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Abstract. The implications of using a viscoplastic theory to study time-dependent failure 
in solid materials are analyzed considering the elasto-viscoplastic theory of Perzyna 
(1963, 1966). The crucial aspect is that a viscoplastic failure surface has an intrinsically 
dynamic nature, which allows us to take advantage of the postulate of maximum 
dissipation to use a unique formulation to investigate a wide range of engineering 
problems like dynamic loading, creep or relaxation. Also, the consequences of formulate 
constitutive models that includes hardening, perfect and softening viscoplasticity are also 
addressed in the framework of a unique and consistent strategy. 
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1. INTRODUCTION 
In the last years, various viscoplastic models have been proposed. A widely-used 

viscoplastic formulation is the Perzyna model (Perzyna, 1963; Perzyna, 1966). The main 
feature of this model is that the inviscid yield function used for describing the viscoplastic 
strain can become larger than zero, which effect is known as overstress. The 
characteristics of the Perzyna model have been addressed by several authors (Sluys, 1992; 
Cristescu, 1994; Cristescu and Cazacu, 2000; Ponthot, 1995; Wang, 1997; Wang et al. 
1997; Carosio et al., 2000; Carosio, 2001; Etse and Willam, 1999). Perzyna's model has 
been widely used to capture rate-dependent effects in solid materials, like Luders bands 
and the Portevin-Le Chatelier effect in metals (Wang, 1997; Wang et al. 1997), shear 
banding and creep in geomaterials (Desai and Zhang, 1987; Cristescu and Cazacu, 2000) 
and to analyze localization and bifurcation properties (Willam et al. 1993; Etse et al. 
1997).  

Alternatively to the original proposal of Perzyna (1963; 1966), viscoplasticity can be 
modeled by direct incorporation of the time-dependency in a yield function which, 
together with the consistency parameter, obeys the classical Kuhn-Tucker relations. 
Recently, the consistency model has been proposed (Wang, 1997; Wang et al. 1997) in 
which a rate-dependent yield surface is defined. Furthermore, other authors have 
considered a rate-dependent yield formulation in combination with coupling to damage 
(Mahnken et al, 1998; Johansson et al. 1999). Very recently, the implications of the 
concept of a dynamic rate-dependent yield surface have been also investigated (Ristinmaa 
and Ottosen, 2000). Several authors extended cohesive-frictional formulations like the 
parabolic Drucker-Prager model (Carosio et al. 2000; Carosio 2001) and the Extended 
Leon model for concrete (Etse and Willam, 1999; Etse et al. 1997) to take into account 
rate/time effects.  

Ponthot (1995), proposed an interesting viscoplastic formulation, the so-called 
continuous viscoplasticity. This approach, with few modifications, preserves the validity 
of the well-known format of elastoplasticity theory, capturing all the relevant aspects of 
rate-dependent materials. In this model, the consistency condition for the yield function is 
enforced and therefore, numerical algorithms similar to the Closest Point Projection 
Method from rate independent plasticity can be adopted. Thus, robust and efficient 
numerical procedures can be utilized, making this model attractive from a numerical point 
of view. 

In this context, Perzyna's overstress theory provides a unified approach to analyze a 
wide range of engineering problems, from quasi-static to dynamic failure of building 
materials, prediction of creep strains, stress relaxation and delayed rupture. Moreover, as 
pointed out for many authors, viscoplasticity theory can be viewed as a regularization of 
the classical rate-independent elastoplastic theory, and it may be proven that a 
viscoplastic formulation can be viewed as the optimality conditions of a regularized 
penalty functional, with penalty parameter 1/η > 0 of the maximum plastic dissipation 
function. According to this interpretation of the viscoplastic regularization concept, for 
decreasing values of the viscosity parameter η, in the limit as 0η →  the inviscid 
formulation is recovered. In the next section, the continuous-viscoplasticity concept will 
be used to formulate a rate-dependent interface model on the basis of Perzyna's theory.  

 
2. RATE DEPENDENT CONTINUOUS FORMULATION 
Similar to the flow theory of plasticity, the constitutive relations for Perzyna’s type 
elasto- viscoplastic material formulations may be written as 
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whereby vpε  represents the viscoplastic portion of the total strain tensor e, η the viscosity 
and q the set of hardening/softening variables defined as a tensor of arbitrary order. 
Relation (1) follows the additive decomposition of the total strain rate into an elastic and a 
viscoplastic part e vp= +ε ε ε , quite similar to the Prandtl-Reuss equations in case of 
inviscid elasto-plastic constitutive relations. Eq. (2) and (3) describe a general non-
associated flow rule, whereby the direction of the viscoplastic strains m, is obtained by a 
modification of the gradient tensor n of the yield surface F by means of the fourth order 
transformation tensor A. Moreover, ( )Fψ  is a dimensionless monotonically increasing 
over-stress function whereby F0 represents a normalizing factor, tipically chosen as the 
initial strength threshold. The power N in Eq. (4) defines the order of the Perzyna’s 
viscoplatic formulation. Higher values of the exponent N leads to more rate-sensitive 
models, while the McCauley brackets in Eq. (2) defines the features of the over-stress 
function as 
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being F = F (σ,q) a convex yield function which defines the limit of the elastic domain. 
Finally eq. (5) represents the evolution law of the hardening/softening variables q by 
means of a suitable tensorial function of the state variables, H. In the continuous 
formulation, eqs. (1) to (5) are complemented by a consistency parameter λ , defined as an 
increasing function of the over-stress 
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So that the evolution equations (2) and (5) take now the classical forms 
 
                                  vp λ=ε m                                                          (8) 
  
                         :λ λ= =q H m h                                                      (9) 
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being  h = H:m . Thus, from eqs. (2) and (8) follows 
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We may now define for the viscoplastic range, the new constraint condition  
                    1( ) 0F F ψ λη−= − =                                                   (11) 

which represent a generalization of the inviscid yield condition F=0 for rate-dependent 
Perzyna viscoplastic materials. The name continuous formulation is due to the fact that 
the condition η = 0 (without viscosity effect) leads to the elastoplastic yield condition 
F=0. Moreover, from eq. (7) follows that when 0η →  the consistency parameter remains 
finite and positive since also the over-stress goes to zero. The other extreme case, η → ∞  
leads to the inequality 0F <  for every possible stress state, indicating that only elastic 
response may be activated. The constraint condition defined by Eq. (11) allows a 
generalization of the Kuhn-Tucker conditions which may be now written as 
 

                      0      0       0F Fλ λ= ≥ ≤                                      (12) 
 
Finally, the viscoplastic consistency condition expands into 
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Other recent and interesting approach to this problem (Wang 1997; Wang et al. 1997) 
includes the strain rate as state variable into the flow and viscoplastic potential function, 
i.e. 
 
                        ( , , )vp vpF F= σ q ε                                                      (15) 
 
which also leads to a rate dependent Kuhn-Tucker conditions as in case of the continuous 
Perzyna formulation. 
 
3. VISCOPLASTIC INTERFACE LAW 

In this section the rate-dependent extension of the interface model by Carol et al. 
(1997) and Lopez (1999) is summarized. The viscoplastic yield condition of the interface 
constitutive model can be expressed as (Etse et al. 2004a, 2004b; Lorefice et al. 2006; 
Lorefice et al. 2007; Lorefice 2007; Lorefice et al. 2008) 
 
                                           2 2 2 1/( ) ( ) ( ) NF c tg c tgσ τ φ χ φ λη= − − + − −                          (16) 
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                                         Figure 1: Hyperbolic failure surface - inviscid model 
 
 
being σ  and τ the normal and tangential stress components at the interface with χ  the 
traction strength (vertex of hyperbola), c the apparent cohesion (shear strength) and φ the 
friction angle. The energy dissipated during the time-dependent fracture process is 
defined as 
                      if  0vcr vcr vcrdW du dvσ τ σ= + ≥                             (17) 
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Whereby vcru and vcrv  are the normal and tangential (critical) rate-dependent rupture 
displacements, respectively. The viscoplastic flow is fully associated in tension while 
non-associated in compression, according to 
 :=m A n                                                     (19) 
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and 
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being A a transformation matrix, n the gradient to the viscoplastic yield surface and m the 
gradient to the viscoplastic potential function. The factors and  dil dil

cf fσ  accounts for the 
dilatancy effects in the compressive regime by means of a reduction of the interface 
normal component of the stress tensor. The continuum viscoplasticity form of the rate 
dependent interface constitutive model is defined by the following set of equations: 
   
                                                                   e vcr= +u u u                                                    (23) 

                                ( ) 1e −
=u E σ                                                   (24) 

                                                                   ( )vcr= −σ E u u                                               (25) 

where u  are the rate of the relative displacements which are decomposed into an elastic 
eu  and a viscoplastic component vcru , E is the elastic stiffness matrix which has a 

diagonal structure with non-zero terms equal to the constant assumed normal and shear 
stiffnesses NE = TE . The non-linear system of equations is solved using a Newton-
Raphson iterative procedure in the framework of the Closest Point Projection Method 
(CPPM) starting from the rate-dependent consistency condition which takes the form   . 
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Thereby, the parameters qi of the yield surface, which evolves during the softening 
branch, are in this case χ , c, while φ remains constant (see Figure 1) 
 

4. APPLICATION: BASIC CREEP/RELAXATION ANALYSIS  

4.1 Constitutive level – relaxation test 
In this section numerical examples are presented at constitutive level. They are 

intended to illustrate model performance to simulate time dependent failure processes. 
Two different types of loadcases are examined here: a) A constant normal displacement is 
applied as showed in Figure 2 (a), which resulted to a constant strain state. The applied 
displacements are chosen in such a way that the corresponding internal stress state to be 
above the yield limit. In this case, the way that the stresses develop with respect to time is 
of interest. Usually such a loadcase goes by the name relaxation. (b) A constant force is 
applied to the model, see Figure 2 (b), which results to a constant stress state. The 
magnitude of the force is taken to be such, that the resulting stresses exceed the yield 
limit. Our interest in this case is to study the evolution of the displacements with respect 
to time. This model corresponds to that frequently found in the literature as creep case. 
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u 0 = constant

TimeT = 0

� � = constant

TimeT = 0

(a) (b)

 

 

 

 

 
                                     
                                         Figure 2: Constitutive tests: a) Relaxation b) Creep 
 
In the following we will further explore the relaxation test for the following set of 
material parameters: EN  = 1.E7 MPa/m, 0χ = 2.0 MPa, Gf

I = 0.00003 MPa.m, Gf
II = 10Gf

I. 
For these parameters the yield limit in pure traction is 0χ = 2.0 MPa; therefore a 
displacement of 3.E-7 m was applied which corresponds to a uniform stress state of 3.0 
MPa. The results of the elastoplastic and the elasto-viscoplastic computations are shown 
in Figure 3. 
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                                                     Figure 3: Relaxation test – constitutive level 
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                                                     Figure 4: Relaxation test – evolution of state variable 

In the same figure several cases are also plotted for different values of the viscosity 
parameter η. In this loadcase one may find interesting that the stresses cannot exceed the 
yield limit in the case of an elastoplastic material, while in the case of viscoplasticity it is 
in general allowed, to exceed this limit. In other words, the stresses that are developed at 
the interface in the case of viscoplasticity are allowed to be larger than the yield limit 0χ . 
This is a big advantage of viscoplasticity, since from the numerical point of view it can 
provide a better, more stable and reliable algorithm. From the engineering point of view it 
also provides a behavior coming closer to the terms, of short term and long term load 
carrying capacity. The evolution of the state variable is illustrated in figure 4. Also, for 
higher values of the viscosity parameter, higher times are needed to reach the limit value. 
In Figure 5 we compare the viscoelastic solution from a Maxwell chain versus the 
viscoplastic one for a natural relaxation time t* = η/E = 1. For this case and for 
comparison purposes, we introduce here two variants of the original model: a perfect 
viscoplastic model (with a plastic modulus H p = 0), and a hardening version (setting Hp > 
0). We can see that while for perfect viscoplasticity the numerical solution relax the stress 
state until reach the elastoplastic strength limit, the viscoelastic case has no limit and 
spread to relax the stress state to zero. Furthermore, is clear the physical meaning of the 
viscosity parameter η, concerning the time that the system needs to relax the stress state 
until reach the final, elastoplastic solution. In the same plot the hardening and softening 
relaxation cases are also included. Contrarily to the perfect viscoplasticity case in which 
the stress state evolves until reach the strength limit, for the softening/hardening cases, the 
stress state returns to a different stress level that depends on the value of the plastic 
modulus Hp.  
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Figure 5: Comparison of different models for identical t*=η/E 

In the softening case, Hp < 0 which leads the stress state to return to a "softened" or 
contracted yield surface, below the initial strength limit, and conversely, in the hardening 
regime the relaxation process returns the stress state to a "hardened" or expanded yield 
envelope above the original strength limit. We will return on this subject when analyze 
the creep case. From a physical standpoint, it is important to realize that the controlling 
factor in the relaxation process is the relative time t/t*. The absolute time t ∈[0;1) is 
regarded to be short or long only when compared with t*= η/En. Equivalently, what 
counts is the ratio of the viscosity η in the dashpot to the stiffness En in the spring of the 
elastoviscoplastic device. Because of this, t* is also referred to as the natural relaxation 
time. 

4.2 Constitutive level – creep test 
We explore now the creep test for the same set of material parameters and for the 

softening case. At time t = 0, a constant load is applied to impose a traction stress state 
just above the elastoplastic yield limit, see figure 6. The evolution of normal 
displacements uN are plotted against time for several values of the viscosity parameter η. 
After the stress state reaches the limit strength, the softening formulation is activated 
together with the creep process. This is the reason for the increasing slope of the 
displacement rate. For large values of the viscosity parameter η, the slope of the 
displacement rate decreases and the creep process is stabilized, while for smaller values 
we see that the process is accelerated, reaching large values of the creep displacement and 
tending to an almost vertical slope. This fact can also be explained considering a simple 
uniaxial case corresponding to an elasto-viscoplastic material, see figure 7. As discussed 
above, the continuous viscoplasticity formulation allows to recover the static stress-strain 
response in the limit when the prescribed total strain rate is very slow (or when the 
viscosity parameter 0η → ). 
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Figure 6: Creep curves - constitutive level 
 
 

For stress states on this curve, the static yield condition is fulfilled, i.e. F(σ,q) = 0. Hence, 
assume that the loading history in some way has bought us to point A or point C and 
consider then the following response when the stress state is held constant. In both cases, 
the viscoplastic strain will increase. Starting at point A located above the rising part of the 
static stress-strain curve, the point defined by (σ,ε) will move and eventually be located at 
point B on the static stress-strain curve and the total viscoplastic strain is bounded. 
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                                                           Figure 7: Typical static σ-ε curve 
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However, starting at point C located above the falling part of the static stress-strain curve 
(i.e. on the softening branch), the increasing viscoplastic strain will move the point (σ,ε) 
more and more away from the static stress-strain curve; therefore, the total viscoplastic 
strain is now unbounded. These results indicate that an isolated softening-based interface 
cannot be able to simulate the experimentally observed behavior in quasi-brittle materials 
under sustained loads, because a real material tends to a definite strain limit with time. 
However, since our intent is to investigate the capabilities of the rate-dependent interface 
model to capture delayed rupture in concrete and mortar materials in the framework of a 
discrete or explicit approach using the finite element method, hereafter we analyze the 
response of a viscoplastic model using a simple finite element mesh composed of two 
quadrilateral continuum elements and a zero-thickness continuous four-nodes interface 
element between them, see figure 8.  

 

Q4 element (elastic)

Interface element

(viscoplastic)

PP

Q4 element (elastic)

�
EN

�

�

�

Ec Ec

 

Figure 8:  a) Finite element arrange b) Rheological device 

The continuum elements obey an elastic constitutive law while the interface element is 
equipped with the viscoplastic-softening based law previously described. The creep test is 
carried out applying a constant traction load at the top nodes of the mesh until activate the 
creep mechanism. Figure 9 shows the influence of the continuum elements stiffness in the 
numerical response for three values of the relation EN/EC, being EN the normal stiffness of 
the interface element and EC the elastic stiffness of the continuum elements. The viscosity 
parameter was set to η =1.E7 MPa.seg and the material parameters for the interface are 
the same as in the constitutive example. In order to avoid the generation of spurious stress 
states at the interface as a result of the interaction with the continuum elements, a null 
value of the Poisson modulus was assigned to the continuum elements. The plot shows 
that for a large value of the relation EN/EC normal creep displacement is unbounded in 
similar way to the constitutive test presented in figure 6, showing an acceleration of the 
displacement rate and taking almost a vertical slope. For smaller values of the stiffness 
factor EN/EC a stabilizing effect is obtained, and the creep displacement turns bounded. 
For EN/EC =0.4 or EN/EC = 4, the final value of the creep displacement reaches a lightly 
different value, being the stabilizing time shorter for EN/EC = 0.4. Clearly, for certain 
values of the relation EN/EC, the elastic stiffness of the continuum elements acts 
restricting the displacement in the dashpot at the viscoplastic device (see figure 9), 
generating the stabilization of the overall response. This is a key aspect, because at 
mesomechanical level of observation, the interface elements equipped with the 
viscoplastic cracking law will always interact together with the continuum elements 
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representing the matrix or aggregates phases of concrete mesostructure. In the following, 
the simple finite element model previously presented will be used to investigate the 
numerical response of the viscoplastic interface model under different loading conditions. 
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Figure 9: Creep test at Finite element level - Influence of continuum elements stiffness 

The numerical results for the elastoplastic and the elastoviscoplastic model, together with 
several other cases for different values of the viscosity η are plotted in figure 10. What 
can be first noticed is that, the elastoplastic model, as expected shows no time influence; 
however it sets the limit for the viscoplastic solution. Secondly, the viscosity parameter is 
of great significance while studying a viscoplastic case: it determines the delay in time 
needed to reach the elastoplastic solution. In the case that the yield strength was also set 
to zero the response is that of a Maxwell solid, used to simulate viscoelastic materials. 
Figure 11 shows the sensitivity to the applied stress level in the creep case. We can see 
that for the lower stress level (0.6χ and 0.7χ) the delayed displacements reaches a limit 
value, but under a higher level of 0.8χ the delayed displacements are unbounded. This 
behavior is coherent with the stress evolution in time showed in figure 12, where we can 
see that for the higher load level the stress state reaches a peak and then falls with a 
negative constant slope. This behavior corresponds to a softening response at the interface 
and with a negative value of the plastic modulus Hp, while in the other cases the plastic 
modulus remains positive. In the previous examples one speaks of plastic, i.e. irreversible 
deformations. Once the viscoplastic mechanism is activated then some plastic 
deformation will remain in case of unloading. The important thing though when adopting 
a viscoplastic material model, is that the remaining deformation is not always that of an 
elastoplastic model. Depending on the time of unloading, just a portion of the plastic 
deformation is activated. This is illustrated by the next examples. Consider the creep case 
with the same material properties as defined before. At time t = 0 a load of 1.2 KN is 
applied and after a t = t1 hours this load is removed, see figure 13.  
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Figure 10: Creep test at Finite element level - Influence of continuum elements stiffness 
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Figure 11: Creep test - Influence of stress level for η=1.E7 
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Figure 12: Creep test - Stress evolution with time for various stress levels 
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                                                    Figure 13: Creep test – Unloading scheme 

The responses for both, the unloading and reloading cases are plotted in figure 14. It is 
clear that after the load has been removed the model experienced elastic unloading and 
the remaining deformation is plastic. In the unloading case the elastic deformation is 
given as ∆u = ∆σ/EN, where ∆σ is the portion of unloading stress. The reloading cases are 
also plotted in the same figure. Again consider the same model as before, which is now 
loaded at time t = 0 hours with the same initial load as before; subsequently at time t = t1 
hours this load is increased adding a ∆σ = 0.03χ, 0.08χ and 0.15χ. For the lower 
reloading levels, the delayed displacements remains bounded, but are unbounded for the 
higher stress level. As we explain previously, this fact corresponds to a negative 
viscoplastic modulus. This case represents the so-called delayed rupture. The last example 
in this series of uniaxial creep tests explores this behavior further. Again consider the 
same model as before, which is now loaded at time t = 0 hours with an initial load P 
=1.20 KN; subsequently at time t = 245 hours this load is increased applying ∆P = 0.2 
KN. Figure 15 illustrate model behavior in this case.  
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                                                    Figure 14: Creep test - Unloading/reloading cases for σ = 0.6χ 
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                                            Figure 15:  Stress-displacement curve for the reloading cases 
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In the same figure the case in which a load P=1.40 KN is applied from the beginning is 
included. In both loadcases, the displacements are tending to the corresponding 
elastoplastic limits within increasing time, which have been also computed and plotted. 
These results show a good agreement with the observed behavior of real materials under 
step-loading conditions.  

5. CONCLUSIONS 
From the presented results, we see that when assuming very long term phenomena, 

a simple elastoplastic model may work sufficiently, but when this is not the case, a 
viscoplastic model can provide better results, and can approach the material behavior in a 
more realistic way. In fact, in many cases and with certain materials, elasto-viscoplastic 
models are the only way to reproduce the experimental measurements. From the 
developed examples, a relevant distinction arise between elastoplastic and viscoplastic 
formulations, and is the fact that an elastoplastic model implies that the plastic 
deformations are immediately fully developed. On the other hand, using a viscoplastic 
model, one has the possibility to split different phases into different loadcases, and study 
the significance of the time gap between them. Therefore, the options during analysis are 
further enhanced. Finally, an outcome of great importance too, is that by using a 
viscoplastic material modelling, the overall Finite Element Algorithm becomes more 
stable and experiences less convergence problems. The fact that stresses above the yield 
limit are allowed and not ruled out as in classical plasticity, eliminates the limitations and 
restrictions, that may otherwise be sources of instabilities, and since the viscoplastic 
model reaches the elastoplastic solution in the limit, as it was shown in the simple case 
studies, applying viscoplastic modelling for rate-independent problems, results in 
numerically stabilizing the solution process. On the other hand, the rate-dependent 
version of the interface model by Carol et al. for the analysis of quasi-brittle or 
heterogeneous materials has been tested in the low velocities or quasi-static regime. 
Numerical simulations of creep and relaxation cases were successfully performed at 
constitutive level. The obtained results demonstrate model capabilities to reproduce in a 
realistic manner the observed behavior of a wide range of engineering, rate-dependent 
materials. The presented interface formulation seems to be a suitable numerical tool to 
model a wide range of rate-dependent problems, like crack growth under sustained loads, 
stress relaxation, cyclic loading and stage construction in the context of a mesomechanic 
or discrete approach to the fracture of mortar and concrete structures. 
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