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Abstract. The lattice Boltzmann method (LBM) is a modern numerical technique, very 
efficient, flexible to simulate different flows within complex/varying geometries. The LBM has 
evolved from the lattice gas automata (LGA) in order to overcome the difficulties with the 
LGA. The core equation in the LBM turns out to be a special discrete form of the continuum 
Boltzmann equation, leading it to be self-explanatory in statistical physics. In contrast with 
the traditional computational fluid dynamics (CFD) based on a direct solution of flow 
equations, the lattice Boltzmann method provides an indirect way for solution of the flow 
equations. This method is characterized by simple calculation, parallel process and easy 
implementation of boundary conditions. This feature makes the lattice Boltzmann method a 
very promising computational approach in different areas. A computational code is described 
for numeric simulations of blood flow using the Cellular Automata theory, applying the lattice 
Boltzmann general equation (GLBE). The algorithm and user's environment are also 
described. The mathematical theory required for the program code is also included and a 
formal example is included to show the versatility and power of the method. 
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1 INTRODUCTION 

The fluid dynamic behavior in human heart valves has marveled many researchers 
including Leonardo da Vinci1, who described a technique to produce an aortic valve model.  
After Hufnagel had successfully implanted a heart valve device in a human in 19522, several 
in vitro research studies were carried out to find out the flow characteristics through these 
artificial devices.  

The good results obtained with heart valve devices in humans have contributed to continue 
experimental work and to develop new designs and materials.  Experimental successes with 
different kinds of devices show that artificial valves do not necessarily imitate the biological 
valve.  However, the unsteady flow development as well as the presence of large Reynolds 
numbers in valve devices has caused haemolysis with significant undesirable effects.  
Therefore it is essential to achieve the functional and geometric optimizations of these 
artificial devices.  Additionally to the experimental work, computer simulation was carried 
out in sophisticated and powerful computers to obtain the whole flow dynamic description 3. 

The fluid-structure interaction is a very interesting point in the blood flow simulation. 
Tang et al.4 have analyzed a nonlinear three-dimensional thick-wall model with fluid-
structure interaction to simulate blood flow in carotid arteries. A non symmetric stenosis was 
included to quantify the effects of stenosis severity, eccentricity, and pressure conditions on 
blood flow and artery compression. De Hart et al.5 use the Lagrange multiplier based 
fictitious domain method in a three-dimensional finite element model of a stented aortic 
valve. An arbitrary Lagrangean–Eulerian (ALE) formulation is adopted in many recent 
studies, which must be compatible with the fluid–structure motion interface6,7,8,9.  

Different techniques, based on the exchange of momentum and the integration of stress 
tensor, for the evaluation of the hydrodynamic forces in the lattice Boltzmann simulations are 
investigated on the curved and moving boundaries in two and three dimensions10,11,12. All of 
them propose a LBE boundary condition for moving boundaries by combination of the 
bounce-back scheme and spatial interpolations of first or second order. 

A three-dimensional computational fluid-structure interaction model of the mechanical 
aortic valve prostheses is presented. The merits and demerits of the applied numerical 
techniques are given in this work. Fluid and structure modeling, fluid-structure interaction 
modeling, boundary conditions and solution strategies are briefly discussed. 

2 PROBLEM DEFINITION AND GOVERNING EQUATIONS 

A three-dimensional representation of the valve is shown in Fig. 1, where two rotating 
leaflets are immersed in a pulsatile flow inside a rigid channel. The channel includes a 
simplified representation of left ventricle and contains the sinus cavity downstream the heart 
valve fixed ring. 

2.1 Generalized lattice Boltzmann equation (GLBE) 

The lattice Boltzmann  equation (LBE) is a marching time related moving model  of finite 
differences   based on Boltzmann discrete equation (in time and space)13.  The LBE method is 
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usually used in a Cartesian prefixed latticework space (non dimensional), as a result of the 
symmetry array of the discrete velocities, and latticework space δx is related to time δt 
multiplied by δx = c δt, where c is the basic unit of the velocities discrete arrangement.  Thus, 
this method works basically following two main steps: collision and propagation.  During 
collision the interaction between the fluid particles is modelled in a simple manner and in 
propagation, the fluid particles simply move from one point of the latticework to the next 
according to its velocity direction (discrete array e).  

The method used in this research is based on the well known fact that fluids movement can 
be described by Boltzmann’s equation14. As a matter of fact, Navier-Stokes equation is just 
the second degree approximation to Boltzmann’s equation15,16. When the distribution function 
is known, the macroscopic velocity and stress can be calculated automatically from these two 
first moments. 

a)  b)   
Figure 1: Assembly defined for the lattice Boltzmann simulation, including mechanical heart valve, left ventricle 

and aortic segment. The figure shows a) end section view, b) xz half section view17. 

 
The fluids state evolution in time is represented by the general equation 

      (1) 
where collision is symbolized by the operator Ω.  For each point the system state is 
represented by a vector defined in equation (2) in a 15-dimensional space F ( ):  

       (2) 
The main difficulty when using the LBE method to simulate a real isotropic fluid is how to 

systematically eliminate as much as possible the effects due to the symmetry of the 
underlying lattice. We shall proceed to analyze some simple (but nontrivial) hydrodynamic 
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situations and to make the flows as independent as possible of the lattice symmetry18. 
The typical subroutines included in the main lattice Boltzmann loop with fluid-structure 

interaction are summarized in table 1.  
 

Table 1. Main loop for lattice Boltzmann code for moving boundary. 

Propagation subroutine 1 

The population f is distributed from a macroscopic way to its neighbouring environment19. 

Re-meshing subroutine 2 

Each lattice-cell is redefined as fluid or as structure type, according to the displacement of the solid 

through the flow 17. 

Collision subroutine 3 

The collision operator of the Boltzmann equation is calculated20. 

Set Boundary Conditions subroutine 4 

In agreement with the pulsatile flow the conditions are assigned for fixed walls, inflow and outflow limits 

and the moving boundary interpolations11. 

Solve Structure movement subroutine 5 

Displacement and Rotation movements for solids in the flow are obtained from classical dynamic 

equations for solids22. 

 

We can make a linear transformation from ψ space to some other space that may be more 
convenient. In particular, we shall use physically meaningful moments of the quantities fθ  
that span space M. As proposed by d’Humières23, we shall use the generalized lattice 
Boltzmann equation in which the collision process is executed in moment space M. 

The mapping between moment space M and discrete velocity space ψ is defined by the 
linear transformation M which maps a vector f    in ψ to a vector  m  in M: 

fm M=    and mf -1M=        (3) 
The rows of the transformation matrix M are organized in the order of the corresponding 

tensor, rather than in the order of the corresponding moment. The local state in M space 
( )Txyzzxyzxywwxxzzyyxx mpppppqjqjqjem ,,,,,3,,,,,,,,, ερ=    (4) 

can be physically interpreted: m1 = ρ is the density, m2 = e is related to the kinetic energy, 
m3=ε is related to the kinetic energy square, m4,6,8 = jx,y,z are components of the mass flux, 
m5,7,9 =qx,y,z are proportional to the components of the energy flux; the symmetric traceless 
viscous stress tensor m10 = 3pxx, m11 = pww = pyy - pzz, with pxx+pyy+pzz = 0, m12,13,14 = pxy,yz,zx; 
and an antisymmetric third order moment m15 = mxyz. 
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2.2 Multiple-relaxation-time lattice Boltzmann model (MRT) 

The relaxation lattice Boltzmann equation (RLBE) was introduced by Higuera and 
Jiménez24 to overcome some drawbacks of lattice Gas Automata (LGA) such as large 
statistical noise, limited range of physical parameters, non-Galilean invariance, and 
implementation difficulty in three dimensions. The general RLBE model has three 
components: The first component is the discrete phase space defined by a regular lattice in D 
dimensions together with a set of judiciously chosen discrete velocities eθ connecting each 
lattice site to some of its neighbors. The main aspect in the theory is the set of velocity 
distribution functions fθ defined on each node rj of the lattice. The second component includes 
a collision matrix S and N+1 equilibrium distribution functions mθ

(0), which are functions of 
the local conserved quantities. The third component is the evolution equation in discrete time 
tn=n . δt, n=0,1,…, 

( ) ( ) ( ) ( )[ ]njnjnjtntj trmtrmStrfterf ,,ˆ,, )0(1 −−=−++ −Mδδθ    (5) 
The collision process is naturally accomplished in the space spanned by the eigenvectors 

of the collision matrix, the corresponding eigenvalues being the inverse of their relaxation 
time towards their equilibria. The N+1 eigenvalues of S are all between 0 and 2 as to maintain 
linear stability and the separation of scales, which means that the relaxation times of non-
conserved quantities are much faster than the hydrodynamic time scales. The LBGK models 
are special cases in which the N+1 relaxation times are all equal, and the collision matrix 
S=ω.I, where I is the identity matrix, ω = 1/τ, and τ (> ½) is the single relaxation time of the 
model18. 

2.3 Boundary conditions 

Unlike other CFD methods (computational fluid dynamics), lattice Boltzmann methods 
require a defined boundary condition for the density distribution instead of pressure and 
velocity.  In other words, the density distribution must be known for each one of the cells of 
the boundary. In order to represent the valve opening and closing movement within the lattice 
Boltzmann mesh, the leaflet new position is recalculated at each time step and the cell 
definitions are only updated for those cells that were assigned previously as a solid to a fluid 
and viceversa.  

Ginzburg and d’Humières26 present a unified approach of several boundary conditions for 
lattice Boltzmann models. The multi-reflection boundary condition is a generalization of 
previously introduced schemes such as the bounce-back rule, linear or quadratic 
interpolations, etc.  

After the propagation step at t, the post-collision population in the fluid-structure interface 
can be thought to be on the outside boundary node. At the same time the population 
corresponding to the opposite direction (boundary node) is unknown and has to be supplied 
by the boundary condition. Ginzburg and d’Humières had proposed an approach based on the 
reconstruction of the unknown populations form a second-order Chapman-Enskog expansion 
in Ginzburg and d’Humières27, and extend the results of Bouzidi et al.28 in order to derive 
formally third-order accurate boundary conditions for general flows. For details, see Ginzburg 
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and d’Humières26. The present work uses this model to simulate the blood - valve’s leaflet 
interaction. 

 

3 PARALLEL COMPUTATIONAL SIMULATION 

3.1 Parallel code 

The code was developed using explicit parallelism29 that works in the software and the 
operating system. Using the concept of partition of the domain the code was organized so that 
the program was executed simultaneously in n different tasks and using partition of data the 
code distributed the numerical array in the cluster’s nodes.   

The parallel code was carried out following the Foster’s method30,31, the passing of 
information among teams of the cluster works under the overlaps of border’s method.  

3.2 Configuration of the cluster 

A non-dedicated cluster was implemented, configured by six computers of high yield 
(nodes) connected by two switches Planet FSNW 1601 (figure 2). Table 1 summarizes the 
selected teams specifications.    

 
Figure 2: Cluster implemented in the laboratory to solve the parallel version of the lattice Boltzmann code : one 

master/slave node and five slave nodes32. 

 
The solution was developed in MS Windows. The single program multiple data model 

(SPMD) was used, under the master-slave scheme29. The parallel library installed in each 
node was WMPI 1.3. 

 

Room 1 Room 2 
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Table 1. Cluster configuration32 

 Galileo Newton Keppler Atenea Heracles Sirius 
CPU AMD Athlon Xp 2600+ 1.917 GHz 

Cache L1 
Instructions 64 KB 

Cache L1 Data 64 KB 
Cache L2 512 KB 

RAM Memory 1.5 GB DDR2700 1GB DDR2700 
960 MB operatives 

512MB DDR2700 
448 MB operatives 

Hard disk Serial ATA 120 GB 
7200 RPM 

ATA100 80 GB 
7200 RPM 

ATA100 40 GB 
7200 RPM 

Motherboard DFI AD77 Infinity 
(Serial ATA,  Raid) MSI KM400 – 8235 

OS Windows XP Professional Service Pack 2 
 

3.3 Validation of the cluster 

Figure 3 shows different CPU times in a three-dimensional example using the lattice 
Boltzmann D3Q15 cellular model. A homogeneous behavior is observed; certain fluctuations 
at the beginning indicate a bigger CPU consumption that later are stabilized. The cluster 
offers its biggest yield with 6 nodes and it reflects that the yield can continue improving with 
the incorporation of new nodes to the process. The decrease is located between a 70 and 80% 
in time of computation for a lattice evaluated of almost 3.5 million cells. Future works could 
be focused in an internal parallelism of the code, working with control partition33. 

 
Figure 3: Percentage of CPU time reduction using a MPI cluster for a three-dimensional lattice Boltzmann 

simulation. Curves to 10, 100 and 1000 timesteps32 
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4 LATTICE BOLTZMANN ANALYSIS 

The model under study is formed basically by a self-regulating cell population of the 
D3Q15 type of voxel geometry (see Figure 4). For cell D3Q15, the fifteen discreet velocities 
are defined  
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Figure 4: D3Q15 lattice Boltzmann cell17. 

 
For each one of the mechanical devices being simulated, a cell’s group was taken and 

individual characteristics were given to fixed and to mobile components.   The cells ordered 
in a regular and uniform way were classified one by one according to their function within the 
simulation process, i.e. FLUID, STATIC-WALL and BOUNDARY cells. This allows tile 
completely the control volume defined by the boundary which represents the portion of the 
left ventricle, the aortic valve segment and part of the aortic artery, as shown in Fig. 5. As it 
can be observed in the image, the valve geometry adapted itself to the regular geometry of the 
lattice. The fluid-structure coupling is straightforward (nodes and element boundaries 
coincide along the fluid-structure interface). 
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a)  b)  
Figure 5: Three-dimensional lattice using D3Q15 lattice Boltzmann cells. a) End section view, and b) detail of 

the mechanical heart valve. 

 

 

4.1 Preprocess configuration 

To set up inflow boundary conditions in the model, a laminar profile was defined to the left 
ventricle. A period of time (cardiac cycle) was defined as T = 227 iterations (ω = 2π / T). The 
initial velocities distribution in the domain was zero for the whole system and then the 
simulation was developed in 40T to define time zero (t = 0) of the numerical calculation. 

Three boundary conditions were required in this model: one on the first cells column 
where the left ventricle is and begins the pulsatile blood flow, another in the fixed walls 
(ventricle, aortic artery and the fixed ring of the valve), and finally another in the valve 
dynamic boundary. From the left ventricle a flow comes out with a laminar profile which is 
variable in time and it is based on the heart cycle. Its peak velocity was also adapted to the 
information obtained from King34. The density distribution for each one of the cells based on 
the velocity components was estimated and registered for that boundary.  For the static 
boundary, the simple bounce-back method was implemented. In this analysis the fluid-
structure interaction is considered between the fluid domain (blood) and the immersed 
structures, i.e. the valve leaflets, while assuming the aortic root to be rigid. 

The density of the leaflet material is taken equal to the fluid density, so that buoyancy 
forces can be neglected. The effects of heart valves substitution with mechanical valvular 
implant were simulated by blood flow through mechanical device using time step analysis. A 
St. Jude Medical Valve (SJM) was evaluated in this work. The physiological conditions 
around the device implant were carefully modeled and the geometry of the aortic cavity was 
modeled according to the pulsatile in vitro test equipment used by King34. Blood physical 
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properties were used for the model such as fluid density ρ = 1.05 .103 kg/m3   and     ν= 3.4 
mm2/s.  Numerical simulations were carried out in the mesh with a flow output of 5.5.l/min 
and a heart pulse of 72 bpm (0.82 s, Womersley α2 = D2ω/ ν = 256.4). Time related velocity 
values were selected as the system input condition from a periodic curve Q.=.Qp.sin(ωt), 
where Qp is the flow by stroke used in the experimental simulation34. The velocity values 
were non-dimensionalized by using the Reynolds number. Additionally, the aortic segment 
was enlarged four times its diameter size in order to eliminate numeric effects on the output 
boundary. The aortic diameter was considered about 29 mm. 

The leaflets movements are governed by the solid body dynamics and are only free to 
rotate on a fixed axis which is defined by the device own geometry; each leaflet movement is 
studied separately. 

The code was implemented on a cluster of six machines AMD Athlon Xp 2600+ 
1.917.GHz, with a global lattice of 137 x 62 x 57 cells (133.644 fluid cells and 960 moving 
boundary cells). 

 
Figure 6: Numerical lattice Boltzmann streamlines in a pulsatile blood flow through a SJM heart valve, begining 

the systole 0.10T (t = 0.08 s) ; xy half section view. 

 

4.2 Numeric results 

In Fig. 6 streamlines through the bileaflet valve are reported. In the profile closest to the 
valve, the leaflets’ influence on the flow field is evident, with three jets, one central and two 
laterals. This is a characteristic feature of bileaflet valves. In the Valsalva sinus, there is an 
intense fluid recirculation generated by the interaction between jet, valve structure and 

57.204 

-10.515 (mm/s) 
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geometry of the aorta. 
Results were compared with King et al.35. They used computational fluid dynamics models 

to predict the flow through a bileaflet mechanical heart valve during the first half of systole 
and were compared with flow visualization and laser Doppler anemometry in vitro 
experiments. Direct comparison of the LB and flow visualization results was difficult because 
one was displayed as particle pathways and the other as velocity vector. However, 
comparison of the global flow features was promising.  

Fig. 7 shows the absolute value of xy, yz and zx shear stress levels in the fluid for the 
device |(τ−τMAX)/τMAX |. 

    

Figure 7: xy, yz, zx shear stresses in the symmetric planes in one leaflet of the mechanical heart valve, begining 
the systole 0.10T (t = 0.08 s). 

 
Some clinical deduction can be made from this work. The ring vortex in the sinus area 

indicates an area of slow moving fluid. This is a well documented phenomena: the formation 
of thrombus on the cuff of the valve. The instability of the central orifice jet may well 
increase the risk of platelet collisions. The impingement of the major orifice jets on the aortic 
walls may alter the patterns of tissue growth in these areas, however, this has not been 
reported as a clinical problem and insertion of any valve with a slight miss alignment may 
result in the jets through the valve orifice impinging on the aortic walls. 

5 DISCUSSION 

A fully discrete solution strategy is used to solve the blood-leaflet interaction problem. The 
main advantage of a fully coupled approach is that fluid and structural unknowns are solved 
simultaneously and, consequently, are completely in equilibrium each time the set of 
equations is solved. 

Computational models such as that presented in this work can be useful in the 
cardiovascular research for choosing the time and type of surgical intervention. They may 

14.463 

-11.998  (Pa) 
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specifically be helpful in giving insight in system responses, which are difficult to capture 
experimentally. Moreover, their application towards development of clinical hardware, such 
as new types of prosthetic valve is of great interest. The computational techniques presented 
here are, as matter of course, not confined to the aortic valve system. They can readily be 
generalized to be applicable to other fluid-structure interaction systems within the 
cardiovascular regulation. 

6 AKNOWLEDGEMENTS 

The authors express their gratitude to Dr. Manfred Krafczyk for his recommendations from 
the first works of the biological flow using lattice Boltzmann methods, which have helped 
considerably in improving the new version of the algorithm used for this work.  We also 
thank to the National Fund of Science (FONACIT), Technology and Innovation of the 
Science and Technology Ministry and to Scientific and Humanistic Development Council of 
the Venezuelan Central University (CDCH- UCV) for having supported this research under 
grants numbers 09.10.4413.2003. 

7 REFERENCES 

[1] C.D. O’Malley and C.M. Saunders, Leonardo da Vinci on the Human Body, Henry 
Schuman, N.Y. (1952). 

[2] C.A. Hufnagel and W.P. Harvey, Surgical correction of aortic insufficiency: 
Preliminary report, Bull, Georgetown Univ. Med. Ctr., 6 (1953). 

[3] M. Krafczyk, M. Cerrolaza, M. Schulz, E. Rank, “Analysis of 3D transient blood flow 
passing through an artificial aortic valve by Lattice-Boltzmann methods”, J. of 
Biomechanics, 31(5) 453-462 (1998). 

[4] D. Tang, C. Yang, S. Kobayashi, J Zheng and RP Vito, “Effect of stenosis asymmetry 
on blood flow and artery compression: a three-dimensional fluid-structure interaction 
model”, Ann Biomed Eng., 31 10, (2003) 1182−93. 

[5] J. De Hart, G. Peters, P. Schreurs and F. Baaijens, “A three-dimensional computational 
analysis of fluid-structure interaction in the aortic valve”, J. of Biomechanics 36 1, 
103−12 (2003). 

[6] R. Cheng, YG. Lai and KB. Chandran, “Three-dimensional fluid-structure interaction 
simulation of bileaflet mechanical heart valve flow dynamics”, Ann. Biomed. Eng., 32 
11, 1471−83 (2004). 

[7] JF. Gerbeaua, M. Vidrascub and P. Freyc, “Fluid–structure interaction in blood flows 
on geometries based on medical imaging”, Computers & Structures 83 2-3, 155–165 
(2005). 

[8] P. Teixeira and A. Awruch, “Numerical simulation of fluid–structure interaction using 
the finite element method”, Computers & Fluids 34 2, 249–273 (2005). 

[9] A. van Zuijlen and H. Bijl,  “Implicit and explicit higher order time integration schemes 
for structural dynamics and fluid-structure interaction computations”, Computers & 
Structures 83 2-3, 93-105 (2005). 

MECOM 2005 – VIII Congreso Argentino de Mecánica Computacional

1970



 

[10] M. Bouzidi, M. Firdaouss and P. Lallemand, Momentum transfer of a lattice-Boltzmann 
fluid with boundaries, Physics of Fluids, 13 11, pp. 3452−3459, 2001. 

[11] P. Lallemand, L. –S. Luo, “Lattice Boltzmann method for moving boundaries”, J. of 
Comp. Phys., 184, 406−421(2003). 

[12] H. Li, X. Lu, H. Fang and Y. Qian, “Force evaluations in lattice Boltzmann simulations 
with moving boundaries in two dimensions”, Phys. Rev. E Stat. Nonlin. Soft. Matter. 
Phys., 70 2 Pt 2, 026701 (2004). 

[13] X. He and L. –S. Luo, “Theory of the lattice Boltzmann method: From the Boltzmann 
equation to the lattice Boltzmann equation”, Physical Review E, 56 6, 6811−6817 
(1997). 

[14] S. Chapman and T.G. Cowling, The Mathematical Theory of Non Uniform Gases, 
Cambridge Univ. Press, Cambridge (1970). 

[15] H. Grad, “On the kinetic theory of rarefied gases”, Commun. Pure Appl. Math. 2, 331 
(1949). 

[16] C.L. Pekeris, “Solution of the Boltzmann-Hilbert integral equation”, Proc. Nat. Acad. 
Soc. 41, 661 (1955). 

[17] O. Pelliccioni, Análisis de flujo transitorio de sangre a través de válvulas mecánicas de 
corazón utilizando métodos lattice Boltzmann, Ph.D. Thesis, Universidad Central de 
Venezuela (2005). 

[18] P. Lallemand and L. –S. Luo, “Theory of the lattice Boltzmann method: Dispersion, 
dissipation, isotropy, Galilean invariance, and stability”, Physical Review E 61 6, 6546–
6562 (2000). 

[19] X. He and L. –S. Luo, “Lattice Boltzmann Model for the Incompressible Navier-Stokes 
Equation”, Plenum Publishing Corporation, 927–945 (1997). 

[20] D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand and L. −S. Luo, “Multiple-
Relaxation-Time Lattice Boltzmann Models in Three Dimensions”, The Royal Society, 
Phil. Trans. R. Soc. Lond. A 360, 437−451 (2002). 

[21] P. Lallemand, L. –S. Luo, “Lattice Boltzmann method for moving boundaries”, J. of 
Comp. Phys. 184, 406−421 (2003). 

[22] F. Doyle, Static and Dynamic Analysis of Structures (Solid Mechanics and Its 
Applications), Kluwer Academic Publishers, ISBN: 0792312082 (1991). 

[23] X. He and L. –S. Luo, “Theory of the lattice Boltzmann method: From the Boltzmann 
equation to the lattice Boltzmann equation”, Physical Review E 56 6, 6811−6817 
(1997). 

[24] F.J. Higuera, J. Jiménez, “Boltzmann approach to lattice gas simulations”, Europhys. 
Lett. 9, pp. 663−668, 1989. 

[25] J.O. Hize, Turbulence, McGraw-Hill, New York (1987). 
[26] I. Ginzburg and D. d'Humieres, Multireflection boundary conditions for lattice 

Boltzmann models, Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys., 68 6 Pt 2, pp. 066614, 
2003. 

[27] I. Ginzburg and D. d'Humieres, “Local second-order boundary method for lattice 
Boltzmann models”, J. Stat. Phys., C 9, 1271−1279 (1998). 

Pelliccioni O.*, Cerrolaza M. *, and Herrera M.

1971



 

[28] M. Bouzidi, M. Firdaouss and P. Lallemand, “Momentum transfer of a lattice-
Boltzmann fluid with boundaries”, Physics of Fluids, 13 11, 3452−3459 (2001). 

[29] V. Beddo, Applications of Parallel Programming in Statistics, University of California, 
Los Angeles, USA (2002). 

[30] I. Foster, “Designing and Building Parallel Programs”, Addison-Wesley, N14 (1995).  
[31] I. Foster, “Designing and Building Parallel Programs”, Addison-Wesley, N15. (1995). 
[32] D. Correia, C. Palacio, Optimización de simulaciones de mecánica de fluidos bajo el 

método de lattice Boltzmann a través de técnicas de paralelismo. Caso de estudio: 
simulación de válvulas cardíacas del CeBio, Computer Lic. Thesis, Universidad Central 
de Venezuela (2005). 

[33] A.G. Willis, Parallel and distributed processing with glish and AIPS++, National 
Research Council of Canada (2000). 

[34] M. King, Computational and experimental studies of flow through a bileaflet mechanical heart 
valve, Tesis Ph.D., University of Leeds, UK (1994). 

[35] M.J. King, J. Corden, T. David and J. Fisher, “A three-dimensional, time dependent 
analysis of flow through a bileaflet mechanical heart valve: comparison of experimental 
and numerical results”, J. Biomechanics, 29 5, 609−618 (1996). 

MECOM 2005 – VIII Congreso Argentino de Mecánica Computacional

1972




