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Abstract. The goal of the present work is to introduce a finite element model for the inverse analysis
of large-displacements beams in the elastic range. The problem consists in determining the initial shape
of the beam such that it attains the design shape under the effect of service loads. This formulation
has immediate applications in fields such as compliant mechanism synthesis where flexible links can be
modelled as large-deflection beams, among others. The element will be implemented in the MECANO
mechanism analysis package and an example to a structural problems is given.
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1 INTRODUCTION

The classical (direct) problem in elasticity consists in computing the deformed shape of a
body knowing the mechanical properties and the loading in a given undeformed (reference)
configuration. We note that this arbitrary deformed configuration is unknown at the start of the
analysis and therefore, must be determined as part of the solution process, a process that is in-
herently non-linear when large deformations are involved. In this work we deal with the inverse
problem, that consists in determining the undeformed (reference) configuration, knowing the
deformed shape of the body and the loads applied. As described by Fachinotti et al. (2008) this
is an inverse design problem, in contrast to classical inverse measurement problems that consist
in determining material data knowing both the deformed and undeformed configuration, as well
as the service loads.

The formulation described in this paper is the inverse of the well-known, non-linear beam
theory, proposed by Cardona and Géradin (1988) to model three-dimensional highly flexible
frame structures. These structures necessarily have low mass and very high flexibility, so large
displacements behavior ought to be considered. In this theory, flexibility effects are introduced
by a hypothesis of large displacements and finite rotations, however, it is assumed that the
strains which result are small. The rotational vector is used to parameterize rotations, and these
are described as increments with respect to a previous configuration.

Kinematic beam assumptions are formulated before expressing non-linear strain measures
and for the purpose of flexible mechanism analysis and synthesis, where intimate beam behavior
is not investigated, a simplified beam theory not accounting for high-order strains is adopted,
and it is consequently suited for a linear-elastic constitutive relation. We approximate neglecting
quadratic pure strain terms, and introduce a linear elastic constitutive relation, which enables
us to evaluate the corresponding small-strain axial and moment resultants within the virtual
internal work. Finally, it is assumed that beam cross-sections remain straight but can undergo
shear strain. It is then clear that under the adopted hypothesis and linear elastic beam stress-
strain relations, this model is defined as finite-deformations small-strain.

2 PROBLEM DESCRIPTION

The aim of this section is to describe in detail the model kinematics. In the following,
we present the beam in its known deformed configuration, and our intention is to obtain the
unknown undeformed configuration. The kinematic assumptions adopted are the following:

- the beam is initially straight and has uniform cross section,
- beam cross sections remain plane and do not deform during deformation,
- shear deformation of the neutral axis is allowed.

2.1 Beam Kinematics

According to the kinematic assumptions recently made, the given deformed configuration
of the beam is defined by a right-handed orthonormal frame {O, t′1, t′2, t′3}, with O located on
the axis and the family of orthonormal base vectors {t′1, t′2, t′3} spanning the planes of cross-
sections. Vectors t′1 and t′2 are directed along the principal axes of inertia of the rotated cross-
section, and t′3 is its normal vector: t′3 = t′1 × t′2. As the basis t′1, t

′
2, t
′
3} is different at each

material point of the line of centroids, it is called the material basis. The beam coordinates
under this frame are described by {x1, x2, x3}, see figure (1). The reference line of centroids is
parameterized by the arc-length s′ and coincides with the beam coordinate x3, i.e s′ ≡ x3. This
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Figure 1: Description of beam kinematics

configuration is described by

x = x0(x3) + xαt
′
α, α = 1, 2 (1)

where

x0(x3) = x3t
′
3 (2)

represents the position of an axis point and xαt′α is the vector describing the position of a point
in the cross section with coordinates x1 and x2.
The beam unknown undeformed configuration is analogously described by another right-handed
orthonormal frame, called current frame and defined as {o,E′1,E′2,E′3}, with o located on the
undeformed axis and the family of orthonormal base vectors {E′1,E′2,E′3} spanning the planes
of cross-sections. Vectors E′1 and E′2 are directed along the principal axes of inertia of the cross-
section, and E′3 is its normal vector: E′3 = E′1 × E′2. The beam coordinates under this frame
are described by {X1, X2, X3}, see figure (1). The reference line of centroids is parameterized
by the arc-length s and coincides with the beam coordinate X3, i.e s ≡ x3. This undeformed
configuration is described by

X = X0(x3) + xαE
′
α = X0(x3) + Y (3)

where

X0(x3) = X3E
′
3 (4)

represents the position of an axis point andXαE
′
α is the vector describing the position of a point

in the cross section with coordinates X1 and X2, and

Y = xαE
′
α (5)

Since the reference frame and the current frame are both orthonormal, we may introduce a
rotation tensor Q and relate the reference and current frame, figure (2), as

Mecánica Computacional Vol XXVII, págs. 1049-1061 (2008) 1051

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



t
I

EI

E
′
I

u0(S), R(S)

E3, AI

eI
t ′
I , a

I

x0

X0

v0(s), Q(s)

t
3

Figure 2: Relation between the reference and current frame

E′I = Q(x3)t
′
I , I = 1, 2, 3 (6)

i.e. we may define the current frame as the rotated reference frame. Then, we rewrite equa-
tion (3) as

X = X0(x3) + xαQ(x3)t
′
α (7)

and it follows that the cross-section rigidly moves from the reference to the current config-
uration, and Q is the cross-section rigid rotation. It is interesting to note that, according to
equation (6), Q can be computed as

Q(x3) = E′I ⊗ t′I (8)

and since it is an orthogonal tensor, it can be proven that

QTQ = QQT = I (9)

Following the work of Cardona and Géradin (1988), and as mentioned before, a rotation oper-
ator is used to describe the cross-section orientation at a given configuration. Starting from the
general expression of the rotation operator in terms of the direction u of the rotation and its am-
plitude ψ, the parameterization of spherical motion in terms of the Cartesian rotational vector
is the most natural one. It has also several advantages, such as the number of parameters which
remains minimal, an easy geometric interpretation and the absence of kinematic singularities.
The Cartesian rotational vector is defined as the vector which has the direction of the rotation
axis n and a length equal to the amplitude of the rotation ψ

ψ = nψ (10)

In the aforementioned work, which may be referred to as the beam direct problem, the rota-
tion operator R describing the cross-section orientation from the undeformed to the deformed
configuration, is defined in terms of the Cartesian rotational vector as

R(ψ) = I +
sin ‖ψ‖
‖ψ‖

ψ̃ +
1− cos ‖ψ‖
‖ψ‖2

ψ̃ψ̃ (11)
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where the superimposed tilde refers to a (3x3) linear transformation, i.e. ũ associated to a
vector u such as

u = vect(ũ) ⇒ ũ =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 (12)

and the cross product u × v may be achieved in matrix form premultiplying vector v by the
linear transformation ũ

u× v = ũv (13)

The apparent singularity in ‖ψ‖ = 0 which appears in operator R is easily removed by noticing
that

lim
‖ψ‖→0

R(ψ) = I (14)

2.2 Displacement Gradient Measure of Deformation

In our interest to compute standard three-dimensional deformation measures, we start from
the deformation gradient, computing the position gradients with respect to the current parameter
s before and after deformation in the material frame, as

D(s,X1, X2) = RT dx

ds
− dX

ds
(15)

Differentiating equations (1) and (3) yields

dX

ds
= E3 (16)

and

dx

ds
=
dx0

ds
+
dR

ds
Y (17)

Expressing equation (17) in the material frame and subtracting equation (16) from it then yields
the material measure of deformation

D(s,X1, X2) = RT

(
dx0

ds
− e3

)
+ RT dR

ds
Y (18)

It is important to remark that these equations are referenced to the parameter s attached to the
unknown, undeformed configuration. Instead, we should reference them to the known parame-
ter s′ in the deformed configuration. Using the chain law and differentiating

D = j RT

(
dx0

ds′
− e3

)
+ j RT dR

ds′
Y (19)

where the Jacobian

j =
ds′

ds
∼ L

L0

(20)
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is assumed to be the ratio between the length of an element in the deformed configuration L,
and its length in the undeformed configuration L0. Proceeding in an analogous way to that of
equation (16), we get

dx0

ds′
= t′3 (21)

The first term in equation (18) may be interpreted as the difference between the axis tangent
vector and the normal cross-section vector, and represents the material measure of deformation
of the neutral axis

Γ(s′) = j RT t′3 − E3 (22)

The second term of equation (18) involves the rotation of the cross section, and can be inter-
preted as the material measure of curvature of the neutral axis

K̃ = j RT dR

ds′
(23)

and represents the rotation gradient along the neutral axis. The components of the corresponding
axial vector are found by

K = vect(K̃) (24)

When adopting a parameterization in terms of the Cartesian rotational vector (equation 10), the
curvature vector is expressed in the form

K = T(ψ)
dψ

ds
(25)

where T(ψ) is the so-called tangent operator

T(ψ) = I +

(
cos ‖ψ‖ − 1

‖ψ‖2

)
ψ̃ +

(
1− sin ‖ψ‖

‖ψ‖

)
ψ̃ψ̃

‖ψ‖2
(26)

see Cardona and Géradin (1988). Recalling equation (14), the apparent singularity in ‖ψ‖ = 0
which also appears in the tangent operator is removed by noticing that

lim
‖ψ‖→0

T(ψ) = I (27)

According to equations (22) and (23), the deformation vector at an arbitrary point of the cross
section yields

D = Γ− ỸK (28)

2.3 Variation of beam strains

In order to develop a virtual work expression of the beam internal deformation, expressions
for the variations of the beam strains (equation 22 and 23) are to be computed. For this purpose,
we make use of relationships between the variation of the rotation operator and the material
and spatial variations of the angular displacements. Let us start from the linear transformation
describing spherical motion

x = RX (29)
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The associated virtual displacement is obtained through variation of this expression

δx = δRX (30)

and can be recast in one of the forms

δx = δRRTx = δθ̃x δx = δR
(
RT δR

)
X = RδΘ̃X (31)

with the skew-symmetric matrices

δθ̃ = δRRT δΘ̃ = RT δR (32)

These matrices represent spatial and material infinitesimal rotations. They are related by

δΘ = RT δθ (33)

The virtual variation of the rotation matrix R is then obtained from equation (32)

δR = δθ̃R = RδΘ̃ (34)

and its transpose is expressed as

δRT = −RT δθ̃ (35)

where δθ̃ are rotation increments. The variation of the material strain measure equation (22) is
computed as follows

δΓ = j δRT dx0

ds′
+ j RT d

ds′
δ (x0) + δj RT t′3 (36)

= j RT d

ds′
δ (x0)− j δΘ̃RT dx0

ds′
+ δj RT t′3 (37)

while the variation of the material curvature, equation (23), is computed by

δK̃ = j δRT dR

ds′
+ j RT d

ds′
(δR) + δj RT dR

ds′
(38)

= −j δΘ̃K̃ + j K̃δΘ̃ +
d

ds′

(
δΘ̃
)

+ δj δΘ̃ (39)

and also

= j RT d

ds′

(
δ̃θ
)

+ δj RT δθ̃R (40)

and finally we obtain the expressions of beam strains variations in terms of infinitesimal dis-
placements and rotations

δΓ = j RT d

ds′
δ (x0) + j

(
˜

RT
dx0

ds′

)
δΘ + δj RT t′3 (41)

δK = j K̃δΘ + j
d

ds′
(δΘ) + δj δΘ = RT d

ds′
(δθ)

L

L0

(42)
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They can be expressed in terms of parameter variations. To this purpose, let us make use of
relationships between infinitesimal rotations and parameter variations

δΘ = T(ψ)δψ
d

ds′
(δΘ) = Tδψ′ + T′δψ (43)

We then get

[
δΓ
δK

]
=

[
RT 0 R̃Tx′0
0 T K̃T + T′

] δx′0
δψ′

δψ

 (44)

2.4 Beam internal work

To establish the equations expressing local equilibrium, let us consider a beam slice between
two neighboring cross sections as represented by figure (3), and define the following quantities

x + dx

t

t + dt

x0

x

C

C + dC

O

ds′

Figure 3: Equilibrium of a beam segment

n =

∫
S

t dS (45)

the cross section axial/shear force due to the vector of surface tractions on the cross section t,
and

m =

∫
S

˜(x− x0)t dS (46)

the moment of surface tractions on the cross section, due to the vector of surface tractions t and
the distance from the cross-section barycenter (x− x0), then the material counterparts of stress
and load resultants are

N = RTn M = RTm (47)

Following the approach of Géradin and Cardona (2000), we adopt a constitutive law such that
the material remains in the linear elastic range, and limit the analysis to the small deformation
hypothesis, which consists in assuming that the beam element may undergo large rigid-body
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rotations, but that its material strains remain small. Under this assumption, the internal stress
resultants are linearly related to the material strains by[

N
M

]
= C

[
Γ
K

]
(48)

where C is the matrix of elastic coefficients. It can be written in more compact form as

Σ = CE (49)

with

E =

[
Γ
K

]
Σ =

[
N
M

]
(50)

Under the assumption that the cross section has orthotropic properties, matrix C takes the form

C = diag( EA GA1 GA2 GI3 EI1 EI2 ) (51)

where

EA is the axial stiffness,
GA1 and GA2 are the shear bending stiffnesses along the transverse axes,
GI3 is the torsional stiffness, and
EI1 and EI2 are the bending stiffnesses.

The internal virtual work of the beam takes the form

δπint =

∫ l

0

(NT δΓ + MT δK) ds′ = −
∫ l

0

δqTBTΣ ds′ (52)

where B is the matrix already defined in equation (44)

B =

[
RT 0 R̃Tx′0
0 T K̃T + T′

]
(53)

and δq is the 12 degrees of freedom vector

δqT =
[
δx01

T δψ1
T δxT02 δψ2

T
]

(54)

Equation (52) can be expressed as

δπint = δqTFint (55)

with the internal force vector given by

Fint = −
∫
L

BTΣ ds′ (56)

Finally, the equilibrium of the beam element is obtained in the form

Res = Fint − Fext (57)

and this non-linear equation is solved using the Newton-Raphson method (see Zienkiewicz and
Taylor (2000) for details on the implementation of this method in a finite element context).
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3 TEST APPLICATION

Let us consider the simple problem of bending a beam in the plane. First, we solve the direct
problem, i.e. given the undeformed configuration as well as the kinematic boundary conditions
and the applied forces, we determine the deformed configuration. The beam has length L, the
cross section height b is twice the cross section width d, and the load P acts normal to the beam
axis. The domain is discreticed using 10 finite elements. The material has isotropic behavior
with Young’s module E, Poisson ratio ν and shear ratio G. Table 1 and 2 lists the values
assumed for material and geometric properties respectively.

Young’s module Poisson ratio Shear ratio
E = 2.1 ×105 N/mm2 ν = 0.25 G = 8.4 ×104 N/mm2

Table 1: Material data for the beam bending problem.

Beam length Cross-Section height Cross-Section width Load applied
L = 2 ×103 mm b = 60 mm d = 30 mm P = 1 ×105 N

Table 2: Model data for the beam bending problem.

Figure 4: Beam direct problem

The domain of the inverse design analysis is the deformed configuration computed as solution
of the direct analysis, and its shown in figure (4). The inverse problem is shown in figure (5).
The objective of the computation is to verify if we are able to recover the original undeformed
configuration as solution.
We define an error measure as the distance between the nodes of the mesh used for the direct
analysis, and the positions obtained as solution of the inverse analysis. After solving the equi-
librium equation equation (57) with a small residue norm ‖Res‖ < 1 × 10−8 (the L2 norm

A. ALBANESI, V.D. FACHINOTTI, A. CARDONA1058

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Figure 5: Beam inverse problem

residue vector Res), we obtained a maximum error ε < 0.1 mm at the node where the con-
centrated force is applied. The relative error with respect to the displacement magnitude is less
than 0.015% which demonstrates the outstanding accuracy of the inverse model.

3.1 Validation of the beam bending problem: elliptic integral solution

Elliptic integrals are commonly used to solve large deflection problems in beams under dif-
ferent loading conditions. The most accurate analytical method for predicting very large deflec-
tion behavior of flexible beams is the elastica analysis, see for example Bisshopp and Drucker
(1945). The resulting integrals that describe the system cannot be solved by usual methods, but
they can be manipulated until they are in a form integrable by elliptic integrals. An elliptic in-
tegral solution may be used under the assumption that the beam is linearly elastic, inextensible,
rigid in shear and of constant cross section.
Following an algorithm found in Howell (2001) to solve the elliptic forms described in Byrd and
Friedman (1954), we verify the results of our model. The relative error of the elliptic solution
with the inverse model is shown in table 3. Once again the errors obtained are very small,
and our inverse beam model was successfully verified by a commonly used method in large
non-linear deflection of beams.

Horizontal position Vertical position Load applied
εhp = 0.12 % εvp = 0.06 % εP = 0.3 %

Table 3: Relative error between the elliptic integral solution and the inverse model.

3.2 3D Example

Another important validation test of the model proposed is a 3D example. Let us now con-
sider a structure consisting in an angled beam, loaded out of the structural plane, (figure 6),
such that the deformed configuration is bent and twisted in 3D space. Again, we solve the di-
rect problem first, (figure 7), and determine the deformed configuration, used as the domain of
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the inverse design analysis, (figure 8), to verify if we are able to recover the original undeformed
configuration as solution. The material is the same as the previous example, Table 1, and the
geometric properties of this model are shown in Table 4.

y

x

P2
P1

z

1
m

b

d

1m

1m
bd

Figure 6: Model of the 3D structure example

Beams length [103 mm] Cross-Section height Cross-Section width Loads applied
L1 = 1.41, L2 = 1 b = 100 mm d = 10 mm P1 = P2 = 4× 102 N

Table 4: Geometric properties of the 3D structure example.
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Figure 7: Direct Analysis
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Figure 8: Inverse Analysis
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Table 5 shows the relative error between the results of the inverse analysis of the 3D structure,
and the domain of the direct problem for 10, 20, and 30 elements.

10 elements 20 elements 30 elements
ε10 = 0.0078 ε20 = 0.0076 ε30 = 0.0075

Table 5: Relative error of the model for different number of elements.

4 CONCLUSIONS

The present work introduces a finite element model for inverse analysis of large-displacement
beams. It is considered an inverse design problem, where the undeformed configuration is deter-
mined knowing the deformed configuration and the loads applied. A linear-elastic constitutive
relation is adopted, and the resulting model is defined as finite-deformations small-strain.
Planar and 3D examples showed the outstanding accuracy of the model, measured by its ability
to recover the original mesh of the corresponding direct analysis. Further, the inverse model
was tested and successfully verified using an elliptic integral solution method.
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