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Abstract. Mould filling problems with slow inlet velocities lead to complex two phase flow simulations.
As the Froude number decreases the coupling between the position of the inteface and the resulting flow
increases. For such flows we have developed a model that enriches the finite element pressure shape
functions in elements cut by the interface so that a discontinuous pressure gradient can be represented.
In this work we show that the model can be applied to complex mould filling problems obtained directly
from the foundry.
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1 INTRODUCTION

Flows with moving interfaces (free surface and two–fluid interface problems) appear in nu-
merous engineering applications. In this work we shall concentrate on mould filling problems
but the methodology can also be applied to other kind of problems. CFD approaches for such
problems can be categorized into two main groups: fixed mesh or interface capturing techniques
and moving mesh or interface tracking techniques.

In interface capturing techniques a fixed computational domain is used and an interface func-
tion is used to capture the position of the interface. The interface is captured within the resolu-
tion of the fixed mesh and the boundary conditions at the interface are somehow approximated.

In interface tracking techniques the mesh is updated in order to track the interface. The sim-
plest approach is to deform the mesh without changing its topology, but it is valid only for very
simple flows. As the flow becomes more complex and unsteady remeshing and consequently
the projection of the results from the old to the new mesh are needed. In 3D calculations, these
operations can introduce costs that can render moving mesh techniques unfeasible. We will
therefore use interface capturing techniques.

Contrary to what one might intuitively think, we have observed that in mould filling prob-
lems, lower filling velocities typically lead to more complex simulations. That is to say, low
Froude number flows pose special difficulties for two phase flows. The lower the Froude num-
ber, the higher the importance of the gravitational forces. Since the spatial distribution of the
gravitational forces is determined by the position of the interface, the coupling between the
position of the interface and the resulting flow increases as the Froude number decreases. An
accurate representation of the pressure in the elements cut by the interface is needed for such
flows. By enriching the pressure finite element shape functions we have obtained important
improvements in simple examples. In this work we extend the application of the model to real
mould filling problems.

The idea of enriching the representation of an unknown at a material discontinuity is not
new and several approaches can be found in the literature (see Chessa and Belytschko (2003);
Minev et al. (2003)). In Coppola-Owen and Codina (2005) we introduced the model we will
use in this paper and compared it against the previously cited methods.

Fixed mesh methods generally share two basic steps, one where the motion in both phases
is found as the solution of the Navier–Stokes equations for a one phase flow with variable
properties and the other one, where an equation for an interface function that allows to determine
the position of the interface, and thus the properties to be assigned in the previous step, is solved.
The different methods differ mainly in the method used to determine the position of the interface
but also differences can be found in the way to approximate the properties to be used close to
the interface.

Referring to the evolution of the fluid interface, we update it using the so called Level
Set method (see Chang et al. (1996); Sussman et al. (1999) and Osher and Fedkiw (2001) for
an overview), also called pseudo–concentration technique (Thompson (1986)) and very sim-
ilar to the volume of fluid (VOF) technique (Hirt and Nichols (1981)). This formulation has
been widely used to track free surfaces in mould filling (see for example Codina et al. (1994);
Lewis et al. (1995), among other references) and other metal forming processes.

The Level Set method leads to a transport partial differential equation whose solution deter-
mines the position of the free surface as an isovalue of the unknown of this equation, which
we will call ψ. This equation is hyperbolic and therefore it is also necessary to use a stabilized
finite element method to solve it. The enrichment we introduce in this paper does not depend
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on the approach used to capture the interface.
A stabilized finite element method with standard trapezoidal rule time discretization is used

to solve both the Level Set equation and the two fluid Navier Stokes equations. SUPG stabi-
lization is applied to the Level Set equation. The Navier Stokes equations are stabilized using
the Algebraic Sub-Grid Scales (ASGS) (Codina (2001)) method that deals with convection-
dominated flows and allows equal velocity-pressure interpolations (thus avoiding the need to
satisfy the classical inf-sup condition). Equal order linear tetrahedral finite elements are used
to discretize the complex tridimensional geometries found in mould filling problems. In the
elements cut by the interface the P1 (linear simplicial elements) pressure shape functions are
supplemented with an additional shape function that is zero at all the element nodes, continuous
within the element and has a constant gradient on each side of the interface. This shape function
is local to each element and the corresponding degree of freedom can therefore be condensed
prior to assembly, making the implementation quite simple on any existing finite element code.
The details will be discussed in Section 4.

The remainder of the paper is organized as follows. In Section 2 we describe the mathemat-
ical model used to solve Navier–Stokes equations when no enrichment functions are used and
in Section 3 we briefly describe the Level Set Method used. In Section 4 we present the enrich-
ment functions used and some implementation details. Finally in Section 5 we present straight
out of the foundry examples. The results can be used to improve the casting process. Regions
with high velocities that can lead to premature wear of the mould can be predicted. The quality
of the resulting piece can also be improved, for example, by determining regions of possible air
entrapment.

2 FINITE ELEMENT APPROXIMATION OF THE TWO–FLUID NAVIER
STOKES EQUATIONS

The velocity and pressure fields of two incompressible fluids moving in the domain Ω =
Ω1 ∪ Ω2 during the time interval (t0, tf) can be described by the incompressible two–fluid
Navier–Stokes equations:

ρ
[∂u
∂t

+ (u · ∇)u
]
−∇ · [2µε(u)] + ∇p = f , (1)

∇ · u = 0, (2)

where ρ is the density, u the velocity field, µ the dynamic viscosity, p the pressure, ε(·) the
symmetric gradient operator and f the vector external body forces, which includes the gravity
force ρg and buoyancy forces, if required. The density, velocity, dynamic viscosity and pressure
are defined as

u, p, ρ, µ =

{
u1 p1, ρ1, µ1 x ∈ Ω1,
u2 p2, ρ2, µ2 x ∈ Ω2,

where Ω1 indicates the part of Ω occupied by fluid number 1 and Ω2 indicates the part of Ω
occupied by fluid number 2. The extent of Ω1 and Ω2 is given by the Level Set function ψ.

Let σ be the stress tensor and n the unit outward normal to the boundary ∂Ω. Denoting by
an over-bar prescribed values, the boundary conditions to be considered are:

u = u on Γdu, n · σ = 0 on Γnu, u · n = 0, n · σ · g1 = τw1, n · σ · g2 = τw2 on Γmu,

for t ∈ (t0, tf). Vectors g1 and g2 (for the three-dimensional case) span the space tangent to
Γmu. τw1 and τw2 are the tractions due to the wall law discussed briefly at the end of this Section.
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Observe that Γdu is the part of the boundary with Dirichlet velocity conditions, Γnu the part with
Neumann conditions (prescribed stress) and Γmu the part with mixed conditions. These three
parts do not intersect and are a partition of the whole boundary ∂Ω. Initial conditions have to
be appended to the problem.

ASGS (Codina (2001)) stabilization is used to deal with convection-dominated flows and to
circumvent the well known div-stability restriction for the velocity and pressure finite element
spaces (Brezzi and Fortin (1991)), allowing in particular equal interpolation for both unknowns.

Let V ∗
h andQ∗

h be the finite element spaces to interpolate vector and scalar functions, respec-
tively, constructed in the usual manner and using the same interpolation from a finite element
partition Ω =

⋃
Ωe, e = 1, ..., nel, where nel is the number of elements. From these spaces

one can construct the subspaces V h,u and Qh for the velocity and the pressure, respectively.
The former incorporates the Dirichlet conditions for the velocity components and the latter has
one pressure fixed to zero if the normal component of the velocity is prescribed on the whole
boundary. The space of velocity test functions, denoted by V h, is constructed as V h,u but with
functions vanishing on the Dirichlet boundary. Let also θ, with 0 < θ ≤ 1, be the parameter
of the trapezoidal rule for time discretisation and δt the time step size, for simplicity constant.
The algorithmic solution to the problem will be computed at tn = nδt, n = 1, 2, ... The ASGS
monolithic discrete problem associated with the Navier–Stokes equations (1)-(2), discretizing
in time using the generalized trapezoidal rule, and linearizing the convective term using a Picard
scheme, can be written as follows: Given a velocity un

h at time tn and a guess for the unknowns
at an iteration i − 1 at time tn+1, find un+θ,i

h ∈ V h,u and pn+θ,i
h ∈ Qh, by solving the discrete

variational problem:

∫
Ω

ρ
un+θ,i

h − un
h

θδt
· vh dΩ +

∫
Ω

ρ(un+θ,i−1
h · ∇)un+θ,i

h · vh dΩ

+

∫
Ω

µε(un+θ,i
h ) : ε(vh) dΩ −

∫
Ω

∇ · vhp
n+θ,i
h dΩ −

∫
Ω

vh · f dΩ

+

nel∑
e=1

∫
Ωe

τn+θ,i−1
1

[µ
ρ

∆vh + (un+θ,i−1
h · ∇)vh

]
·
[ 1

θδt
(un+θ,i

h − un
h)

− µ∆un+θ,i
h + ρ(un+θ,i−1

h · ∇)un+θ,i
h + ∇pn+θ,i

h − f
]

dΩ

+

nel∑
e=1

∫
Ωe

τn+θ,i−1
2 (∇ · vh)(∇ · un+θ,i

h ) dΩ = 0, ∀ vh ∈ V h,

∫
Ω

ρqh∇ · un+θ,i
h +

nel∑
e=1

∫
Ωe

τn+θ,i
1 ∇qh ·

[ 1

θδt
(un+θ,i

h − un
h)

− µ∆un+θ,i
h + ρ(un+θ,i−1

h · ∇)un+θ,i
h + ∇pn+θ,i

h − f
]

dΩ = 0 , ∀ qh ∈ Qh,

for i = 1, 2, ... until convergence, that is to say, until un+θ,i−1
h ≈ un+θ,i

h and pn+θ,i
h ≈ pn+θ,i−1

h

in the norm defined by the user.
The parameters τ1 and τ2 are chosen in order to obtain a stable numerical scheme with

optimal convergence rates (see Codina (2001) and references therein for details). They are
computed within each element domain Ωe. We take them as:

τ1 =
ρ(he)2

4µ+ 2ρhe|ue| and τ2 = µ+
1

2
ρhe|ue|,
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where he and |ue| are a typical length and a velocity norm of element e, respectively.
Once the algorithm has produced a converged solution, the velocity field at tn+1 can be

updated from the velocity at tn+θ by using the relation un+1 = [un+θ − (1 − θ)un]/θ.
The material properties (µ, ρ) in the elements cut by the interface are taken at each integration

point (k) as (µ1, ρ1) or (µ2, ρ2) depending on the values of ψk.
The enrichment technique presented in Section 4 can be understood as a modification of the

pressure space Qh to Q̂h, with Qh ⊂ Q̂h. Apart from this, the resulting formulation follows
exactly the previous setting.

Since the problems we have solved are highly turbulent the viscosity in the previous equa-
tions has been calculated as µ = µL + µT , where µL is the molecular, constant, viscosity and
µT = µT (u) is the additional turbulent viscosity defined by

µT = ρ C h2
√

2 ε (u) : ε (u),

where h is the size of the element where it is computed and C is a constant we have taken as
C = 0.4.

Due to the high Reynolds number of the problems we are dealing with, no slip boundary con-
ditions would require extremely fine meshes along the boundary that would make them compu-
tationally unfeasible. The solution we have adopted is to use wall functions (Launder and Spalding
(1974)) that describe the behavior of the flow near a solid wall. The normal component of the
velocity is set to zero. In the tangential direction a traction that depends on the velocity at the
boundary and is opposed to the direction of the flow is applied.

τw = −ρ u
2
∗

|u| u

where u∗ can be determined from the following set of equations

u+ =
1

κ
ln

(
1 + κ y+

)
+ 7.8

[
1 − e−y+/11.0 − y+

11.0
e−0.33y+

]

u+ =
ρ |u| u∗
τw

,

y+ =
ρδu∗
µ

.

δ is the distance betewen the computational boundary and the wall, κ = 0.41 is the Von Karman
contant and y+ and u+ are non dimensional distances and velocities respectivelly.

3 IMPLEMENTATION OF THE LEVEL SET METHOD

The basic idea of the Level Set method is to define a smooth scalar function, say ψ(x, t),
over the computational domain Ω that determines the extent of subdomains Ω1 and Ω2. For
instance, we may assign positive values to the points belonging to Ω1 and negative values to the
points belonging to Ω2. The position of the fluid front will be defined by the iso-value contour
ψ(x, t) = 0. The evolution of the front ψ = 0 in any control volume Vt ⊂ Ω which is moving
with a divergence free velocity field u leads to:

∂ψ

∂t
+ (u · ∇)ψ = 0 in Ω × (t0, tf). (3)
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This equation is hyperbolic and therefore boundary conditions for ψ have to be specified at the
inflow boundary, defined as:

Γinf := {x ∈ ∂Ω | u · n < 0}.

Function ψ is the solution of the hyperbolic equation (3) with the boundary conditions:

ψ = ψ on Γinf × (t0, tf),

ψ(x, 0) = ψ0(x) in Ω.

The initial condition ψ0 is chosen in order to define the initial position of the fluid front to be
analyzed. The boundary condition ψ determines which fluid enters through a certain point of
the inflow boundary.

Due to the pure convective type of the equation for ψ, we use the SUPG technique for the
spatial discretisation. Again, the temporal evolution is treated via the standard trapezoidal rule.

For the numerical solution of the Level Set equation it is preferable to have a function without
large gradients. Since the only requirement such a function must meet is ψ = 0 at the interface,
a signed distance function ( | ∇ψ | = 1) is used. Under the evolution of the Level Set equation,
ψ will not remain a signed distance function and thus needs to be reinitialized. This can be
achieved by redefining ψ for each node of the finite element mesh according to the following
expression:

ψ = sgn(ψ0)d, (4)

where ψ0 stands for the calculated value of ψ, d is the distance from the node under considera-
tion to the front, and sgn(·) is the signum of the value enclosed in the parenthesis.

Since the objective of this paper is to analyze the improvements that can be obtained in the
solution of the Navier Stokes equations and not to optimize the solution of the Level Set equa-
tions, a very simple algorithm has been used to calculate the distance d. Using linear elements,
the free surface is approximated by triangular planes p (lines in 2D). Then the perpendicular
distance dip of each grid point i to each plane p can be computed. The minimum distance
from each nodal point to the planes is the required distance between the point and the front
(di = minp{dip}).

4 DISCONTINUOUS GRADIENT PRESSURE SHAPE FUNCTIONS

In fixed grid finite element methods the whole domain Ω is subdivided into elements Ωe.
Within each element the unknowns are interpolated as

φh|Ωe =

NNODE∑
I=1

N I
e ΦI

e ,

where NNODE is the number of element nodes.
In typical finite element methods, ∇N I

e are continuous within each element and therefore
∇φh|Ωe is continuous. When the interface crosses an element the discontinuity in the material
properties leads to discontinuities in the gradients of the unknowns that the interpolation used
cannot capture. In the case of different density fluids under gravitational forces the jump in
the pressure gradient at the interface cannot be represented correctly by typical finite element
functions if the elements are cut by the interface. The errors in the pressure give rise to spurious
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Figure 1: 2D Enrichment function for a cut element

velocities that can render the solution meaningless. Also, viscosity discontinuities can lead to
discontinuous velocity gradients.

Enrichment methods add degrees of freedom at elements cut by the interface in order to
reduce interpolation errors. In our particular case we add only one pressure degree of freedom
per cut element. Therefore the pressure in elements cut by the interface is interpolated as

ph|Ωe =

NNODE∑
I=1

N I
eP

I
e +N ENR

e P ENR
e . (5)

The shape function N ENR
e we introduce has a constant gradient on each side of the interface, its

value is zero at the element nodes and is C0 continuous in Ωe. The added degree of freedom is
local to the element and can therefore be condensed after the element matrix has been computed
and before assembly. The resulting pressure finite element space is made of functions discon-
tinuous across interelement boundaries, and thus it is a subspace of L2(Ω), but not of H1(Ω),
as would be the case using P1 − P1 elements. However, our method is still conforming. If we
had tried to use the previous enrichment functions for the velocity we would have obtained a
non conforming method.

In Fig. 1 we show a sketch of the enrichment function we use for an element cut by the
interface in the 2D case. The element has nodes named 1, 2 and 3 and the interface cuts the
element edges at points A and B. A way to build such function is as follows. Suppose that node
1 belongs to Ω1 and nodes 2 and 3 belong to Ω2. Let Ωe

1 = Ω1 ∩ Ωe and Ωe
2 = Ω2 ∩ Ωe. In Ωe

2

we wantN ENR to have constant gradient and to have a zero value at x2 and x3. We can therefore
define

N ENR|Ωe
2

= k1 N1
∣∣
Ωe

2
,

where k1 is a constant to be defined. By definition we want N ENR (xA) = 1. As we are using
linear elements to interpolate the Level Set function we have that

N1 (xA) =
Ψ2 − ψc

Ψ2 − Ψ1
,

where Ψi is the value of ψ at node i, and therefore

k1 =
Ψ2 − Ψ1

Ψ2 − ψc
.
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Now we have k1 we can find

N ENR (xB)|Ωe
2

= k1 N1 (xB)
∣∣
Ωe

2
= k1 Ψ3 − ψc

Ψ3 − Ψ1
.

We can proceed to find N ENR|Ωe
1
. We want it to have a constant gradient in Ωe

1 and to be zero at
x1. Then

N ENR|Ωe
1

= k2 N2
∣∣
Ωe

1
+ k3 N3

∣∣
Ωe

1
.

Using once more that N ENR (xA) = 1 and the fact that N3 (xA) = 0 we get

k2 =
1

N2 (xA)
=

Ψ1 − Ψ2

Ψ1 − ψc
.

Since we want the enrichment function to be continuous in Ωe we need

N ENR (xB)|Ωe
2

= N ENR (xB)|Ωe
1
,

then, as N2 (xB) = 0,

k3 = N ENR (xB)|Ωe
2

1

N3 (xB)
= k1 Ψ3 − ψc

Ψ3 − Ψ1

Ψ1 − Ψ3

Ψ1 − ψc

,

k3 = −k1 (Ψ3 − ψc)

(Ψ1 − ψc)
.

We have obtained an enrichment function that is proportional to N 1 on Ωe
2 and a linear combi-

nation of N 2 and N3 on Ωe
1, where the values of k1, k2, k3 only depend on the values of the

Level Set function at the element nodes. It is very easy to obtain the enrichment function an its
Cartesian derivates from the usual shape function. It seems worthwhile to remark that N ENR|Ωe

does not belong to the space formed by N 1|Ωe , N2|Ωe , N3|Ωe . The same ideas have been used
to obtain N ENR for 3D elements.

In order to capture the discontinuities and take advantage of the enrichment functions used,
the integration rules need to be modified in elements cut by the front. The modified integration
we use consists in dividing each tetrahedral (triangular in 2D) element into up to six tetrahedral
(three triangular in 2D) sub elements. For each sub element the same integration rule as for the
non–cut elements is used.

When using enrichment functions for the pressure, the material properties µ, ρ are taken as
µ1, ρ1 or µ2, ρ2 depending on which part of the domain (Ω1 or Ω2) the integration point is found.

Since the pressure space is enriched, a remark is needed concerning pressure stability. If
we had used a velocity-pressure interpolation satisfying the inf-sup condition, the enrichment
of the pressure could have led to an unstable velocity-pressure pair. However, we are using a
stabilized finite element formulation. Even though we have no stability analysis for the enriched
pressure space, we have not encountered any type of stability misbehavior.

A final remark is required concerning the extension of the proposed enrichment to higher
order elements. Since the intention is to add a pressure field able to deal with discontinuous
pressure gradients, but constant in each fluid phase, exactly the same methodology as described
for P1 elements can be applied to higher order elements. The construction of the enriched
pressures can be based only in the linear part of the interpolation basis functions of these higher
order elements. This is particularly simple when they are implemented using a hierarchical
basis. The case of quadrilateral elements (or hexahedra in 3D) can be dealt with by splitting the
quadrilateral intro triangles (or tetrahedra).
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5 NUMERICAL EXAMPLES

In this section we present three mould filling examples borrowed directly from the foundry
where the improvements obtained with the proposed formulation show up clearly. Simpler
examples can be found in Coppola-Owen and Codina (2005). The results obtained with the
enriched formulation are compared with those obtained with a typical finite element formulation
with no enrichment. In the first and third examples the flow rate is prescribed at the inlet and
in the second one the pressure (actually the stress) is prescribed. The walls of the mould are
supposed impervious, that is, the normal component of the velocity is prescribed to zero. Each
of the pieces has one or more air outlets where zero traction is applied.

The linear systems arising from the Navier Stokes and Level Set equations are solved with
a GMRES iterative solver. The Navier Stokes solver is by far more computational demanding
than the Level Set solver. It uses an ILU preconditioner with filling 10 and threshold 0.01.
The Krylov dimension is 250, the maximum number of iterations is 500 and the convergence
tolerance is 1.0 × 10−6 .

For the nonlinerity due the convective term, the stabilization and the turbulence model Picard
iteration is used. The convergence tolerance is set to one percent variation of the solution and a
maximum of seven nonlinear iterations are allowed.

The runs were performed on a PC with AMD Athlon(tm) 64 X2 Dual Core Processor 4400+
running at 2.2 GHz with 3 Gbyte of RAM using the Intel Fortran compiler under Ubuntu.

5.1 Hollow mechanical piece

The first example is a hollow mechanical piece made of steel; ρ = 7266.0 and µ = 6.7 ×
10−3 (SI units). This piece is interesting because it has relatively thin walls which make the
mesh quite complex. The code is forced to obtain acceptable results with few elements in the
thickness. The arrangement we simulate consists of two pieces together with the filling channel
used during the actual filling process. The inlet velocity is 0.113m/s and the size of each piece
is approximately 0.16 × 0.16 × 0.13 m . The whole filling process takes 16 seconds.

Two unstructured triangular meshes have been used. The coarse one has 72032 elements
and 16149 nodes and the fine one has 575803 elements and 116214 nodes. They are shown in
Figure 2. The time steps size used is 0.005 seconds. The Reynolds number based on the inlet
velocity and the length of the filling channel is Re = 2.45 × 104 , and the Froude number is
Fr = 0.0065 .

In the Figure 3 the evolution of the interface is shown for several time steps during the filling
process. In the first step the interface is still inside the filling channel. For the second one it
has entered both pieces. In the third one the interface reaches the bottom of each piece. As we
will comment later, this is one of the most complicated moments in the simulation. In the final
figure more than half of each piece has been filled. The evolution of the front is very similar
in both pieces. Despite a coarse grid has been used the evolution of the interface is captured
quite satisfactorily as one can observe by comparing with the results shown for the fine mesh in
Figure 4.

Knowing how the interface evolves is important during the mould design as it can be used
to change the position of the inlets or alter the filling velocity to improve the quality of the
resulting piece. When defects appear, having some insight on the way the flow evolves is of
great help to the foundry person because it is very difficult to actually see what is happening
inside the mould.

The evolution of the interface using the fine mesh in shown Figure 4. The shape of the in-
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Figure 2: Coarse and fine meshes for the hollow mechanical piece

Figure 3: Interface position at t = 1.2, 2.5, 5.0 and 9.0 s using the coarse mesh
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terface is smoother than the one obtained with the coarse mesh but there is no mayor difference
in the way the flow evolves. The most noticeable change is that for each time step the results
obtained with the fine mesh show a bigger percentage of filled volume. This is related to nu-
merical mass losses and is analyzed in more detail in Figure 5. Since foundry pieces are usually
complex and it is common to fill several pieces at the same time (not only two as in the example)
it is important to have a code that can provide the user with acceptable results even with coarse
meshes.

Figure 4: Interface position at t = 1.2, 2.5, 5.0 and 9.0 s using the fine mesh

In Figure 5 we compare temporal evolution of the injected and filled volumes using both
meshes. The injected volume is the same for both meshes. The difference between the filled
and injected volumes is the numerical mass loss. It is reduced as the mesh is refined as one
could expect. The amount of mass loss can give us some idea on the quality of our results and
indicate the most complex moments during the simulation. In our example, we can see that the
most important mass loss occurs when the filled volume is between 0.0004 m3 and 0.0006 m3.
It corresponds to the moment when the bottom of each piece is being filled. This suggests that
a mesh refinement close to that area might improve the solution.

The fluid mass loss comes from several sources. Despite we are solving the incompressible
Navier Stokes equations the numerical results are not exactly divergence free. Since our meshes
are quite coarse there will be errors in the satisfaction of both the continuity and momentum
equations. Pressure stabilization also affects the satisfaction of the incompressibility condition.
The errors in the transport of the Level Set function can also cause fluid loss. After solving the
level set function it needs to be reinitialized; this may also introduce errors. There might also
be some coupling between the previous sources of error.

The errors introduced by the reinitialization may be compensated by moving the interface
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Figure 5: Filled volume vs. injected volume for both meshes

so that the volume of fluid is the same before and after the reinitialization. We have introduced
this correction and we are also reinitializing the Level Set function every 4 steps in order to try
to minimize mass loss.

The flow pattern during the filling process is also important to the foundry person. For
example, regions of high velocities can lead to premature mould wear and should be avoided.
In Figure 6 the flow field at different time steps obtained with the fine mesh is shown.

We believe that the effectiveness of the method we propose depends strongly on the pressure
enrichment we introduced in Coppola-Owen and Codina (2005). In order to prove this we have
run the same problem on the fine mesh without using the pressure enrichment. The results are
much poorer than those shown previously. By the time the filled volume fraction reaches a 14
percent of the mould the mass loss is so important that most of the injected fluid is being lost
numerically. The results lose any sense and therefore the runs was stopped. The evolution of
the filled and injected volumes in shown in Figure 7.

5.2 Alloy wheel

The second example is an automotive alloy wheel. The flow is created by applying a pressure
on the fluid as is done in the actual filling process for this piece. The flow rate is then determined
by the resistance exerted on the fluid. We have observed the friction may be high in the vertical
tube through which the molten metal is injected. Therefore, for this case, we will simulate the
whole filling channel.

The pressure at the inlet varies linearly from 2.21 × 104N/m2 at the beginning of the sim-
ulation to 1.17 × 105N/m2 after 4.4 seconds. The physical properties we have used are those
of aluminum, ρ = 2700.0 and µ = 1.3 × 10−3 (SI units). The Reynolds number based on a
typical velocity inside the wheel (0.5 m/s ) and the wheel radius (0.5 m ) is Re = 5.19 × 105 .
The Froude number is Fr = 0.05 .

The mesh is formed by 489313 tetrahedral elements and 109318 nodes. The time steps size
used is 0.02 seconds.

In Figure 8 the evolution of the interface for different time steps is presented. For the first
time step the whole domain is shown and for the remaining steps only the details at the wheel
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Figure 6: Velocity field at at t = 1.2, 2.5, 5.0 and 9.0 s using the fine mesh

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0  1  2  3  4  5

vo
lu

m
e 

[m
^3

]

time [s]

Injected vol
Filled vol

Figure 7: Filled volume vs. injected volume without using enrichment
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are shown. It is interesting to see that at some points inside the spokes air is entrapped. This
could lead to fabrication defects and should be avoided. At time step t = 4.4 s two air bubbles
that are rising to escape as they reach the upper interface can be seen.

t=2.4 s

t=3.6 s

t=4.4 s

Figure 8: Interface evolution at t=2.4, 3.6 and 4.4 s

In Figure 9 the flow pattern for different time steps is presented. Since we are using an
inlet pressure that varies linearly with time, while the interface is inside the filling tube the
velocities remain quite constant. The increase in the inlet pressure is compensated mainly by an
increase in the free surface height. Therefore the position of the free surface raises linearly with
time and the velocity in the tube is approximately constant. As the flow enters the wheel and
starts sliding down the wheel spokes the increase in the hydrostatic pressure stops but the inlet
pressure continues growing linearly. Therefore the flow accelerates until the interface reaches
the vertical walls. Finally, the flow rate stabilizes once again until the end of the simulation.

As in the previous example the simulation was also run without using the pressure enrich-
ment. The results without pressure enrichment are much poorer than those obtained with pres-
sure enrichment. In Figure 10 the evolution of the interface for the case without enrichment
is shown. Up to t = 2.4 s the results are similar to those obtained with the enriched model.
As the flow starts sliding down the wheel spokes the numerical mass loss becomes much more
important than in the case with enrichment. For time t = 3.6 s the mass loss is easily noticeable
and at t = 4.4 s it is very important.

5.3 Shovel

This example was presented to us as a really demanding case. It is the shovel for a power
shovel. The filling process takes approximately half a minute and the shovel is nearly one meter
long. The inlet velocity we have used during the simulation is 0.5 m/s . The Reynolds number
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Figure 9: Velocity field at t=2.4, 3.6 and 4.4 s

t=2.4 s

t=3.6 s
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Figure 10: Interface evolution at t=2.4, 3.6 and 4.4 s for the case without pressure enrichment
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based on the previous velocity and length is Re = 4.44 × 105 , and the Froude number is
Fr = 0.031 . As in the first example the material we have used is steel.

The mesh used for this example consists of 412848 tetrahedral elements and 87010 nodes.
The time steps size is 0.02 seconds.

The filling channel used for this piece splits into two branches. One of the branches is closer
to the inlet than the other one. As the interface reaches the first branch the molten metal starts
flowing through it. Three seconds take place before the flow starts falling trough the second
branch. Therefore the side of the shovel closer to the first branch is filled earlier than the part
connected to the second branch. The position of the interface for selected time steps is shown
in Figure 11.

Figure 11: Interface position at t=3.3, 7.7 , 17.1 and 24.9 s

In Figure 12 we compare temporal evolution of the injected and filled volumes for the case
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with pressure enrichment against the results obtained when no enrichment is used. As in the
previous examples there is an important mass loss when no enrichment is used.
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Figure 12: Filled volume vs. injected volume with and without pressure enrichment

6 CONCLUSIONS

In this paper we have presented a two phase flow model for mould filling problems. Is
is specially suited for low Froude number flows. Such flows are quite common in foundry
processes and three industrial examples have been presented. One of the key elements of the
model is the enrichment of the pressure shape functions in elements cut by the front introduced
in Coppola-Owen and Codina (2005). Here we have extended the use of the model to real world
examples and shown that the pressure enrichment provides significant improvements for such
flows.

The enrichment used is local to each element cut by the interface and can therefore be con-
densed prior to assembly, making the implementation quite simple on any finite element code.
The computational overhead introduced by the enrichment and improved integration is small
since it is only needed in cut elements.
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