to ρ∞; the u and v velocity components are 
nondimensionalized in relation to a∞; and the pressure and the total energy are 
nondimensionalized in relation to the product ρ∞(a∞)2. The matrix system of the Euler 
equations is closed with the state equation [ ])(5.0)1( 22 vuep +ρ−−γ= , assuming the ideal 
gas hypothesis. The total enthalpy is determined by ( ) ρ+= peH . 

Equation (1) describes a relation in which the time rate of variation of the Q state vector, 
inside a V volume, is balanced by the net convective flux which crosses the S boundary 
surface. The calculation domain is divided in a great number of triangular cells and the Eq. 
(1) is applied to each cell. 

3 YEE, WARMING AND HARTEN (1982) ALGORITHM 

The Yee, Warming and Harten (1982) algorithm, second order accurate in space, is 
specified by the determination of the numerical flux vector at “l” interface. 

Following a finite volume formalism, which is equivalent to a generalized coordinate 
system, the right and left cell volumes, as well the interface volume, necessary to a coordinate 
change, are defined by: 
 

                                      neR VV = ,  iL VV =     and  ( )LRl VVV += 5.0 ,                               (3) 
 

where “R” and “L” represent right and left states, respectively, and “ne” represent a neighbor 
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volume to the “i” volume. In this work, it was adopted that “L” is associated to properties of a 
given “i” volume and “R” is associated to properties of the “ne” neighbor volume. The cell 
volume on an unstructured context is defined by: 
 

                           ( ) ( )1213233231215.0 nnnnnnnnnnnni yxxyyxyxxyyxV ++−++= ,               (4) 
 

with n1, n2 and n3 being the nodes of a given triangular cell. The description of the 
computational cell and its nodes, flux interfaces and neighbors are shown in Fig. 1. 

 
Figure 1. Schematic of a cell and its neighbors, nodes and flux interfaces. 

 
 The area components at the “l” interface are defined by: 
 

                                                      ll
x

l
x SnS =     and  ll

y
l
y SnS = ,                                (5) 

 

where l
xn , l

yn  and Sl are defined as: 
 

           ( ) 5.022
lll

l
x yxyn ∆+∆∆= , ( ) 5.022

lll
l
y yxxn ∆+∆∆−=   and  ( ) 5.022

ll
l yxS ∆+∆= .          (6) 

 

Expressions to ∆xl and ∆yl are given in Tab. 1. 
 

Interface ∆xl ∆yl 
l = 1 12 nn xx −  12 nn yy −  
l = 2 23 nn xx −  23 nn yy −  
l = 3 31 nn xx −  31 nn yy −  

 

Table 1: Values of ∆xl and ∆yl. 
 
 The metric terms to this generalized coordinate system are defined as: 
 

                                         l
l
xx VSh = , l

l
yy VSh =    and    l

l
n VSh = .                          (7) 
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 The properties calculated at the flux interface are obtained by arithmetical average or by  
Roe (1981) average. In the present work, the arithmetical average was used: 
 

        ( )LRl ρ+ρ=ρ 5.0 , ( )LRl uuu += 5.0 , ( )LRl vvv += 5.0   and  ( )LRl HHH += 5.0 ;      (8) 

                                              ( ) ( )[ ]225.01 llll vuHa +−−γ= ,                                     (9) 
 

where al is the speed of sound at the flux interface. The eigenvalues of the Euler equations, in 
the normal direction to the flux face, to the convective flux are given by: 
 

     ylxlnormal hvhuq += , nlnormal haq −=λ1 , normalq=λ=λ 32    and   nlnormal haq +=λ 4 .    (10) 
 

 The jumps of the conserved variables, necessary to the construction of the Yee, Warming 
and Harten (1982) dissipation function, are given by: 
 

   ( )LRl eeVe −=∆ , ( )LRlV ρ−ρ=ρ∆ , ( ) ( ) ( )[ ]LRl uuVu ρ−ρ=ρ∆   and  ( ) ( ) ( )[ ]LRl vvVv ρ−ρ=ρ∆ ; (11) 
 

 The α vectors to the “l” interface are calculated by the following expressions: 
 

                      ( )bbaa −=α 5.01 , aa−ρ∆=α 2 , cc=α3    and  ( )bbaa +=α 5.04 ,            (12) 
 

with: 
 

                                ( ) ( ) ( ) ( )[ ]vvuuvueaaa llll
l

ρ∆−ρ∆−ρ∆++∆−γ= 22
2 5.01 ;                  (13) 

                                      ( ) ( ) ( )[ ]vhvhuhuhabb ylylxx
l

ρ∆+ρ∆+−ρ∆= ''''1 ;            (14) 
  

                                          ( ) ( ) ( )uhvhuhvhcc ylxlýx ρ∆−ρ∆−+ρ∆= '''' ;             (15) 
  

                                                   nxx hhh ='    and    nyy hhh =' .                                          (16) 
 

 The Yee, Warming and Harten (1982) dissipation function uses the right-eigenvector 
matrix of the normal to the flux face Jacobian matrix in generalized coordinates: 
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 Two options to the ψm entropy function, responsible to guarantee that only relevant 
physical solutions are to be considered, are implemented aiming an entropy satisfying 
algorithm: 
 

                                              mmm Zt =λ∆=ν    and   25.02 +=ψ mm Z ;                            (18) 
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Or: 
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where “m” varies from 1 to 4 (two-dimensional space) and δf assuming values between 0.1 
and 0.5, being 0.2 the recommended value by Yee, Warming and Harten (1982). In the 
present studies, Eq. (18) was used to perform the numerical experiments. 
 The g~  function at the “l” interface is defined by: 
 

                                                            ( ) m
mm

m Zg α−ψ= 25.0~ .                         (20) 
 

 The g numerical flux function, which is a limited function to avoid the formation of new 
extremes in the solution and is responsible to the second order accuracy of the scheme, is 
given by: 
 

                                     ( )( )m
m
i

m
im

m
i signalggMINMAXsignalg ××= −1

~,~;0.0 ,           (21) 
 

where signalm is equal to 1.0 if m
ig~ ≥ 0.0 and -1.0 otherwise. 

 The θ term, responsible to the artificial compressibility, as referred in the CFD community, 
which enhances the resolution of the scheme at discontinuities, is defined as follows: 
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 The β vector at the “l” interface, which introduces the artificial compression term in the 
algorithm, is defined by the following expression: 
 

                                                       ),(0.1 1
m
i

m
imm MAX +θθω+=β ,                          (23) 

 

where ωm assumes the following values: ω1 = 0.25 (non-linear field), ω2 = ω3 = 1.0 (linear 
field) and ω4 = 0.25 (non-linear field). 
 The numerical characteristic speed, mϕ , at the “l” interface, which is responsible to 
transport the numerical information associated to the g numerical flux function, is defined by: 
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 The entropy function is redefined considering mϕ  and mβ : mmmmZ ϕβ+ν= , and mψ  is 
recalculated according to Eq. (18) or to Eq. (19). Finally, the Yee, Warming and Harten 

(1982) dissipation function, to second order accuracy in space, is constructed by the following 
matrix-vector product: 
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 The convective numerical flux vector to the “l” interface is described by: 
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with: 
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The time integration is performed by an explicit method, second order accurate, Runge-
Kutta type of five stages and can be represented of generalized form by: 
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with k = 1,...,5; α1 = 1/4, α2 = 1/6, α3 = 3/8, α4 = 1/2 and α5 = 1. The contribution of the 
convective numerical flux vectors is determined by the Ci vector: 
 

                                                       )(
3

)(
2

)(
1

)( mmmm
i FFFC ++= .                                              (29) 

4 HARTEN (1983) ALGORITHM 

 The Harten (1983) algorithm, second order accurate in space, follows the Eqs. (3) to (17). 
The next step is the definition of the entropy condition, which is defined by Eq. (18), νm, and 
Eq. (19). 
 The g~  function at the “l” interface is defined according to Eq. (20) and the g numerical 
flux function is given by Eq. (21). The numerical characteristic speed mϕ  at the “l” interface 
is defined according to Eq. (24). 
 The entropy function is redefined considering mϕ : mmmZ ϕ+ν= , and mψ  is recalculated 
according to Eq. (19). Finally, the Harten (1983) dissipation function, to second order spatial 
accuracy, is constructed by the following matrix-vector product: 
 

                        { } [ ] ( ){ }li1iillHarten tggRD ∆ψα−+= + .                                          (30) 
 

 Equations (26), (27) and (29) are used to conclude the numerical flux vector of the Harten 
(1983) scheme and the time integration is performed by the Runge-Kutta method defined by 
Eqs. (28). 

5 YEE AND KUTLER (1985) ALGORITHM 

 The Yee and Kutler (1985) algorithm, second order accurate in space, follows Eqs. (3) to 
(17). The next step consists in determining the θ function. This function is defined in terms of 
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the differences of the gradients of the characteristic variables to take into account 
discontinuities effects and is responsible to artificial compression: 
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 The κ function at the “l” interface is defined as follows: 
 

                              ( )( )m
1i

m
imm MAX181 +θθω+=κ , ,                                 (32) 

 

 The g numerical flux function is determined by: 
 

                       ( )( )m
m
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i signalMIN00MAXsignalg ×αα×= −,;. ,                      (33) 

 

where signalm assumes value 1.0 if m
iα  ≥ 0.0 and -1.0 otherwise. The numerical characteristic 

speed mϕ  at the “l” interface is calculated by the following expression: 
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 The ψl  entropy function at the “l” interface is defined by: 
 

                                          ( ) 2502
mmm .+ϕ+ν=ψ ,                                         (35) 

 

with νl defined according to Eq. (18). Finally, the Yee and Kutler (1985) dissipation function, 
to second order spatial accuracy, is constructed by the following matrix-vector product: 
 

                                   { } [ ] ( )( ){ }li1iillKutlerYee tggRD ∆ψα−+κ= +/ .                           (36) 
 

 Equations (26), (27) and (29) are used to conclude the numerical flux vector of Yee and 
Kutler (1985) scheme and the time integration is performed by the Runge-Kutta method 
defined by Eqs. (28). 

6 HUGHSON AND BERAN (1991) ALGORITHM 

 The Hughson and Beran (1991) algorithm, second order accurate in space, follows the Eqs. 
(3) to (17). The next step consists in determining the g numerical flux function. To non-linear 
fields (m = 1 and 4), it is possible to write: 
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To linear fileds (m = 2 and 3), it is possible to write: 
 

                                       ( )( )m
m
i

m
im

m
i signalMINMAXsignalg ×αα×= − ,;0.0 1 ,                  (38) 

 

where signalm assumes the value 1.0 if m
i 1−α  ≥ 0.0 and -1.0 otherwise. After that, the Eqs. (18) 

and (19) are employed and the mσ  term is defined at the “l” interface as: 
 

                                                                  ( )25.0 mmm Z−ψ=σ .                        (39) 
 

 The mϕ  numerical characteristic speed at the “l” interface is defined by: 
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
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=ϕ +
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mmm
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m
im
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 The entropy function is redefined considering mϕ : mmmZ ϕ+ν=  and mψ  is recalculated 
according to Eq. (19). Finally, the Hughson and Beran (1991) dissipation function, to second 
order accurate in space, is constructed by the following matrix-vector product: 
 

                                          { } [ ] ( )[ ]
li

ii
llBeranHughson t

ggRD






∆
ψα−+σ= +1

/ .            (41) 
 

After that, Eqs. (26), (27) and (29) are used to conclude the numerical flux vector of the 
Hughson and Beran (1991) scheme and Eq. (28) is employed to perform the time integration. 

7 SPATIALLY VARIABLE TIME STEP 

The basic idea of this procedure consists in keeping constant the CFL number in all 
calculation domain, allowing, hence, the use of appropriated time steps to each specific mesh 
region during the convergence process. Hence, according to the definition of the CFL 
number, it is possible to write: 
 

                                                                ( ) iii csCFLt ∆=∆ ,                                                (42) 
 

where CFL is the “Courant-Friedrichs-Lewy” number to provide numerical stability to the 
scheme; ( )[ ] ii avuc ++=

5.022  is the maximum characteristic velocity of information 
propagation in the calculation domain; and ( )is∆  is a characteristic length of information 
transport. On a finite volume context, ( )is∆  is chosen as the minor value found between the 
minor centroid distance, involving the “i” cell and a neighbor, and the minor cell side length. 

8 INITIAL AND BOUNDARY CONDITIONS 

8.1 Initial condition 

 To the physical problems studied in this work, freestream flow values are adopted for all 
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properties as initial condition, in the whole calculation domain (Jameson and Mavriplis, 1986, 
and Maciel, 2002). Therefore, the vector of conserved variables is defined as: 
 

                                  
T

i MMMQ








+
−γγ

αα= ∞∞∞
25.0

)1(
1sincos1 ,                        (43) 

 

being M∞ the freestream flow Mach number and α the flow attack angle. 

8.2 Boundary conditions 

 The boundary conditions are basically of three types: solid wall, entrance and exit. These 
conditions are implemented in special cells named ghost cells. 
(a) Wall condition: This condition imposes the flow tangency at the solid wall. This condition 
is satisfied considering the wall tangent velocity component of the ghost volume as equals to 
the respective velocity component of its real neighbor cell. At the same way, the wall normal 
velocity component of the ghost cell is equaled in value, but with opposite signal, to the 
respective velocity component of the real neighbor cell. 
The pressure gradient normal to the wall is assumed be equal to zero, following an inviscid 
formulation. The same hypothesis is applied to the temperature gradient normal to the wall. 
The ghost volume density and pressure are extrapolated from the respective values of the real 
neighbor volume (zero order extrapolation), with these two conditions. The total energy is 
obtained by the state equation of a perfect gas. 
(b) Entrance condition: 
(b.1) Subsonic flow: Three properties are specified and one is extrapolated, based on analysis 
of information propagation along characteristic directions in the calculation domain (Maciel, 
2002). In other words, three characteristic directions of information propagation point inward 
the computational domain and should be specified, to the subsonic flow. Only the 
characteristic direction associated to the “(qn-a)” velocity can not be specified and should be 
determined by interior information of the calculation domain. The pressure was the 
extrapolated variable from the real neighbor volume, to the studied problems. Density and 
velocity components had their values determined by the freestream flow properties. The total 
energy per unity fluid volume is determined by the state equation of a perfect gas. 
(b.2) Supersonic flow: All variables are fixed with freestream flow values, at the entrance. 
(c) Exit condition: 
(c.1) Subsonic flow: Three characteristic directions of information propagation point outward 
the computational domain and should be extrapolated from interior information. The 
characteristic direction associated to the “(qn-a)” velocity should be specified because it 
penetrates the calculation domain (Maciel, 2002). In this case, the ghost volume’s pressure is 
specified by its initial value. Density and velocity components are extrapolated and the total 
energy is obtained by the state equation of a perfect gas. 
(c.2) Supersonic flow: All variables are extrapolated from the interior domain due to the fact 
that all four characteristic directions of information propagation of the Euler equations point 
outward the calculation domain and, with it, nothing can be fixed. 
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9 RESULTS 

 Tests were performed in a CELERON - 1.5 GHz and 1.0 Gbytes of RAM memory 
microcomputer. As the interest of this work is steady state problems, one needs to define a 
criterion which guarantees that such condition was reached. The criterion adopted in this 
work was to consider a reduction of 4 orders in the magnitude of the maximum residue in the 
domain, a typical criterion in the CFD community. The residue to each cell was defined as the 
numerical value obtained from the discretized conservation equations. As there are four 
conservation equations to each cell, the maximum value obtained from these equations is 
defined as the residue of this cell. Thus, this residue is compared with the residue of the other 
cells, calculated of the same way, to define the maximum residue in the domain. The value 
used for γ was 1.4. To all problems, the attack angle adopted a value 0.0°. 

The meshes used in the simulations were structured generated and posteriorly were 
transformed in meshes of triangles through specific subroutines implemented in the 
calculation algorithms, where the connectivity, neighboring, node coordinate and ghost 
volume tables were generated to the simulations. On this context, only the advantages of 
unstructured mesh generation were not verified; however, the unstructured algorithms could 
be tested on a context of unstructured spatial discretization. Table 2 presents the mesh data. 
 

Ramp Blunt Body 
61x100 103x100 

Cells 11,800 20,196 
Nodes 6,100 10,300 

 

Table 2: Computational data of the unstructured meshes. 

9.1 Ramp physical problem 

 
 The ramp configuration and the ramp mesh are described in Figs. 2 and 3. A freestream 
Mach number of 2.0, characterizing a supersonic flow, was adopted as initial condition. 
 Figures 4 to 7 exhibit the pressure contours generated by the Yee, Warming and Harten 

(1982), the Harten (1983), the Yee and Kutler (1985) and the Hughson and Beran (1991) 
schemes. The Yee, Warming and Harten (1982) and the Yee and Kutler (1985) schemes 
predict more severe pressure fields than the Harten (1983) and the Hughson and Beran (1991) 
schemes, characterizing the formers as more conservative schemes. 
 Figures 8 to 11 exhibit the Mach number contours generated by the Yee, Warming and 
Harten (1982), the Harten (1983), the Yee and Kutler (1985) and the Hughson and Beran 

(1991) schemes, respectively. 
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                       Figure 2. Ramp configuration.                                                    Figure 3. Ramp mesh. 

                        Figure 4. Pressure field (YWH).                                            Figure 5. Pressure field (H). 

                            Figure 6. Pressure field (YK).                                          Figure 7. Pressure field (HB). 
 
The Mach number field generated by the Hughson and Beran (1991) scheme is more intense 
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than those generated by the other schemes. The Hughson and Beran (1991) scheme presents 
some pre-shock oscillations, which elevate the values of the Mach number field above 2.0. 
 Figure 12 show the pressure distributions along the ramp obtained by the Yee, Warming 
and Harten (1982), the Harten (1983), the Yee and Kutler (1985) and by the Hughson and 
Beran (1991) schemes. They are compared with the oblique shock wave and the Prandtl-
Meyer expansion wave theories. The shock and the expansion fan are appropriately formed 
and well solved by all schemes. The pressure plateau is over-predicted by all schemes. The 
Harten (1983) scheme presents the minimum over-prediction, capturing appropriately the 
shock plateau. The pressure at the end of the expansion fan is well detected by all schemes. 
 Figures 13 exhibit the convergence histories obtained with all schemes. The histories did 
not present oscillation, being all practically linear. 

                         Figure 8. Pressure field (YWH).                                            Figure 9. Pressure field (H). 

                     Figure 10. Mach number field (YK).                                Figure 11. Mach number field (HB). 
 
 One way to quantitatively verify if the solutions to the ramp problem are satisfactory 
consists in determining the shock angle of the oblique shock wave, β, measured in relation to 
the initial direction of the flow field, obtained by each scheme. 
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                       Figure 12. Pressure distributions.                                     Figure 13. Convergence histories. 
 
Anderson (1984) (pages 352 and 353) presents a diagram with values of the shock angle, β, to 
oblique shock waves. The value of this angle is determined as function of the freestream 
Mach number and of the deflection angle of the flow after the shock wave, φ. To φ = 20º 
(ramp inclination angle) and to a freestream Mach number equals to 2.0, it is possible to 
obtain from this diagram a value to β equals to 53.0 º. Using a transfer in Figures 4 to 7, it is 
possible to obtain in Tab. 3: 
 

Algorithm: β (°): Error (%): 
Yee, Warming and Harten (1982) 50.0 5.66 

Harten (1983) 50.4 4.91 
Yee and Kutler (1985) 49.7 6.23 

Hughson and Beran (1991) 50.1 5.47 
 

Table 3: Shock angle and percentage error to the ramp problem. 
 
The percentage errors indicate the Harten (1983) scheme as more accurate than the other 
schemes in the determination of the shock angle of the oblique shock wave. 

9.2 Blunt body physical problem 

 
 Figures 14 and 15 exhibit the blunt body configuration and the respective mesh employed 
in the simulations, respectively. The entrance boundary is located at 20.0 times the nose ratio 
of the blunt body configuration in relation to the blunt body nose. The initial condition 
adopted for this problem used a freestream Mach number equals to 2.0 (supersonic flow). 

Figures 16 to 19 show the pressure fields obtained by the Yee, Warming and Harten 
(1982), the Harten (1983), the Yee and Kutler (1985) and the Hughson and Beran (1991) 
schemes, respectively. The pressure field generated by the Hughson and Beran (1991) scheme 
is the most severe in relation to the other schemes. 
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                  Figure 14. Blunt body configuration.                                         Figure 15. Blunt body mesh. 

                         Figure 16. Pressure field (YWH).                                          Figure 17. Pressure field (H). 

                           Figure 18. Pressure field (YK).                                          Figure 19. Pressure field (HB). 
 
 Figures 20 to 23 exhibit the Mach number contours obtained by the Yee, Warming Harten 

(1982), the Harten (1983), the Yee and Kutler (1985) and the Hughson and Beran (1991) 
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schemes, respectively. The Mach number field obtained with the Hughson and Beran (1991) 
scheme is the most intense. Figure 24 shows the –Cp distributions obtained by all four 
schemes. No meaningful differences are perceptible in the solutions. Figure 25 exhibit the 
convergence histories obtained by all four schemes. The Yee, Warming and Harten (1982) 
and the Yee and Kutler (1985) schemes present are faster than the other schemes. 

                    Figure 20. Mach number field (YWH).                                Figure 21. Mach number field (H). 

                      Figure 22. Mach number field (YK).                                Figure 23. Mach number field (HB). 
 
 The lift and drag aerodynamic coefficients to this configuration, obtained by the schemes, 
are presented in Tab. 4. The lift and drag aerodynamic coefficients are defined as described in 
Anderson (1984). As the geometry is symmetrical and the attack angle of the simulations was 
considered equals to zero, the expected value to the aerodynamic coefficient of lift is equal to 
zero. The lift coefficient determined by the Yee, Warming and Harten (1982) and by the Yee 
and Kutler (1985) schemes are closer to the expected value. 
 Another possibility to quantitative analysis of both schemes is the determination of the 
stagnation pressure ahead of the configuration. Anderson (1984) presents a table of normal 
shock wave properties in its B Appendix. This table permits the determination of some shock 
wave properties as function of the freestream Mach number. 
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                           Figure 24. –Cp distributions.                                         Figure 25. Convergence histories. 
 

Algorithm: cL: cD: 
Yee, Warming and Harten (1982) 1.668x10-3 4.939x10-1 

Harten (1983) 2.497x10-3 4.939x10-1 
Yee and Kutler (1985) 1.668x10-3 4.939x10-1 

Hughson and Beran (1991) 5.686x10-3 4.928x10-1 
 

Table 4: Aerodynamic coefficients of lift and drag to the blunt body problem. 
 
In front of the blunt body configuration studied in this work, the shock wave presents a 
normal shock behavior, which permits the determination of the stagnation pressure, behind 
the shock wave, from the tables encountered in Anderson (1984). So it is possible to 
determine the ratio ∞prpr0  from Anderson (1984), where pr0 is the stagnation pressure in 
front of the configuration and pr∞ is the freestream pressure (equals to 1/γ by the present 
nondimensionalization). 
 Hence, to this problem, M∞ = 2.0 corresponds to ∞prpr0 = 5.64 and remembering that pr∞  
= 0.714, it is possible to conclude that pr0 = 4.03. Table 5 presents the values of the stagnation 
pressure obtained by each scheme and the respective percentage errors. Values of the 
percentage error indicate the Hughson and Beran (1991) scheme as the most accurate. 
 

Algorithm: pr0: Error (%): 
Yee, Warming and Harten (1982) 3.81 5.5 

Harten (1983) 3.84 4.7 
Yee and Kutler (1985) 3.81 5.5 

Hughson and Beran (1991) 3.88 3.7 
 

Table 5: Stagnation pressure and percentage error to the blunt body problem. 
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9.3 Numerical data 

 
 Table 6 presents the numerical data of the simulations. The most expensive algorithm is 
due to Yee, Warming and Harten (1982), whereas the cheapest is the Harten (1983) one. The 
Harten (1983) scheme is 27.5% cheaper than the Yee, Warming and Harten (1982) scheme. 
The percentage cheapness of the Harten (1983) algorithm, in relation to the Yee, Warming 
and Harten (1982) algorithm, is defined as )(100)()( HCostHCostYWHCost ×− . 
 

Ramp Blunt Body 
Algorithm: CFL: Iterations: CFL: Iterations: Cost(1): 

Yee, Warming and Harten (1982) 0.7 1,538 0.5 2,904 0.000102 
Harten (1983) 0.8 1,285 0.4 3,473 0.000080 

Yee and Kutler (1985) 0.7 1,538 0.5 2,904 0.000095 
Hughson and Beran (1991) 0.8 1,294 0.4 3,925 0.000086 

(1) Measured in seconds/per cell/per iteration. 
 

Table 6: Numerical data of the simulations. 

10 CONCLUSIONS 

 The present work aimed a comparison of the high resolution upwind schemes of Yee, 
Warming and Harten (1982), of Harten (1983), of Yee and Kutler (1985) and of Hughson and 
Beran (1991), applied to aerospace problems. All four schemes are second order accurate in 
space and are of TVD flux difference splitting type. The Euler equations, in conservative and 
integral forms, using a finite volume formulation and unstructured spatial discretization, were 
solved. All schemes were applied to the solution of the steady state physical problems of the 
supersonic flows along a ramp and around a blunt body configuration. A spatially variable 
time step was used to accelerate the convergence to the steady state condition. The effective 
gains in terms of convergence ratio with this procedure are reported in Maciel (2005). 
 The results have demonstrated that the Harten (1983) scheme has presented more accurate 
results in the ramp problem, whereas the Hughson and Beran (1991) scheme has presented 
more accurate solutions in the blunt body problem. In the ramp problem, the Yee, Warming 
and Harten (1982) and the Yee and Kutler (1985) schemes predicted more severe pressure 
fields. The shock angle was best predicted by the Harten (1983) scheme, which presented a 
percentage error of 4.91%. In the blunt body problem, the pressure field generated by the 
Hughson and Beran (1991) scheme was the most severe. The stagnation pressure ahead of the 
configuration was best estimated by the Hughson and Beran (1991) scheme, which presented 
a percentage error of 3.7%. The best value of the lift coefficient was evaluated by the Yee, 
Warming and Harten (1982) and by the Yee and Kutler (1985) schemes. The Harten (1983) 
scheme is the cheapest one, being approximately 27.5% cheaper than the Yee, Warming and 
Harten (1982) scheme, the most expensive. 
 As final conclusion, it is not possible to highlight the best scheme in terms of these two 
example-cases, being necessary more studies. This is the purpose of the next paper to be 
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written by this author involving these schemes. 

REFERENCES 

Anderson, J. D., Fundamentals of Aerodynamics. McGraw-Hill, Inc., EUA, 563p, 1984. 
Harten, A., High  Resolution   Schemes   for   Hyperbolic   Conservation   Laws.   Journal   of 
 Computational Physics, 49: 357-393, 1983. 
Hughson, M. C., and Beran, P. S., Analysis of Hyperbolic Blunt-Body  Flows  Using  a  Total 
 Variation Diminishing (TVD) Scheme and the MacCormack  Scheme.  AIAA  91-3206-CP, 
 1991. 
Jameson, A., and Mavriplis, D., Finite  Volume   Solution   of   the   Two-Dimensional   Euler 
 Equations on a Regular Triangular Mesh. AIAA Journal, 24: 611-618, 1986. 
MacCormack, R. W., The Effect of Viscosity in Hypervelocity Impact Cratering. AIAA Paper 
 69-354, 1969. 
Maciel, E. S. G., Simulação   Numérica   de   Escoamentos    Supersônicos    e    Hipersônicos 

Utilizando Técnicas de Dinâmica dos Fluidos Computacional. Doctoral Thesis, ITA, CTA, 
São José dos Campos, SP, Brazil, 258p, 2002. 

Maciel, E. S. G., Analysis of  Convergence  Acceleration  Techniques  Used  in  Unstructured 
 Algorithms in the Solution of Aeronautical Problems –  Part  I.  Proceedings  of  the  XVIII 
 International Congress of  Mechanical  Engineering  (XVIII  COBEM),  Ouro  Preto,  MG, 
 Brazil, 2005. 
Maciel, E. S. G., Comparison Between the First  Order  Upwind  Unstructured  Algorithms  of  

Roe and of Harten in the Solution of the Euler Equations in Two-Dimensions. Proceedings  
of the  XIX  Congress  of  Mechanical  Engineering  (XIX  COBEM),  Brasília,  DF,  Brazil, 
2007a. 

Maciel, E. S. G., Comparison Between the First  Order  Upwind  Unstructured  Algorithms  of  
Steger and Warming and of Van  Leer  in  the  Solution  of  the  Euler  Equations  in  Two- 
Dimensions.   Proceedings   of   the   XIX   Congress   of   Mechanical   Engineering   (XIX 
COBEM), Brasília, DF, Brazil, 2007b. 

Mavriplis, D. J., Accurate Multigrid  Solution  of  the  Euler  Equations  on  Unstructured  and  
Adaptive  Meshes. AIAA Journal, 28: 213-221, 1990. 

Pirzadeh, S., Structured   Background   Grids   for   Generation   of   Unstructured   Grids    by 
 Advancing Front Method. AIAA Paper 91-3233-CP, 1991. 
Roe, P. L., Approximate  Riemann  Solvers,  Parameter  Vectors,  and   Difference   Schemes. 
 Journal of Computational Physics. 43: 357-372, 1981. 
Yee, H. C., and Kutler, P., Application     of      Second-Order-Accurate      Total      Variation 
 Diminishing (TVD) Schemes to the Euler  Equations  in  General  Geometries.  NASA-TM- 
 85845, 1985. 
Yee, H. C., Warming, R. F., and Harten, A., A  High-Resolution   Numerical   Technique   for 
 Inviscid Gas-Dynamic Problems with Weak Solutions. Proceedings of the 8th  International 
 Conference on Numerical Methods in Fluid Dynamics, E. Krause, Editor, Lecture Notes  in 
 Physics, Springer-Verlag, Berlim, Germany, 170: 546-552, 1982. 

E. DE GOES MACIEL116

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar


