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Abstract. In this paper, we present a new numerical method, the Immersed Element-Free Galerkin 
Method (IEFGM), for the solution of fluid-structure interaction problems. The technique is a variation 
of the Immersed Finite Element Method developed by (L. Zhang et al., Journal of Fluids and 
Structures, 23(6):836-857 (2007)) in which the fluid-solid interaction force is represented as a 
volumetric force in the momentum equations. In IEFGM, a Lagrangian solid domain moves on top of 
an Eulerian fluid domain which spans over the entire computational region. In this work, the fluid 
(Eulerian) domain is modeled using the finite element method and the solid (Lagrangian) domain is 
modeled using the element-free Galerkin method. We assure the continuity between the solid and fluid 
domains by means of a local approximation, in the vicinity of the solid domain, of the velocity field 
and the fluid-structure interaction force. Such an approximation is achieved using the moving least 
squares (MLS) technique. The method is applied to simulating the motion of rigid and deformable 
objects falling in a viscous fluid. Good performance of the method is obtained when comparing 
simulated results with analytical solutions or published works using other numerical approaches. The 
method is currently being enhanced to simulate the transport of deformable inclusions in liquid 
metals. 
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1 INTRODUCTION 
Numerical investigations involving large deformation type problems require reliable 

numerical modeling and simulation techniques. According to Li and Liu (2004), the FEM 
subdivision procedure is not always advantageous in computations involving large 
deformations. For more than 30 years, many research efforts have been devoted to adapt the 
FEM subdivision to topological and geometrical changes in the domain of interest, occurring, 
for instance, during the deformation of the material. The so-called Arbitrary Lagrangian 
Eulerian (ALE) method is a finite element formulation that moves the mesh independently 
from the material motion, allowing mesh distortion to be minimized. But even this technique 
has its limitations for some practical problems such as fluid flow or large strain continuum 
deformation.  

With the aim of finding a better approximation of continuum compatibility, a series of new 
discretization methods, called Meshfree Particle Methods, were developed, Belytschko et al. 
(1994), Li and Liu (2004) and Liu (2003). Meshfree particle methods have been designed to 
improve the inadequacy of FEM discretization. The main idea of these innovative methods is 
to discretize a continuum by only a set of nodal points without additional mesh constraints. 
The meshfree methods have a clear advantage over the traditional finite element methods 
because meshfree interpolants have a larger support size than FEM interpolants. Smoothed 
Particle Hydrodynamics is one of the earliest particle methods in computational mechanics. 
In 1977, Gingold et al. (1977) and Lucy (1977) initially developed the SPH method for the 
simulation of astrophysics problems. Their breakthrough was a method for the calculation of 
derivatives that did not require a structured computational mesh. Review papers by Benz 
(1990) and Monaghan (1982) cover the early development of SPH. Libersky and Petchek 
(1990) extended SPH to work with the full stress tensor in 2D. This addition allowed SPH to 
be used in problems where material strength is important. The development of SPH with 
strength of materials continued with extension to 3D by Libersky et al. (1993), and the 
linking of SPH with existing finite element codes by Attaway et al. (1994) and Johnson 
(1994). The introduction of material strength highlighted shortcomings in the basic method: 
accuracy, tensile instability, zero energy modes and artificial viscosity. These shortcomings 
were identified in the first comprehensive analysis of the SPH method by Swegle et al. (1994) 
and Wen et al. (1994). The problems of consistency and accuracy of the SPH method, 
identified by Belytschko et al. (1996), were addressed by Randles et al. (1996) and Vignjevic 
et al. (2000). This resulted in a normalized first order consistent version of the SPH method 
with improved accuracy. The attempts to ensure first order consistency in SPH led to the 
development of a number of variants of the SPH method, such as Element Free Galerkin 
Method (EFGM) by Belytschko et al. (1994) and Krongauz et al. (1997), Reproducing Kernel 
Particle Method (RKPM) by Liu et al. (1993, 1995), Moving Least Square Particle 
Hydrodynamics (MLSPH) by Dilts (1999), and the Meshless Local Petrov Galerkin Method 
(MLPG) by Atluri et al. (2000). These methods allow the restoration of consistency of any 
order by means of a correction function. It has been shown in Atluri et al. (2000) that the 
approximations based on corrected kernels, like RKPM, are equivalent to moving least square 
approximations, like EFGM. The issue of stability was dealt with in the context of particle 
methods in general by Belytschko et al. (2002), and independently by Randles et al. (1999). 
They reached the same conclusions as Swegle et al. (1994) in his initial study. 

The RKPM approximation functions have been used by Zhang et al. (2004) and Zhang et 
al. (2007) to develop the immersed finite element method (IFEM) to model fluid-solid 
interaction processes. In this method, a Lagrangian solid mesh moves on top of a background 

C.M. PITA, S.D. FELICELLI542

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 
 
 

 
 

Eulerian fluid mesh which spans over the entire computational domain. The fluid-structure 
interaction is represented as a body force term in the momentum equations. Although the 
IFEM uses the mesh-free RKPM interpolants to couple the solid and fluid domains, a finite 
element discretization is used for both regions. An improvement of the IFEM with respect to 
the previously developed immersed boundary method is that the structural models in IFEM 
are not restricted to one-dimensional volumeless structures such as fibers; instead they may 
occupy a finite volume in the fluid and a constitutive model can be used to calculate the 
deformation and stress in the solid 

The aim of the present work is to extend the ideas of the IFEM to develop a new 
technique, the Immersed Element-Free Galerkin Method, suitable for handling a larger set of 
fluid-structure interaction problems. In our approach, the fluid domain is modeled using an 
Eulerian formulation with the finite element method (similarly as IFEM), however, we use a 
meshfree particle method (the EFGM) to model the solid domain. In addition, the coupling 
between the solid and fluid domains is achieved by means of a Moving Least Squares local 
approximation of the fluid velocity field and the interaction force in the vicinity of the solid 
region. This approach makes the new method an attractive technique for the simulation of 
FSI problems with highly deformable solids. 

NOMENCLATURE 
Ω : Computational domain. 
Ω
Ω
 .ത : Overlapping domainߗ

f : Fluid domain. 
s : Solid domain. 

xs : Solid particles current position. 
x : Fluid particles current position. 
fi

FSI,s : i-th Cartesian component of the fluid-solid interaction force in the solid domain. 
fi

FSI : i-th Cartesian component of the fluid-solid interaction force in the fluid domain. 
vi

s : i-th Cartesian component of the solid particles velocity. 
vi : i-th Cartesian component of the fluid nodes velocity. 
ρs : Density of solid. 
ρf : Density of fluid. 
σij

s : Cauchy stress tensor for the solid. 
σij

f : Cauchy stress tensor for the fluid. 
gi : i-th Cartesian component of the acceleration of gravity. 
np : Number of nodes in the fluid Eulerian grid. 
npL : Number of particles in the Lagrangian solid domain. 
w :
vh :
Ԅ : MLS shape function. 

 Weight function. 
 Local Moving Least Squares (MLS) approximation of the fluid velocity field. 

xi
s,n : i-th Cartesian component of the solid particles position at time step n. 

E : Young’s modulus. 
μ : Viscosity of the fluid. 
CD : Drag coefficient. 
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2 FORMULATION OF THE IMMERSED ELEMENT-FREE GALERKIN 
METHOD 

2.1 Basic definitions 
Let us consider a two dimensional deformable solid body, Ωs, that is completely immersed 

in a fluid domain, Ωf. These two domains do not intersect, and their union defines the 
computational domain Ω. Therefore w ca ie n wr te: 

 
 

௙ߗ ׫ ௦ߗ ൌ  ߗ

௙ߗ  ת ௦ߗ ൌ  (1) ׎

 
Assuming that the material in both the solid and fluid domains are incompressible and that 

the no-slip condition between solid and fluid regions applies, the union of the two domains 
can be treated as one continuum incompressible domain with a continuous velocity field. In 
this work, the fluid domain is modeled using the finite element method with an Eulerian 
formulation where the independent variables are the node’s time-invariant actual position x 
and the actual time t, and the dependent variables are the velocity field v and the pressure 
field p. On the other hand, the solid domain is modeled using the element-free Galekin 
method with an updated Lagrangian formulation where the independent variables are the 
particle’s position in the current configuration xs and the actual time t, and the dependent 
variable is the particle’s displacement us defined as the difference between the current and 
previous position. A schematic of the fluid and solid domains including the independent 
variables of each formulation and the displacement of the solid particles is presented in Fig. 
2.1. Note that for clarity we use the notion of node to refer to the fluid domain (described 
with a finite element method), and the notion of particle to make reference to the solid 
domain (described with an element-free method). 

 
Fig. 2.1: Definition of the solid (Lagrangian) domain and the fluid (Eulerian) domain. The Eulerian 

configuration is characterized by the time invariant position vector x whereas the Lagrangian configuration is 
characterized by the current position vector xs. 
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2.2 Overlapping domain 
In the real problem that we want to solve, the geometrical relationships between the solid 

and fluid domains are given by Eq. 1. Following the approach adopted by Zhang et al. (2007) 
in their IFEM method, we assume that the fluid domain occupies the entire computational 
domain, therefore ΩൌΩf and that the solid domain is placed on top of the fluid region. This 
assumption introduces what is called an overlapping domain (ߗത). The overlapping domain is 
the region where the solid and fluid domains coexist (i.e., ߗത = Ωs). Note that this is a 
simplifying assumption and does not correspond with the real physics of the problem. This 
assumption simplifies the computations allowing the equations for the fluid and the solid 
domains to be solved independently. It also allows the independent discretization of the fluid 
and solid regions. The drawback of these simplifications is that the overlapping domain 
introduces non-physical effects in the equations of motion that should be carefully 
considered. 

2.3 Strong form of the governing equations 
In this section we present the equations of motion for the IEFGM method. The fluid-solid 

interaction force within the domain Ωs is denoted as fi
FSI,s, where FSI stands for fluid-solid 

interaction, s means that the expression is valid within the solid domain and the sub-index i 
represents the i-th Cartesian component of the force vector field. 
 

 ௜݂
ிௌூ,௦ ؝ െሺߩ௦ െ ௙ሻߩ ௗ௩

ೞ
೔

ௗ௧
൅ ௜௝,௝௦ߪ െ ௜௝,௝ߪ

௙ ൅ ሺߩ௦ െ ௦࢞׊      ௙ሻ݃௜ߩ א  ௦ (2)ߗ

 

Note that Eq. 2 is simply a force balance in the updated Lagrangian solid domain. The 
interaction force is treated as an additional body force acting on the solid. Neglecting the 
fluid stress within the solid domain and recognizing that the total time derivative equals the 
partial time derivative, we can rewrite Eq. 2 as: 

 ௜݂
ிௌூ,௦ ൌ െሺߩ௦ െ ௙ሻߩ డ௩

ೞ
೔

డ௧

 
൅ ௜௝,௝௦ߪ ൅ ሺߩ௦ െ ௦࢞׊      ௙ሻ݃௜ߩ א  ௦ (3)ߗ

 
In Eq. 3, the variables are defined using an updated Lagrangian formalism. This equation 

represents the strong form of the governing linear momentum equation for the solid domain. 
In this work we considered the solid to be an elastic material with the stress-strain 
relationship given by the generalized Hooke’s law. 

 
With the concept of fluid-solid interaction force in mind, we can combine the Navier-

Stokes equation for the fluid domain (Ωf) with the interaction force in the overlapping domain 
 and write, as in Li and Liu (2004), the modified Navier-Stokes equation for the entire (തߗ)
Eulerian computational doma  (Ω)in : 

௙ߩ  ௗ௩೔
ௗ௧

 
ൌ ௜௝,௝ߪ

௙ ൅ ௜݂
ிௌூ      ࢞׊ א  (4) ߗ

 
In Eq. 4, the external force applied to the fluid domain has been neglected. Note that the 

only difference between this equation and the Navier-Stokes equation is the last term in the 
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right hand side, namely fi
FSI. This term accounts for the “extra” artificial fluid contained in the 

overlapping domain, as mentioned in section 2.1. The two interaction forces fi
FSI and fi

FSI,s 
constitute an action-reaction force pair. The force fi

FSI acts on the overlapping domain 
whereas the force fi

FSI,s acts on the solid domain. These two domains are in contact and 
interact with each other. Moreover, since the discretizations of the two aforementioned 
regions are not coincident, we need to distribute the force fi

FSI,s (acting on Ωs) onto the entire 
Eulerian computational domain (Ω). The way in which we approach this distribution is a 
central point of this work and it is explained in section 2.5.2.  

Since we consider the whole domain Ω to be incompressible, we apply the 
incompressibility constraint as: 

 
௜,௜ݒ  ൌ ࢞׊      0 א Ω (5) 

 
Eq. 4 and Eq. 5, with the variables defined using the Eulerian formalism, represent the 

strong forms of the governing equations for the entire Eulerian computational domain 
௙ߗ) ׫ തߗ ൌ  .(ߗ

2.4 Weak form of the governing equations 
To derive the weak form of Eq. 3, we multiply it by an arbitrary test function δui and 

integrate over the entire current solid a dom in. 

׬  ௜ݑߜ ௜݂
ிௌூ,௦݀ߗఆೞ ൌ ׬ ௜ݑߜ ቂെሺߩ௦ െ ௙ሻߩ డ௩

ೞ
೔

డ௧

 
൅ ௜௝,௝௦ߪ ൅ ሺߩ௦ െ ௙ሻ݃௜ቃఆೞߩ  (6)  ߗ݀

 
After integrating by parts the second term in the right hand side, we obtain: 
 

׬  ௜ݑߜ ௜݂
ிௌூ,௦݀ߗఆೞ ൌ ׬ ௜ݑߜ ቂെሺߩ௦ െ ௙ሻߩ డ௩

ೞ
೔

డ௧
൅ ሺߩ௦ െ ௙ሻ݃௜ቃఆೞߩ ߗ݀ ൅ ׬ ௜௝௦ߪ௜,௝ݑߜ  ݀ఆೞ  (7) ߗ

 
In accordance with Zhang et. al. (2007), the boundary terms in the fluid-structure interface 

for both fluid and solid governing equations will cancel each other and they are not included 
in the weak form for clarity. Eq. 7 constitutes the weak form of the linear momentum 
equation for the Lagrangian solid domain. 

In the same fashion we can obtain the weak forms of the governing equations (linear 
momentum and co in y  for t i dont uit ) he flu d main, given by Eq. 4 and Eq. 5, obtaining: 

׬  ௙ߩ௜ݒߜ
ௗ௩೔
ௗ௧

 

ఆ ߗ݀ ൌ ׬ ௜௝ߪ௜,௝ݒߜ
௙݀ߗఆ ൅ ׬ ௜ݒߜ ௜݂

ிௌூ݀ߗఆ   (8) 

 
Remembering that the computational domain is described using an Eulerian formulation, 

the total time derivative may be expressed as: 

 ௗ௩೔
ௗ௧

 
ൌ ௜,௧ݒ ൅  ௜,௝  (9)ݒ௝ݒ

 
Replacing Eq. 9 into Eq. 8, we obtain: 
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׬  ௜,௧ݒ௙ሺߩ௜ݒߜ ൅ ௜,௝ሻఆݒ௝ݒ ߗ݀ ൌ ׬ ௜௝ߪ௜,௝ݒߜ
௙݀ߗఆ ൅ ׬ ௜ݒߜ ௜݂

ிௌூ݀ߗఆ  (10) 

 
Similarly, the weak form of the continuity equation is: 
 

׬  ௜,௜݀ఆݒ݌ߜ ߗ ൌ 0 (11) 

 
Note that in Eq. 10 and Eq. 11, we used two different test functions δvi and δp 

respectively. These two equations constitute the weak form of the linear momentum and 
continuity equations for the Eulerian computational domain. In this work, we used a penalty 
formulation to impose incompressibility in the fluid domain, and a Petrov-Galerkin technique 
to treat the advection term Felicelli et al. (1993). 

2.5 Coupling between the solid and fluid domains 
A critical point in the development of a numerical code capable of simulating fluid-solid 

interaction problems is the coupling between the fluid and solid domains. Two critical 
variables relevant to this coupling are the solid domain velocity vs(x,t) and the interaction 
force acting on the overlapping domain fi

FSI. 
 
2.5.1 Solid domain velocity vs 
As previously mentioned, we consider a no-slip condition between the solid and the fluid 

domains. Moreover, since the discretizations of the solid and fluid regions are independent, 
the nodes of the Eulerian mesh in the fluid domain will in general not coincide with the 
moving particles of the solid domain at every time step. Therefore a coupling between the 
fluid nodal velocity v(x,t) and the solid particles velocity vs(x,t) is needed. The position of the 
solid particles is then updated based on the calculated velocity field. The coupling between 
the two velocity fields is accomplished by means of a local approximation of the fluid 
velocity field. 

 
Fig. 2.2: Schematic representation of the local approximation of the x-component of the fluid nodal velocity 

(vx). The dots represent the velocity at different nodes in the Eulerian fluid mesh. The solid curve represents the 
local approximation of the x-component of the fluid velocity field. 
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In Fig. 2.2 we show a schematic representation of the local approximation of the x-
component of the fluid nodal velocity field (vx). The dots represent the nodal values of the 
fluid velocity and the solid curve represents the approximated continuum velocity field (vx

h). 
The approximation is done by means of the moving least squares (MLS) procedure. Several 
authors, Levin (1998) and Lancaster et al. (1981), have used the MLS procedure to 
approximate a set of scattered data. 

The main objective of the MLS procedure is to minimize a weighted residual functional J 
constructed using the approximated nodal values of the fluid velocity field (solid curve in 
Fig. 2.2 evaluated at nodal positions) and the nodal values of the fluid velocity field 
calculated with the finite element method (dots in Fig. 2.2). The weighted residual functional 
is defined as: 

 

ܬ  ؝ ∑ ࢞൫ݓ െ ࢞௜௛൫ݒ௝൯ൣ࢞ െ ௝൯࢞ െ ௝ሻ൧࢞௜ሺݒ
ଶ௡௣

௝ୀଵ  (12) 

 
In Eq. 12, the sub-index i represents the i-th Cartesian direction and the summation goes 

over all the Eulerian nodes in the finite element mesh that are included inside the support 
domain of x. We propose an approximated field function of the form: 

 

ሻ࢞௛ሺݒ  ؝ ∑ ሻ௠࢞௝ሺ݌
௝ୀଵ ௝ܽሺ࢞ሻ ൌ .ሻ࢞ሺ்࢖  ሻ (13)࢞ሺࢇ

 
where m is the number of monomials in the polynomial basis p(x) and a(x) is a vector of 

unknown coefficients which are functions of x. In this work we used a linear 2D basis 
defined as: ࢖ሺ࢞ሻ ؝ ሼ1, ,ݔ  .ሽݕ

In the MLS approximation, at an arbitrary point x, a(x) is chosen to minimize the weighted 
residual functional J. Therefore the minimization condition is expressed as: 

 

 
డ௃
డࢇ
ൌ 0 (14) 

 
A detailed description of the minimization process can be found in Belytschko et al. 

(1994), Liu (2003), Levin (1998), Lancaster et al. (1981), and Dolbow et al. (1998). The final 
approximated field function may be expressed as: 

 

ሻ࢞௛ሺ࢜  ൌ ∑ ߶௝ሺ࢞ሻ࢜൫࢞௝൯௝ ௝࢞׊       א  ௫ (15)ߗ 

 
The MLS shape functions are defined as: 
 

 ߶௝ሺ࢞ሻ ؝ .ሻ࢞ሺ்࢖ ൣ∑ ࢞ሺݓ െ .௜ሻ࢞ .௜ሻ࢞ሺ࢖ ௜ሻ࢞ሺ்࢖
௡௣
௜ୀଵ ൧ିଵ. ࢞൫ݓ െ .௝൯࢞  ௝൯ (16)࢞൫࢖

 
In Eq. 15, the fluid velocity at position x can be calculated from the velocities at nodes of 

the Eulerian mesh within the influence domain Ωx of the point at position x. A detailed 
explanation of the method used to estimate the influence domain is presented in Liu (2003). 

In summary, vh(x) in Eq. 15 represents the local MLS approximation of the fluid velocity 
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field. The x-component of vh(x) is what is depicted by the solid curve in Fig. 2.2. 
Since we are considering a no-slip condition between the fluid and solid domains, we can 

write: 
 

ሻ࢞௛ሺ࢜  ൌ ࢞׊      ሻ࢞௦ሺ࢜ א ௦ߗ ؠ  ത (17)ߗ

 
Therefore, by considering points x א Ωs in the solid domain, Eq. 15 can also be used to 

obtain the solid velocity field vs(x): 
 

௦ሻ࢞௦ሺ࢜  ൌ ∑ ߶௝ሺ࢞௦ሻ࢜൫࢞௝൯௝ ௝࢞׊       א  ௫ (18)ߗ 

 
2.5.2 Distribution of the interaction force, fi

FSI, in the fluid domain 
Eq. 3 gives the solid-fluid interaction force at each solid particle. To distribute this force 

onto the fluid nodes we used the same approach as for the velocity field approximation in the 
solid domain, i.e., the MLS procedure. The local approximation of the interaction force can 
be expressed as: 

 

 ௜݂
ிௌூ,௦ሺ࢞௦ሻ ൌ ∑ ߶௝ሺ࢞௦ሻ ௜݂

ிௌூ,௦൫࢞௝௦൯௝ ௝௦࢞׊       א  ௫ೞ (19)ߗ

 
In Eq. 19, the interaction force is obtained from the interaction forces at solid particles xj

s 
contained in the influence domain Ωx

s of the solid point located at position xs. 
As mentioned in section 2.3, the two interaction forces fi

FSI and fi
FSI,s constitute an action 

and reaction force pair and, by definition, they must be equal in magnitude and act in 
opposite directions. 

 

 ௜݂
ிௌூ,௦ሺ࢞ሻ ൌ െ ௜݂

ிௌூሺ࢞ሻ      ࢞׊ א  ത (20)ߗ

 
Therefore, by considering points in the Eulerian fluid mesh xs = x א Ω, and using Eq. 19, 

we distribute the interaction force onto the fluid domain obtaining f FSI(x). i

 ௜݂
ிௌூሺ࢞ሻ ൌ ∑ ߶௝ሺ࢞ሻ ௜݂

ிௌூ,௦൫࢞௝൯௝ ௝࢞׊       א  ௫ (21)ߗ 

 

 
In Eq. 21, Ωx represents the influence domain of the point at position x in the fluid region. 
 

2.6 Updating the position of the solid particles 
Since we are considering a current Lagrangian description for the solid domain, the 

position of the solid particles can be updated from the solid velocity calculated in Eq. 18: 
 

௜ݔ 
௦,௡ାଵ ൌ ௜ݔ

௦,௡ ൅ ௜ݒ
௦,௡ାଵ(22) ݐ߂ 
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tΔWhere the index n+1 indicates quantities evaluated at the current time step and is the 
time step size. 

 

2.7 Algorithm 
In this section we summarize the assumptions made for the fluid and the solid domain and 

the proposed algorithm. The assumptions made are the following: 
a. The fluid is incompressible. 
b. The solid is incompressible. 
c. The solid must remain immersed in the fluid at all times during the simulation. 
d. No-slip condition between the solid and fluid domains. 

It is important to remember that the variables in the solid domain Ωs are defined using a 
current Lagrangian formalism whereas the variables in the fluid domains are defined using an 
Eulerian formalism. 

The algorithm for the IEFGM can be outlined as follows: 
a) Set the initial position of all the solid particles at time t=0 (Ωo

s) and assume a non-
zero small constant velocity in the overlapping domain. 

b) Calculate the fluid-solid interaction force fi
FSI,s at the solid particles using Eq. 7. 

c) Distribute the solid-fluid interaction force from the solid domain onto the fluid 
domain (from fi

FSI,s to fi
FSI) using Eq. 21. 

d) Approximate the solid velocity vs using Eq. 18. 
e) Update the positions of the solid particles using Eq. 22. 
f) Solve for the fluid velocities and pressure distribution using Eq. 10 and Eq. 11. 

 
2.7.1 Important points 

• The fact that the interaction force fi
FSI is added in an explicit manner to the Navier-

Stokes equation for the fluid, Eq. 8, restricts the size of the time step to be used. 
The more rigid the solid material, the smaller the time step needed for 
convergence. 

• According to Zhang et al. (2007), the fluid mesh spacing has to be approximately 
twice the background solid mesh spacing to avoid fluid sinking through into the 
solid domain. It is appropriate to maintain the fluid grid larger than the solid 
background mesh but not too large because it may cause a decrease in accuracy. 
Note that even though in this work the solid is being modeled using the EFG 
meshfree method, as detailed in Dolbow et al. (1998), we still need a background 
mesh in the solid region for integration of the weak-form equations. 

 

3 NUMERICAL EXAMPLES 
In this work we studied two two-dimensional numerical examples to explore the capability 

and performance of the IEFG formulation. The simulated examples are: a rigid disk and a soft 
disk, both falling in a viscous fluid. For the two cases, we considered the solid to be an 
incompressible elastic material governed by Hook’s constitutive law. 

 

 ா
ሺଵିఔమሻ

௫௫ߪ ൌ ሺ߳ ߳௬ ሻ

௬௬ߪ  ൌ
ா
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The same Eulerian finite element mesh was used to calculate the fluid velocity in the two 
examples. This consisted of 3321 rectangular bilinear elements occupying a region 10 mm 
wide by 20 mm high. For the solid-disk geometry we considered 161 particles. In both 
examples, and at all time steps, the positions of the solid particles were coincident with the 
positions of the solid nodes of the background-integration mesh. 

The fluid and solid geometrical and material properties are summarized in Table1. The 
properties of the fluid are similar to those of a Pb-Sn liquid metal, with a heavier solid 
material. Although not presented in this work, we plan to apply the method to simulate the 
transport of inclusions during solidification of alloys. 

 
 Fluid domain Solid domain 

w (m) 0.01 - 
h (m ) 0.02 - 
d (m) - 0.002 

ρ ሺKg/m3ሻ 8800.0 12000.0 
µ ሺN.s/m2ሻ 2.0e-3 - 

E (N/m2) - ∞ / 3000.0 
ν - 0.3 

Table 1: Geometrical and material properties of the fluid and solid domains. 

 

3.1 Solid background integration mesh 
As explained in Liu (2003) and Dolbow et al. (1998), the Element Free Galerkin Method 

(IEFGM is an extension of EFG) requires a background mesh for the integration of system 
matrices derived from the weak form of the governing equations. In this work, we considered 
only one solid geometry, a disk. To mesh this geometry we used an algorithm that produced a 
Delaunay triangulation of a set of points. Some modifications to the original code were made 
so that it would respect the boundaries of the domain throughout the triangulation process. 
The Eulerian and Lagrangian meshes used in the simulations are shown in Figure 3.1. 
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Fig. 3.1: Detail of the Lagrangian background mesh for the solid disk on top of the Eulerian fluid mesh.  

 

3.2 Rigid disk falling in a viscous fluid 
As first example, we studied the case of a rigid disk falling in an incompressible viscous 

fluid due to gravity. The properties of the solid material and the disk geometrical dimensions 
are specified in Table 1. To solve this problem we should set the solid material’s Young 
modulus (E) to be as high as possible. However, as mentioned in Li et al. (2004), we verified 
that setting a high Young modulus would require a very small time step, which is not 
computationally efficient. Therefore we approached the problem as done in Li et al. (2004). 
We calculated the fluid velocity profile (using Eq. 10 and Eq. 11) setting E to the highest 
possible value that allowed us to work with a computationally efficient time step. Afterwards, 
we computed and assigned to all the solid particles, the average solid velocity. 

 

௦തതത࢜  ൌ
∑ ೞೕ࢜
೙೛೗
ೕసభ

௡೛೗
 (24) 

 
In Eq. 24, the summation considers all the solid particles npL. 
Fig. 3.2 shows the simulation results for this case. As soon as the solid disk starts to fall, 

vortices start to form around the solid-fluid interface. The terminal velocity of the solid is 
0.118 m/s (؆12cm/s) calculated at time t = 0.125s. The position of the rigid disk and the 
velocity field at different time steps are shown in Fig. 3.2, with a detailed close-up in Fig. 
3.2(e). 
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Fig. 3.2: Terminal Eulerian velocity field in the case of a rigid disk falling in a viscous fluid. A detail of the 

velocity field in the vicinity of the solid-fluid interface is shown in (e). 
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3.2.1 Comparison with analytical solution 
The movement of a rigid solid body falling in a viscous fluid by the action of gravity is 

governed by a balance between the weight of the body, the buoyancy force, the drag of the 
fluid and the inertial force. Therefore, the force balance in the direction of gravity can be 
written as: 

 

௦݈݃݋௦ܸߩ  െ ஽ܨ െ ௦݈݃݋௙ܸߩ ൌ ௦݈݋௦ܸߩ ௗ௩
ೞ

ௗ௧
 (25) 

 
Considering the volume of a circular cylinder of length L and the expression for the drag 

force from White (1986), we can write: 
 

௦݈݋ܸ  ൌ  ܮଶݎߨ

஽ܨ  ൌ ஽ሺܥ
ଵ
ଶ
ሻ2ߩܮݎ௙ሺݒ௦ሻଶ (26) 

 
The drag coefficient CD, is a function of the Reynolds number: 
 

஽ሺܴ݁ௗሻܥ  ൌ ஽ܥ ቀ
ఘ೑௩ೞௗ
ఓ

ቁ (27) 

 
Even though Eq. 27 shows a dependency of the drag coefficient upon the velocity, in this 

work we considered a constant value of CD. This is justified because the disk reaches quickly 
the terminal velocity and in the range of Reynolds analyzed (~1000), the drag coefficient is 
fairly constant White (1986). 

Introducing Eq. 26 into Eq. 25, we obtain: 
 

 ௗ௩ೞ

ௗ௧
ൌ ෤݃ െ ஽ܥ ቀ

ఘ೑

ఘೞగ௥
ቁ  ଶ (28)ݒ

 

where  

 ෤݃ ؝ ఘ೑ିఘೞ

ఘೞ
݃ 

 

Considering a constant drag coefficient, the solution of the first order differential equation 
expressed by Eq. 27 is: 

௦ݒ  ൌ ௧ܶݒ ݊ ஽
ఘ೑௚෤
ఘೞగ௥

ܽ ݄ ቆටܥ  ቇݐ

௧ݒ  ؝ 2 ෤݃߬ 

 ߬ ؝ ට ఘೞగ௥
ସఘ೑௚෤஼ವ

 (29) 
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Eq. 29 expresses the velocity of a rigid circular cylinder falling by gravity inside a viscous 
fluid domain considering a constant drag coefficient. The velocity vt is the terminal velocity 
of the solid and τ is the characteristic time during which the body reaches 46% of vt. The drag 
coefficient CD for a circular cylinder with L/d=∞ can be obtained from White (1986) as a 
function of the Reynolds number. In the numerical solution, the velocity of the solid domain 
in the direction of gravity ranges from vs = 0.0114 m/s. (at time t=0.004s) and vs = 
0.11840m/s (at time t=0.125s). For these limits, we obtain the drag coefficients shown in 
Table 2. 

 
Solid velocity vs (m/s) Red  CD (White (1986)) 

0.0114 100 1.33 
0.118 1038 1.0 

Table 2: Reynolds numbers and drag coefficients for the limiting solid velocities in the numerical calculation of 
a rigid sphere falling in a viscous fluid. 

 
Since the drag force (Eq. 26) is directly proportional to the square of the solid velocity, the 

higher the velocity, the larger the drag force. Therefore the value of the drag coefficient for 
large Red has more influence over the solid velocity history than that for smaller Red. For this 
reason, and since Eq. 29 is valid for a constant CD, we chose CD=1.0 to be representative of 
the drag coefficient throughout the simulation. 

In Fig. 3.3, a comparison between the solid velocity histories obtained using the 
theoretical approach given by Eq. 29 and the IEFGM method is presented. We considered 
three different values of the Young modulus for the solid domain (E=3000N/m2, 
E=30000N/m2 and E=100000N/m2). It can be seen that the IEFGM velocity is always higher 
than the theoretical velocity and, as the Young Modulus increases, the numerical solution 
approaches the analytical solution. The reason for this lies in the main approximation 
considered to solve the fall of a rigid solid body. As previously mentioned, this 
approximation consists in solving the velocity field considering a deformable body (finite 
Young modulus) and then assigning, at each time step, the average solid velocity to each 
solid particle. Even though this approximation allows the solid to keep its shape throughout 
the simulation, within each time step the algorithm is solving the fall of a deformable body. 
This flexibility of the disk decreases the viscous drag force of the fluid (the frontal area of the 
disk is kept constant throughout the simulation), hence increasing the magnitude of the 
solid’s velocity. This gives, at each time step, a larger disk velocity compared to the 
theoretical result.  
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Fig. 3.3: Comparison between the velocity histories of a rigid solid disk falling in a viscous fluid obtained using 

the theoretical approach of Eq. 29 and IEFGM. A drag coefficient equal to 1.0 was used in Eq. 29 and three 
different values of Young modulus were considered in the rigid-body IEFGM calculation. 

The numerical and theoretical terminal velocities are 0.11840m/s and 0.10542m/s 
respectively. The maximum difference between the theoretical and numerical results 
considering a Young modulus E=100000N/m2 is approximately 14% (at t=0.125s). 

 

3.3 Soft disk falling in a viscous fluid 
In this section we present the case of a soft disk falling in the same Eulerian fluid. The 

geometrical and material properties of both domains are presented in Table 1.  
The fluid velocity profile and the soft disk deformation process are shown in Fig. 3.4 at 

different times. It can be seen that the deformation is symmetric as expected. The last figure 
of the sequence shows an enlarged view of the deformation of the disk and the velocity field 
around it. We can see in this sequence that the lower part of the disk becomes wider 
throughout the simulation. The reason for this lies in the fact that we considered a large value 
of solid density (from Table 1 ρs = 12000K/m3,in comparison to the value used by Zhang and 
Gay in Zhang et al. (2007), ρs = 3000K/m3), hence the weight of the solid largely overcomes 
its rigidity making the front edge flatten as it falls through the fluid. 

It is important to mention that since the interaction force fi
FSI is included in an explicit 

manner into Eq. 10, the use of a large value of the Young modulus requires a rather small 
time step. For the range of Young modulus considered in this work, (3000 – 100000 N/m2 ) 
the time step required for convergence was in the order of 10-4 s. This fact affects the 
computational efficiency of the method, and an implicit formulation would be required to 
overcome this shortcoming. The time step size is also affected by the velocity of the solid and 
the Eulerian mesh size. Note however, that the IEFG method handles rather well solids with 
very large deformation and with Young modulus considerably larger than simulated in 
previous works (E=1000 in Zhang et al. (2007)). 

C.M. PITA, S.D. FELICELLI556

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 
 
 

 
 

 
Fig. 3.4: Eulerian velocity field and Lagrangian solid at different times in the case of a soft disk falling in a 

viscous fluid. A detail of the final shape of the disk at t=0.0750s and the fluid velocity field in the vicinity of the 
solid-fluid interface is shown in (f). 
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3.3.1 Comparison between rigid and soft disks 
It is interesting to compare the positions of the rigid and soft disks at time t = 0.0750s 

(refer to Figures 3.2 and 3.4). In Fig 3.5, we show in detail such comparison. We can see that 
the rigid disk falls faster than its soft counterpart. The explanation for this can be found in the 
definition of the drag force given in Eq. 26. As we can see in this equation, the drag force is 
directly proportional to the frontal area (which is the area as seen from the fluid stream). In 
this example, the frontal area is given by: 

 

ܣ  ൌ   ܮ݀

 
where L is the dimension in the z-direction (perpendicular to the page). 
As we can see in Fig. 3.5, the characteristic lengths of the rigid disk and the soft disk, at 

time t = 0.0075s, are d=0.00200m and D=0.00446m respectively. The resulting frontal area 
of the deformed geometry is then 2.23 times bigger than that of the rigid circular geometry. 
This increase in the frontal area as the solid deforms, augments the drag force diminishing, in 
consequence, the velocity of the soft disk. 

 

 
Fig. 3.5: Comparison between the solid and rigid disk’s positions at t=0.0750s. The increase in the drag force 
due to the increase in the frontal area (area as seen from the fluid stream) of the soft disk reduces its velocity. 
Since the fluid velocity fields for both cases being compared are different, no information regarding the fluid 

velocity is shown in this figure. 

 
A comparison between the velocity histories obtained for a rigid disk using theoretical 

results from Eq. 29 with CD = 1.0, a rigid disk using IEFGM with a Young modulus E = 
3000N/m2, and a soft disk using IEFGM with a Young modulus E = 3000 is presented in Fig. 
3.6. 
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Fig. 3.6: Comparison between the velocity histories obtained for rigid and soft disks. The theoretical solution for 

a rigid disk was obtained using Eq. 29 with CD = 1.0. The IEFGM solution for a rigid disk was obtained 
considering E = 3000N/m2 and the rigid body approximation explained in Section 3.2. The IEFGM solution for 

a soft disk was obtained considering E = 3000N/m2. 

 
We can see that when the effect of the increasing frontal area starts to significantly affect 

the drag force, the velocity of the soft disk decreases and eventually becomes smaller than the 
velocity of the rigid disk. The separation between the numerical solutions for the rigid and 
soft disks was produced at t = 0.041s which corresponds to a velocity in the direction of 
gravity vs = 0.093m/s. 

4 CONCLUSIONS 

A new numerical approach (Immersed Element-Free Galerkin) was developed for the 
solution of fluid-structure interaction problems. The method was applied to simulate the free 
fall of rigid and deformable solids in a viscous fluid.  Good performance of the method was 
obtained when comparing simulated results with analytical solutions. The use of a meshfree 
particle method (Element-Free Galerkin) to model the solid domain and the solid-fluid 
coupling through MLS interpolants gives the proposed approach a potential advantage for 
simulating FSI problems with highly deformable solids. Although the method handles rather 
well solids with Young modulus considerably larger than those simulated in previous works, 
the explicit treatment of the FSI force in the momentum equations introduces a limitation in 
the time step size when simulating rigid bodies or solids with realistic values of the elastic 
coefficients. 
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