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Abstract. The classical melt spinning model is reformulated to include a spectral rheological 
constitutive equation for an arbitrary number of modes composing the spectra of relaxation times and 
modules. This resulting spectral spinning model requires a closure criterion to be applied in the 
iteration of the spinning initial condition of the total stress tensor, at the onset of the stretching zone. 
Thus this stress value must be distributed, at each one of the iterations, among the stress modes of the 
spectral viscoelastic rheological model, the sum of which shall be consistent with the total stress 
value. For this purpose different closure criteria are generated in the literature to carry out this stress 
distribution. Without loss of generality, in this work we study numerically this particular problem for 
the isothermal condition only. A new closure criterion is proposed and analyzed in relation to 
previous ones. In general it is found that two zones are clearly distinguished along the stretching flow: 
one, where numerical results of the process elongational viscosity are insensitive to the closure 
criterion used, and the other involving the counterpart situation. 
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1 INTRODUCTION 
 

The melt spinning operation is used in the polymer processing industry to produce textile 
fibers. In this operation the polymer melt is subject to a complex non isothermal and 
predominantly extensional flow. Computational models providing axial velocity, stress and 
temperature profiles are still under study. One reason explaining this situation is that, in 
applications, different viscoelastic constitutive models must be considered depending on the 
type of material to be processed, generating thus several numerical complexities. In this 
context of analysis, the classical and most used melt spinning model, in the low take up 
velocity range, has been widely analyzed and also revised in the literature, mainly for 
viscoelastic rheological models with one relaxation time only (see, for instance, Denn, 1980, 
and Ottone and Deiber, 2002). In practice, however, one needs usually a spectrum of 
relaxation times to describe appropriately the rheometric functions of a given polymer melt 
through the constitutive equation selected, which may frequently require from two to ten 
stress modes and relaxation times (Bernnat, 2001). Thus, for any spectrum size, one common 
numerical problem appears when the classical melt spinning model includes a spectral 
rheological model. This problem is associated with the closure criterion to be applied in the 
iteration of the spinning initial condition of the total stress tensor, at the onset of the stretching 
zone. Thus this stress value must be distributed at each one of the iterations among the M 
stress modes of the spectral viscoelastic rheological model, the sum of which shall be 
consistent with the total stress value. For this purpose different closure criteria are generated 
in the literature to carry out this stress distribution starting from the last M mode to the first 
one (see Gagon and Denn, 1981 and Devereux and Denn, 1994, for the case of two stress 
modes and relaxation times). Without loss of generality, in this work we study numerically 
this particular problem for the isothermal condition only, through our previous algorithm for 
spinning flow (Ottone and Deiber, 2002) now adapted for spectral viscoelastic rheological 
models, where different closure criteria must be imposed, and hence studied here. It is found 
that two zones are clearly distinguished along the stretching flow: one, where numerical 
results are insensitive to the closure criterion used, and the other involving the counterpart 
situation.  

Numerical results of the process elongational viscosity as a function of the rate of 
elongation are also discussed within the map of the true elongational and shear viscosities for 
three different closure criteria, indicating the physical characteristics of the spinning flow in 
relation to these two relevant non linear rheometric curves. The basic melt spinning model is 
reformulated in general for the spectral M modes of stresses, within the framework of our 
previous computational algorithm based on finite differences to obtain, the axial velocity 
profile and the thermal and stress fields in the 2-D domain of the filament. In this sense, it 
should be observed here that this domain reduces systematically to a 1-D domain under the 
isothermal condition considered in this work. To achieve our purpose here, after a coordinate 
transformation to get a rectangular numerical domain, the perturbation analysis of the full 
spinning model reported by Henson et al. (1998) was applied again by including specifically 
the spectra of stress modes and relaxation times. Thus this model was formulated for the low 
speed range (flow induced crystallization was not considered) through a regular perturbation 
analysis (see details in Section 4 below) that included the slenderness approximation 
associated with long fibers of very small diameters. Here the Phan-Thien and Tanner 
viscoelastic constitutive equation with an arbitrary number of stress modes and relaxation 
times, appropriate to describe extensional and shear flows simultaneously, is used to illustrate 
our conclusions for the isothermal spinning flow.  
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The numerical study is carried out for a branched low density polyethylene (LDPE9) melt 
rheologically characterized here through the Phan-Thien and Tanner spectral viscoelastic 
constitutive equation with experimental data reported by Bernnat (2001). 
 

2 THE SPECTRAL TENSORIAL PHAN-THIEN AND TANNER MODEL  
 

The spectral Phan-Thien and Tanner model (PTTM) for the total stress tensor 
sp

τττ +=  

is decomposed into the spectral polymer contribution, ∑
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ττ , and the term associated 

with retardation effects, Dss
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is the non affine convective time derivative (Ottone et al., 2006) adapted here for isothermal 
spinning. Also DvL χ−∇=  is the effective velocity gradient tensor. Further, v  is the 
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this model may be obtained for α = 1 (Denn, 1990). Consistently, the zero shear rate viscosity 
of the melt is expressed spo ηηη += . In particular, the PTTM considers effective relaxation 

times ( )
mmm
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m trK τλλ /=  that are functions of the trace invariant of the stress tensor and 

]/[ mmm GtrxpeK τξ= . Also { }mλ  and { }mG are the spectra of relaxation times and modules, 

respectively, as obtained from the linear viscoelastic response. 
The constitutive model expressed through Eqs. (1) and (2) allows one to determine the 

spectra of relaxation times and modules { }mm G,λ  with experimental data of the storage 'G  

and loss G ′′  modules as functions of frequency ω , which are obtained from Bernnat (2001). 
 These rheometric functions in terms of the spectra of relaxation times and modules are, 
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The algorithm used to fit experimental data is composed of two parts. One involves a linear 
least squares procedure with linear inequality constraints imposing that { }mλ  must be a 

positive value for physical meaning (see, for example, Deiber et al., 1997; Peirotti et al., 
1998). The other part of the algorithm uses a nonlinear regression analysis through the 
Levenberg-Marquardt subroutine to minimize the fitting error on the average, thus providing 
an improved final set { }mm G,λ . Despite that fitting procedures cannot provide a unique set 
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{ }mm G,λ , which is a well known limitation in numerical calculations fully described 

elsewhere, results obtained in this work for the spectra of relaxation times and modules of 
LDPE9 are quite similar to those reported by Bernnat (2001). 

Therefore in order to determine the remaining non linear rheological parameters, Eqs. (1) 
and (2) are written in the cylindrical coordinate system for both the shear and elongational 
flows to fit experimental data reported by Bernnat (2001) for these test kinematics (see 
Peirotti et al., 2006, for further details). 
 Thus, Eqs. (1) and (2) in shear flow yield, 
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and drvd z /=γ&  being the shear rate. In addition, 0=== θθτττ s
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A procedure to find the shear stress zr
s
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 and the shear viscosity function 

γτη &/=  is to solve these equations numerically from the inception of the shear flow until 

the asymptotic steady state is reached. In order to calculate this steady state, the time 
derivatives in Eqs. (5) to (8) are written in discrete form. Then the Runge-Kutta method is 
applied until stresses are constant. The time step used in this work is 10-5 s. Criteria for 
convergence at the steady state are expressed in terms of two consecutive time steps, as 
follows, 
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where superscripts p and q refer to cylindrical coordinates (see Eqs. (5) to (9)) and i indicates 
the number of time steps being carried out. 
 For the purpose of quantifying the stresses of the melt LDPE9 under rheometric 
elongational flow, we solved Eqs. (1) and (2) for, 
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where ε&  is the elongational rate, and in this case, θθττ m
rr
m = . In a similar situation as the one 

described above for the shear rate rheometry, steady stresses cannot be obtained explicitly in 
elongational flow from the rheological model and the kinematics expressed by Eq. (12). 

Therefore, the elongational viscosity εττη &∑∑
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( ) , is found here by solving 

numerically the following equations for the inception of the elongational flow toward the 
asymptotic steady state, 
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Once more, in order to calculate normal stresses, we write the time derivatives in Eqs. (13) 
to (15) in discrete form, and then apply the same numerical procedure as that used for the 
shear flow analyzed above. Through Eqs. (1) to (16), the spectral PTTM is used to 
characterize the LDPE9 with data from shear and elongational rheometry reported by Bernnat 
(2001). Thus, once the spectra of relaxation times and modules { }mm G,λ  and rheological 

parameters α , ξ  and χ  are determined, this constitutive equation is ready to be used in the 
isothermal spinning model. Rheological parameters for the LDPE9 characterized with the 
spectral PTTM are reported in Section 5. 
 

3  SPECTRAL ISOTHERMAL SPINNING MODEL 
 

Although, our previous model was reformulated in general to include spectral constitutive 
equations under non isothermal flow condition, for the present work, we analyze the 
isothermal spinning flow only, which is simpler enough to illustrate clearly the performance 
of closure criteria under analysis, as proposed in Section 1 and presented and discussed below. 
The impact of these criteria on the numerical evaluation of the process elongational viscosity 
is of course the target of the present research. In addition, the isothermal melt spinning flow 
has relevance to characterize rheometrically polymer melts in pure elongational flow (see, for 
instance, Ottone et al., 2006, for a review of relationships proposed in the literature for this 
purpose). 
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Therefore, in this section the isothermal melt spinning model for the steady state regime is 
described briefly through the basic general expressions. Thus, the polymer is considered 
incompressible and the mass balance implies,  

( ) 0=⋅∇ v              (17) 
where v is the velocity vector. The balance of momentum in the filament is expressed, 
 

gpvv ρτρ +⋅∇+∇−=∇⋅           (18) 

where ρ  is the polymer density, p is the pressure field, g  is the gravity vector and τ is the 

stress tensor considered symmetric throughout this work. Further, in the spinning model )(zro  

is the fiber radius as a function of the axial direction z, sv  is the melt velocity at the beginning 

of the stretching zone with radius sr  and after the maximun swelling. Thus, 22 / sccs rrvv =  

where cv  is the melt averaged velocity in the extrusion capillary of radius cr . At the end of 
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The appropriate set of boundary conditions to solve Eqs (17) and (18) is taken directly 
from Denn (1980, 1990). For this purpose the fluid kinematics is ( ) rrzz evevzrv +=, , where 
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(Ottone and Deiber, 2002). At this position the properties are assumed uniform in the radial 
direction, which for any value of r are, 
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Although the stress ratio R may be varied in the range 021 <<− R  for viscoelastic fluids, 
0≈R  is a good approximation (Denn, 1980 and 1983; Ottone and Deiber, 2002). 

It is clear from Eq. (19) that the spectral constitutive equation must distribute the M 
different stress modes through appropriate stress relations in order to meet a convergent value 

of the total stress zz
oτ . Consequently a closure criterion for these calculations is required in the 

iteration process of the spinning initial condition of the total stress tensor, at the onset of the 
stretching zone. For this purpose different criteria were generated in the literature to carry out 
this stress distribution starting from the last M mode to the first one. Thus Gagon and Denn 
(1981) recommended,  
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In particular we propose here the following expression,  
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Closure criteria expressed through Eqs. (20) and (22) are based on the physical hypothesis 
that each stress mode participates in the total stress value proportionally to either the fraction 
of mode relaxation time or the fraction of mode viscosity. The mode fraction used in Eq. (21) 
is rather hybrid involving, however, the product of mode relaxation time and mode viscosity 

mmm G λη = . The effects of Eqs. (20) to (22) in the spinning flow solution subject to the 

constraint 0/ ≈zz
m

rr
m ττ  at z=0, with Mm ,...,1=  are studied and discussed below. 
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At the filament free surface for ( )zrr o=  and any position z, dynamics and kinematics 

constraints are, 
( ) ( ) tnTtnT

a
⋅⋅=⋅⋅             (24) 

( ) ( ) nnTnnT
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In these equations, n  and t  are the unit vectors normal and tangential to the free surface, 

respectively, ℵ is the curvature of the free surface and σ  is the polymer-air surface tension. In 
addition, the complete melt stress tensor τδ +−= pT  involves the extra stress tensor τ  (see 

Eqs. (1) and (2)) and the pressure p, where δ  is the unit tensor. Here the complete stress tensor 

and the velocity of the surrounding air are designated 
a

T  and av , respectively. It is important 

to visualize that in particular for the isothermal spinning flow of this work the air transversal 
flow is imposed at the same temperature as that of the fiber at the extrusion capillary, so that 
the isothermal melt condition is kept along the whole spinneret. Therefore, by following 
Peirotti et al. (2005), here we also define 

aaa
DpT ηδ 2+−= , where aη  is the air viscosity 

and 
a

D  is the air shear rate tensor, which is a function of av . Thus, Eqs. (24) to (27) are 

relevant for the general formulation of the spinning flow, and they effectively evaluate the 
isothermal interaction between the spinning fiber and the surrounding air. 
 From the above equations one concludes that even under isothermal conditions the full 
spinning model is quite complex to be solved directly. Therefore this model is simplified 
through a perturbation analysis as described in Section 4, below. Further, in the classical 
spinning flow, the Newtonian kinematics of the air around the fiber is not solved locally; 
instead, well consolidated correlations are used to establish the air shear stress in Eq. (24) as 
explained below. 
 

4 ASPECTS ON THE NUMERICAL SOLUTION OF THE SPINNING MODEL 
 

In this section, the main numerical steps followed to solve the isothermal spinning model 
described above are presented only. A detailed description of the algorithm used here may be 
found in Ottone and Deiber (2002) for the more general case of non isothermal spinning flow. 
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Thus, first a coordinate transformation is carried out by defining a new normalized coordinate 
)(/ zrr o=ζ . Then a regular perturbation analysis is applied to Eqs. (1) and (2) and (17) to 

(27) according to the scheme proposed by Henson et al. (1998). For this purpose the full 
model described in Section 3 may be expressed in dimensionless form by using appropriate 
scales (Henson et al. (1998)). On this base, any dependent variable, represented by P in the 

generalized sense, is expressed ( ) ( ) ( )Λ+=Λ= ∑
∞

=
ϑo

n

nn PPP
0

, where Λ  is the ratio between 

the capillary radius and the stretching length of the filament. Consequently, in the regular 

perturbation analysis, terms of order Λ  and greater are neglected to introduce the slenderness 
hypothesis. This scheme allows one to neglect rigorously terms of small orders from the 
balance and constitutive equations, and the boundary conditions of the full model, described 

in Section 3. For instance, the shear stress nt
aτ  in Eq. (24) is directly reduced to zr

aτ , which is 

evaluated from a correlation involving the friction coefficient and the air velocity av  obtained 

from Eq. (27) (see Ottone and Deiber, 2000 and 2002, for details). Further, it is also shown 

that nn
aτ  is of the order of Λ  and hence it may be neglected in Eq. (25). 

The resulting isothermal model with this procedure is rather simple and the stress field is 
uniform in the radial direction of the filament. More interesting is the fact that the perturbed 
model thus obtained is equivalent to the average model described by Ottone and Deiber 
(2002) for the non isothermal case. Therefore the isothermal model may be expressed in the 

matrix form ( ) bxAx ⋅= −1
&  where 
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can be solved with the appropriate initial conditions for velocity and stresses as reported 
above. Nevertheless, in practice one may estimate the value of the axial velocity sv  at the 

initial position of the extrusion process only. Unfortunately, the initial stresses are not known 
beforehand and they must be found through a numerical iterative process already described in 
the literature (see, for instance, Papanastasiou et al., 1996). In the framework of cylindrical 
coordinates r  and z , the iterative process consists of initializing the viscoelastic tension 

components zz
pτ  and rr

pτ  at z= 0. This position is placed after the maximum swelling of the 

filament by taking 10≈f  (see also a discussion on this aspect in Ottone and Deiber, 2000 
and 2002). Then the system of equations described above is solved iteratively with the fourth 
order Runge-Kutta method, until one reproduces the value assigned to Lv  at z=L, with the 

following convergence criterion 610/)( −≤− LL
k

z vvLv , where k indicates the number of 

axial step size used to reach L . Thus a two-point-boundary value problem must be solved. It 

should be observed that only one total stress (viz., )0(zz
pτ  at the initial condition) shall be 

iterated while the other is fixed with the constant ratio zz
p

rr
pR ττ /= . Further the distribution 

of mode stresses here must follows one of the closure criteria under analysis in this work. 
 The numerical code is written in FORTRAN language, and the axial step size is fixed at 
10-5 m. This value is small enough to achieve appropriately the convergence criterion 
concerning the take up velocity Lv . Thus numerical results of rheometric and spinning 
viscosities are precise enough to test the theories under consideration below. 
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 Finally, once the numerical solutions for axial velocity and stress fields are available, one 
can calculate the process extensional viscosity as follows, 
 

( )
p

prrzz
pp

e ε
ττεη
&

&
−=)(           (28) 

where the process extensional rate is obtained from ( )p
z

p zv ∂∂= /ε&  by using the spinning 
axial velocity. Equation (28) is useful to analyze closure criteria in Section 5. In this equation 
super index p indicates “process”.  
 

5 RESULTS AND DISCUSSION 
 

Figure 1 shows the process elongational viscosity as a function of the process elongational 
rate for LDPE9 (M=7, α = 0.99, ξ =0.013, χ = 0.1) at T = 190 ºC. The three criteria have 

been considered when cv = 0.012 m /s, sv = 0.006 m /s, Lz = 10 cm and DR=200. In this figure 

two zones are clearly distinguished along the stretching flow. One is present at high 
elongational rates where numerical results are rather insensitive to closure criteria, while the 
other involves the counterpart situation at low elongational rates.  
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η e p
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Figure 1: Process elongational viscosity as a function of the process elongational rate for LDPE9. Also cv = 

0.012 m /s, sv = 0.006 m /s, Lz = 10 cm and DR=200. Lines indicate numerical predictions with different 

closure criteria: (⋅⋅⋅⋅⋅⋅) Eq. (20), (_ _ _) Eq. (21) and (______) Eq. (22). 
 

This melt spinning situation may be also observed in Figure 2 where numerical results of 
the process elongational viscosity for different closure criteria are depicted within the map of 
the true elongational and shear viscosities. It is found that the values of the process 
elongational viscosity obtained from the melt spinning model is in between the elongational 
and shear rheometric viscosity curves in a rather short range of deformation rate. This aspect 
is relevant mainly to characterize rheometrically polymer melts in pure elongational flow  
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Figure 2: Process elongational viscosity for different closure criteria depicted within the map of the true 
elongational (upper curve) and shear (lower curve) viscosities. Symbols are rheometric data from Bernnat (2001) 

for LDPE9, where full lines show the PTTM fittings. Also cv = 0.012 m /s, sv = 0.006 m /s, Lz = 10 cm and 

DR=200 are process variable. Other lines indicate numerical predictions of process elongational viscosity for 

different closure criteria: (⋅⋅⋅⋅⋅⋅) Eq. (20), (_ _ _) Eq. (21) and (______) Eq. (22). 

0,00 0,02 0,04 0,06 0,08 0,10 0,12

0,0

0,2

0,4

0,6

0,8

1,0

1,2

v z (
m

/s
)

z (m)

 
 

Figure 3: Axial velocity profile as a function of the spinneret position for LDPE9. Also cv = 0.012 m /s, sv = 

0.006 m /s, Lz = 10 cm and DR=200. Lines indicate numerical predictions with different closure criteria: (⋅⋅⋅⋅⋅⋅) 
Eq. (20), (_ _ _) Eq. (21) and (______) Eq. (22). 
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(Ottone et al., 2006) in the sense that the rheometric and process elongational viscosity curves 
are numerically different although their shapes may be similar. 

Figure 3 shows the prediction of the axial velocity profile through the isothermal spinning 
model when closure criteria are used for LDPE9. Numerical results indicate that closure 
criteria provide quite similar velocity profiles for the melt under consideration. On the other 
hand, small differences on the axial velocity field are reflected in rather important differences 
of the process elongational viscosity, as illustrated in Figures 1 and 2. Nevertheless, this 
particular conclusion is not necessarily general and further comparison with experimental data 
is required. This task is being carried out at the present for other polymer melts and spinning 
velocity experimental data available in the literature. The presence of wiggles in the curves of 
rheometric and process elongational viscosities (Figures 1 and 2) is characteristic in results 
coming from the use of spectral constitutive models. Although one expects they do not have 
physical meaning, it is clear that there exists a compromised situation between predicting well 
and simultaneously the apparent and elongational rheometric viscosities against obtaining 
rather a smooth process elongational viscosity  
 

5 CONCLUSIONS 
 

Numerical results from the isothermal melt spinning model shows that the application of 
different closure criteria at the onset of the spinning flow for the spectral PTTM, generates 
two zones along the stretching domain: one is present at high elongational rates where 
numerical results are rather insensitive to closure criteria, while the other involves the 
counterpart situation at low elongational rates. Also it is found that the values of the process 
elongational viscosity obtained from the melt spinning model is lower that the rheometric 
elongational viscosity. This aspect is relevant mainly to characterize rheometrically polymer 
melts in pure elongational flow. Finally, further numerical studies and comparison with 
experimental data of the spinning velocity and mainly stresses are required to indicate which 
criterion is better to assign the spectrum of stresses at the initial condition of the melt spinning 
flow. 
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