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Abstract: In the last years different continuum damage theories have been proposed to describe the 
behavior of elastic materials. Among these theories, some introduce higher order gradients of the 
damage variable in the constitutive model, in order to avoid the loss of well-posedness in the post-
localization range. Although such theories allow a mathematically correct modelling of the strain 
localization phenomena, they are usually considered complex to handle from the numerical point of 
view. The present work is concerned with the numerical implementation of a gradient-enhanced 
damage theory for elastic materials. A simple numerical technique, based on the finite element 
method, is proposed to approximate the solution of the resulting nonlinear mathematical problem. The 
coupling between damage and strain variables is circumvented by means of a splitting technique, 
which permit to transform the nonlinear coupled problem in a sequence of simpler linear problems. In 
order to evaluate the physical coherence of the model and to access the main features of the numerical 
method some problems and different numerical techniques are analyzed. 
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1 INTRODUCTION 
In the last few years, many different continuum damage theories have been proposed. 

Since the damage propagation generally leads to a local softening behaviour, the models 
based on a local approach, see Kachanov (1986) and Lemaitre and Chaboche (1990), may 
lead to a physically unrealistic description of strain localization phenomena when the 
hypothesis of quasi-static and isothermal processes are considered. In general, due to the loss 
of ellipticity of the governing equations in the post-localization range, the resulting 
mathematical problems may present an infinity number of solutions with discontinuous fields 
of displacement gradients what leads to numerical difficulties of mesh-dependence, see 
Knowles and Sternberg (1978); Pietruszczak and Mróz (1981); Needleman (1987); Bazant 
and Cabot (1988); Vree et al (1995). 

Some alternative approaches to the local damage theories have been proposed in the last 
years, see Saouridis and Mazars (1988); Bazant and Cedolin (1991); Costa-Mattos et al 
(1992); Frémond and Nedjar (1996), for example. The present paper deals with an alternative 
theory in which the continuum is supposed to possess a microstructure. Since damage results 
from microscopic movements, it is proposed a reformation of the kinematics and of some 
basic governing principles of the classical Continuum Mechanics in order to account for such 
“micromovements”. The constitutive equations are developed within a thermodynamic 
framework - the free energy is supposed to depend not only on the strain and the damage 
variable but on the damage gradient as well. Besides, to account for microscopic effects, the 
power of the internal forces depends not only on the velocity and its gradient, but also on the 
damage velocity and its gradient 

The contribution is complete the presentation of a numerical technique for approximating 
the resulting nonlinear mathematical problems Pires-Domingues et al (1999). The coupling 
between damage and strain is circumvented by means of a splitting technique which allows 
study the nonlinear problem through a sequence of simpler linear problems. This technique 
requires, at each time step, the solution of two problems: one similar to an equilibrium 
problem in linear elasticity and the other similar to a heat transfer problem in a rigid body. In 
order to assess the main features of the numerical method, a number of examples are 
presented showing that the numerical computations are not mesh dependent. 

2 MODELLING 
A body is defined as a set of material points B which occupies a region Ω  of the Euclidean 

space at the reference configuration. In this theory, besides the classical variables that 
characterize the kinematics of a continuum medium (displacements and velocities of material 
points), an additional scalar variable β ∈[ , ]0 1 , is introduced. This variable is related with the 
links between material points and can be interpreted as a measure of the local cohesion state 
of the material. If β = 1 , all the links are preserved and the initial material properties are 
preserved. If β = 0 , a local rupture is considered since all the links between material points 
have been broken. The variable β  is associated to the damage variable D by the following 
relation: β = −1 D . Since the degradation is an irreversible phenomenon, the rate �β  must be 
negative or equal to zero. 

A detailed presentation of the basic principles that govern the evolution of such kind of 
continuum can be found in Costa-Mattos and Sampaio (1995); Pires-Domingues (1996). A 
summary of the basic principles are presented in this section. For the sake of simplicity the 
hypothesis of quasi-static and isothermal processes is adopted throughout this work. Besides 
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it is also assumed the hypothesis of small deformation and consequently the conservation of 
mass principle is automatically satisfied.  

2.1 The principle of virtual power 

Let a body B that occupies a region Ω ⊂ R3  with a sufficiently regular boundary Γ  be 
subjected at each time instant t to external  forces g t R( ) :  2Γ Γ⊂ → 3  , b t R( ) :  Ω→ 3   to external 
microscopic forces p t R( ) :  Ω→ , q t R( ) :  2Γ Γ⊂ →  and to prescribed displacements 
u t( ) = ⊂0  em  1Γ Γ , where   Γ Γ Γ= ∪1 2   and  Γ Γ1 2∩ = ∅ . 

Under the hypothesis of slow deformations, the inertial effects can be neglected and the 
principle of Virtual Power can be expressed as: 

    π πint + =ext 0        (1) 

for any admissible variations of the fields (u and β ) that characterize the kinematics of the 
medium. 

The power πint  of the internal generalized forces σ , F and H can be written as: 

   π σ β βint ( �) ( � �)= − ⋅∇ − + ⋅∇∫ ∫u dV F H dV
Ω Ω

     (2) 

Here � :u R   Ω→ 3  is an element of the set Vv  of the virtual velocities �u  such that �u  1Γ = 0  
and � :β   Ω→ R  is an element of the set Vβ  of the virtual variations of β . 

The corresponding power πext  of the external generalized forces b, g, p and q assumes the 
representation: 

  π β βext b u dV g u dA p dV q dA= ⋅ + ⋅ + +∫ ∫ ∫ ∫( �) ( �) ( �) ( �)
Ω Γ Ω Γ2

    (3) 

Where p R: Ω→ is defined as a microscopic distance force while q R: Γ →  is a 
microscopic contact force, both in duality with β . The microscopic forces are related to non 
mechanical actions (chemical and electromagnetic, for instance), that can cause an evolution 
of the damage. 

Under assumptions of π πint  and  ext  and the hypothesis of slow deformations, the inertial 
effects can be neglected and the principle of virtual power can be expressed as: 

 
Ω
∫ [σ ⋅ ∇ − ⋅( �) �]u b u dV − ⋅ +∫ ( �)g u dA

Γ2

[ ( �) � �]H F p dV⋅ ∇ + − −∫ β β β
Ω

 

   − =∫ ( �)q dAβ 0
Γ

,    ∀ ∈�u Vv , ∀ ∈�β βV      (4) 

2.2 Constitutive equations 
Under the hypothesis of small deformations and isothermal processes, the free energy is 

supposed to be a function of the deformation ε , the temperature θ , the damage variable β  
and its gradient ∇β . In order to resume the presentation, the thermodynamic framework used 
to obtain the constitutive equations is not presented in this paper, for further details see Costa-
Mattos and Sampaio (1995). The final relations are the following: 

  σ = ( E
1 +
β
ν

ν
ν

)[ (
1 2−

tr ε ε) ]I + = β λ[ (tr ε)I +2μ ε]      (5) 
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λ tr ε)2 +μ ε ε. ] − + + +w Cλ β λβ β

�
�      (6) 

     H k= ∇β( )       (7) 

Where E is the Young modulus, ν  is the Poisson’s ratio and λ  and μ  are the Lamé 
constants. The therms λβ  and λβ�  are lagrange multipliers associated, respectively, to the 

constraints β ≥ 0  and �β ≤ 0 , they are such that: λβ ≤ 0 ,   βλβ = 0  and  λβ� ≤ 0 ,  �βλβ = 0 . 

2.3 The model parameters 
The proposed model has different parameters to simulate the Damage evolution in different 

brittle materials. The most important model parameters are k, C and w. They can be estimated 
from a non-homogeneous one-dimensional model, Pires-Domingues (1996). Another 
proceeding is chose a standard test and adapt the numerical and experimental curves. The C 
coefficient is related to the material viscosity; k is related to damage localization; w is the 
elastic deformation energy. 

The non-homogeneous one-dimensional model was used to simulate the behaviour of a 
specimen loaded by a prescribed displacement, u(t), with the following characteristics: E 
(Young modulus or modulus of elasticity) equal 50.0GPa, w (elastic deformation energy) 
equal 0.025MPa, L (length) equal 1.0m and α (loading velocity) equal sm100.5 3−× . The 
figures 1 and 2 present the results for different k (and s.MPa1.0C = ) and C (and 

2m.MPa1.0k = ) parameters. 

   
Figure 1: ε×σ  with different k                    Figure 2: ε×σ  with different C 

It can be observed that small value of k result in damage more localized in the material, 
figure 1, and the material broke more quickly for C small, figure 2. 

More details about the non-homogeneous one-dimensional model can be found in Pires-
Domingues (1996). 

3 THE MECHANICAL PROBLEM 
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Introducing the constitutive equations (5), (6) in (4), neglecting the external microscopic 
forces (which are related to chemical or electromagnetic actions) and considering the initial 
conditions: β( , ) ,x t x= = ∀ ∈0 1  Ω , the following mathematical problem is obtained: 
 

Find (u(x,t),β( , )x t ), respectively the displacement field u t( ) :  R3Ω→  such that u t u t( ) ( )Γ1
=  

and the field β( )t  :  RΩ→  such that, for all time instant t ∈[ , ]0 τ :  

β λ( )[t  divu
Ω
∫ div �u +2μ ε ε( ). ( �)]u u dV − −∫ b t udV( ). �

Ω

g udA. � �
Γ2

0∫ = ∀ ∈   u  Vv    (8) 

( ). � [k∇β ∇ + +∫ ∫β λ μ dV  (divu)2

Ω Ω

1
2

ε ε. − w dV] � β + C � � �ββ β β dV      V
Ω
∫ = ∀ ∈0    (9) 

Subjected to the following constraints: 

0 ≤ ≤β β  e  0�  

And with the following initial condition: 
β( )t = ≡0 1  

4 NUMERICAL APROXIMATION 
The nonlinear mathematic damage evolution problem resulting from the model, accounting 

for the coupling between damage and displacement fields, can be solved through a staggered 
algorithm, in which the coupled system is partitioned, often according to the different coupled 
fields, and each partition can be treated by a different time-stepping algorithm. 

The approach proposed in this work is motivated by the realization that a partition of the 
coupled system only defines an operator split of the evolution problem. In this context, a 
staggered scheme is viewed as a product formula algorithm dictated by the specific operator 
split, exactly as in the classical method of fractional steps, see Yanenko (1980). This point of 
view is also adopted in Simo and Miehe (1992), where standard staggered algorithms for 
coupled thermo-mechanical problems, consisting of an isothermal phase followed by a heart 
conduction phase at fixed configuration, are cast into the format of a fractional step method. 

4.1 Semi-discrete problem: finite element method 

The solution of the damage evolution problem is based on a spatial discretization using the 
Finite Element Methods (FEM) leading in a semi-discrete version constituted of a nonlinear 
system of Ordinary Differential Equations (EDO). This system is accomplished by means of a 
splitting strategy resulting in a sequence of simpler evolution problems, which are in turn 
solved by standard techniques like backward and forward Euler and the trapezoidal rule, see 
Hughes (1987). 

Let the base function (or interpolation function) traditionally provided by the MEF, see 
Hughes (1987), N Vi v

h∈ , where Vv
h  is a finite sub-space of the space Vβ , and ϕ βi

hV∈ , where 
Vh
β  is a finite sub-space of the space Vβ . These base functions allow the construction of the 

following approximations: 

   u x t u t N x mh i i h
i

mh

( , ) ( ) ( ), , ... ,= =
=
∑  i 1

1
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   β β ϕh i i h
i

m

x t t x m
h

( , ) ( ) ( ), , ... ,= =
=
∑  i 1

1
     (10) 

Where mh  is the nodal point number of the finite element mesh and h is the mesh 
parameter, a scalar that is associated with the mesh refinement. 

The semi-discrete problem is obtained by replacing u by uh  and β  by βh , defined by 
equation (10), in equations (8) and (9). The semi-discrete problem is a nonlinear system of 
ordinary differential equations with the following form: 

    K[ ( )βh ]u =R       (11) 

    C �β + Aβ + F ( )u  = 0      (12) 

With the following initial condition: 
βh x x( , ) ( , )0 1 0 0= =     e  uh  

And the following constraints: 

0 1 0≤ ≤ ≤β βh hx t x t( , ) � ( , ) .  e   

Where, 

   [K ( )]βh ij = βh
Ω
∫ [B DBT ]ijdV,    i, j = 1,...3 mh∗     (13) 

    [R ]i k l k lb N dV g N= −∫ ∫  dA
Ω Γ

;     (14) 

    [C ]ij i jC= =∫ ϕ ϕ  dV,    i, j 1,...mh
Ω

     (15) 

    [A ] ( ) , , ...ij i j hk dV m= ∇ϕ ∇ϕ =∫
Ω

   i, j 1 ;    (16) 

   [F ( )]u i = [ (1
2

B DBT

Ω
∫  u u w mi h⋅ − =) ] , ...ϕ  dV,    i, j 1    (17) 

B denotes the standard discretized differential operator and D is the matrix of the elastic 
constitutive coefficients, defined according Hughes (1987). 

4.2 Operator split technique applied to the semi-discrete problem 
The Operator Split Technique is used to approximate the nonlinear semi-discrete problem 

through a sequence of simpler linear problems. Two partitions of operator were considered, 
one related to uh  (“equilibrium problem”) and the other to βh  (“damage evolution problem”). 
The proposed scheme can result in two different algorithms depending on the order of the 
sequence of the operators. These algorithms, resumed below, will be named DANO_1 and 
DANO_2. 

The DANO_1 algorithm first solves the “damage evolution problem”, remaining the 
displacement field unaltered. At this first stage, the associated ordinary differential equation is 
solved using a time integration method, that can be described as: 

   C [ ( ) � ] [θβ θ β θn n t+ + − +1 1 Δ Aβ θn+ + −1 1( ) Aβn] +  
    +Δt n[θ ~F n+ + −1 1( )θ F n] = 0      (18) 
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Where, θ  define the integration method: θ = 0 ,  forward Euler; θ = 1 , backward Euler and 
θ = 1 2/ , trapezoidal rule, see Hughes (1987). The subscript h was omitted and the superscript 
n means that the function is approximated at the instant tn . Besides, ~Fn+1  does not represent 
the function F evaluated at tn+1 , since un+1  is not known. At the first phase ( �u = 0 ) ~Fn+1  is 
calculated using un . 

The second phase of DANO_1 solves the "equilibrium problem”: 

    K[ ( )β
n+1

]u n+ =1 R n+1       (19) 

Where, 

   [R n i+ =1] ( ) ( )b N dV g Nk n l k n l+ +∫ ∫−1 1  dA
Ω Γ

    (20) 

The DANO_2 algorithm consists in the order inversion of the stages of DANO_1. 
The computational implementation of the two algorithms can be considered simple, since 
both algorithms can be obtained from a standard finite element scheme. It can be observed 
that “damage evolution problem” phase is similar to a heat conduction problem, while the 
other phase, the “equilibrium problem”, is similar to a classical elasticity problem. 

5 ANALYSIS OF NUMERICAL EXAMPLES 
In order to assess the features of the modelling in a three-dimensional stress state, 

problems of a double edge cracked plate and of a square plate with a central circular hole is 
analyzed, Domingues (1999). 

The square plate (200 mm x 200 mm x 1 mm) with a central circular hole, which radius is 
50 mm, is supported at the left side and loaded with a prescribed displacement u(t) at the 
opposite side, figure 3. Due to symmetry of the problem the analysis is performed for the 
upper right quarter of the plate only. 

200 mm

200 mm

u(t)

 
Figure 3: Plate with a central circular hole. 

In this study was considered a plate of concrete, which has the following mechanical 
characteristics: E = 27.0 GPa, w = 50 10 5. × −  MPa, C = 10 10 3. × −  MPa.s and k MPa mm= 0 2 2. . , see 
Frémond and Nedjar (1996). The prescribed displacement and the adopted time step are 
respectively given by t)t,L(u α= , ( s/mm10x0.5 3−=α ) and 4100.1t −×=Δ s, respectively. 
The usual bi-linear quadrilateral finite element is used. Other examples are presented in Pires-
Domingues (2004). 

5.1 Damage propagation 

The evolution of the damage variable )1(D β−=  on the plate is depicted in figures 4 up to 
7. These figures demonstrate that the damage initially appear at a local near the hole, see 
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figures 4 and 5, what is expected for a body with this kind of geometry and submitted to a 
tension load. Then the damage propagates in the direction of the free end of the plate, 
perpendicular to the load direction, until the plate is broken completely. 

+0.0
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+0.99
+1.00

    
+0.0
+0.30
+0.60
+0.80
+0.99
+1.00

 
Figure 4: Damage levels, t = 2.5 s.  Figure 5: Damage levels, t = 2.8 s. 
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+0.30
+0.60
+0.80
+0.99
+1.00

 
Figure 6: Damage levels, t = 3.0s.  Figure 7: Damage levels, t = 3.35s. 

The figure 8 presents a curve of the external force versus the displacement u(t) prescribed 
at the extremity, which represents the global behaviour of the structure, allowing to observe 
the softening behaviour. 

0.00E+0 4.00E-3 8.00E-3 1.20E-2 1.60E-2 2.00E-2
u(t)

0.00

100.00

200.00

300.00

400.00

FO
R

C
E 

(N
)

 
Figure 8: Force versus displacement. 

5.2 Mesh dependence 
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To show that the problem solution is not mesh-dependent four different spatial 
discretization meshes were used. The meshes are presented in the figures 9 up to 12. The 
difference between these meshes is the degree of the discretization in the region where the 
highest levels of damage occur. In spite of the mesh-1 and mesh-4 (figures 9 and 12, 
respectively) have 274 nodes and 240 elements, the difference between these meshes are the 
distortion region in the last one. 

                   
Figure 9: Mesh-1 (274 nodes and 240 elem.).         Figure 10: Mesh-2 (594 nodes and 544 elem.). 

                   
Figure 11: Mesh-3 (819 nodes and 760 elem.).         Figure 12: Mesh-4 (274 nodes and 240 elem.). 

The figures 14 and 15 permit to observe the damage propagation along the horizontal lines 
A (y = 53.0 mm) and B (y = 60.0 mm), figures 16. The shapes of the curves and the damage 
levels at different points along those lines are almost the same for different meshes. The same 
behaviour is observed for stress and displacement fields, see Carmeliet and Borst (1995). 
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Figure 14: Damage along the lines A.                          Figure 15: Damage along the lines B. 

100500

50

100

X

Y

B

A

C

 
Figure 16: Longitudinal lines A, B and C. 

The curves of the applied forces versus displacement obtained using the different meshes 
are presented in the figure 17 to complete the mesh dependence analysis. The results represent 
the behaviour of the global structure. The different mesh discretizations not affect the results. 
Figure 16 also permit to observe the softening behaviour. 

 
Figure 17: Force versus displacement for different meshes. 

In order to complete the mesh-dependence analysis the problem of a double edge cracked 
plate is exploited. The double edge cracked plate contains crack length a = 4 mm, length L = 
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25 mm and width W = 10 mm, is loaded with a prescribed displacement u(t) at the both sides, 
figure 18. 

a a

2W

u(t)

u(t)

2L

 
Figure 18: Double edge cracked plate. 

The existent symmetry permits to analyze only a quarter of the plate, in that case the upper 
right quarter of the plate, see figure 18. 

In this study was considered plates of concrete, which have the following mechanical 
characteristics: E = 27.0 GPa, w = 50 10 5. × −  MPa, C = 10 10 3. × −  MPa.s and 
k MPa mm= 0 2 2. . , see Frémond (1996) and Pires-Domingues (1996). The prescribed 
displacement and the adopted time step are given respectively by u L t t( , ) = α , 
(α = −50 10 3. /x mm s ) and Δt = × −10 10 4. s. 

The usual bi-linear quadrilateral finite element is used on the discretization of the problem. 
The different meshes employed on the evaluation of the problem are depicted on the figure 
19. The mesh-1 has 340 nodes and 304 elements, the mesh-2 has 500 nodes and 456 elements 
and the mesh-5 has 252 nodes and 221 elements. The mean difference among the meshes is 
the degree of the discretization and the distorted in the region where the highest levels of 
damage are expected. 

   
Figure 19: Mesh-1  Mesh-2  Mesh-3 
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The figure 20 shows the instants of maximum damage for the 3 different meshes. The 
damage levels obtained using different meshes are practically the same, meaning that the 
problem solution is not mesh-dependent. Due the degree of spatial discretization in the region 
where the highest levels of stress and damage are expected, the instants of maximum damage 
are slightly different for each mesh. The moment of complete degradation of the material 
(plate completely broken into two parts that experiment rigid body movement) can be also 
determined observing the stress and displacement levels on the plate, see Pires-Domingues 
(1996). 

+0.0
+0.30
+0.60
+0.80
+0.99
+1.00

                                    
 

Figure 20:             Mesh-1 (t=1.585s)         Mesh-2 (t=1.577s)          Mesh-3 (t=1.59s) 

 
In order to complete the mesh-dependence analysis the curves of the external force versus 

the displacement u(t), obtained employing the 3 different meshes, are presented in the figure 
21. These curves represent the global behaviour of the structure. It is possible to observe that 
the shape of the solution is not affected by the different spatial discretization in the region 
where highest levels of stress are expected. The reason of the slight difference of applied 
force values (on the top of the curves) is due a better discretization in critical region of mesh-
2, that permit a better approach of the equations. The curves also permit to observe the 
expected softening behaviour. 
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Figure 21:  External force  x  Prescribed displacement. 

5.3 Stability and precision of the proposed algorithm 
The performance of the proposed algorithm is examined by comparison the results of the 

variable β  and u obtained from different time increments tΔ  and using the same spatial 
discretization, mesh-2, figure 10. The DANO_1 algorithm and the integration method, 
backward Euler (θ = 1) were employed. 

The time increments observed were 0.1 s, 0.01 s, 0.001 s, 0.0005s e 0.0001 s. The β  and 

yu  results for points on the line B, at t = 3.0s, are presented in the figures 22 and 23. The time 
increments 0.0005 and 0.0001s present the same values in different points along line B. 

   
Figure 22: β  values at t = 3.0s.                       Figure 23: uy  values at t = 3.0s. 

The precision analysis of the proposed algorithm consists of comparing the results obtained 
using the operator split methods with different numerical integration methods (forward and 
backward Euler and trapezoidal rule) and the results of a coupled solution strategy, where the 
Euler and Newton Methods are used together to solve the non-linear resultant system. The β  
and displacement results, at t = 3.2s, are shown in figures 24 and 25. The analysis employed 
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Mesh-1, figure 9, for both strategy and  s0001.0t =Δ  for the operator split methods 
(DANO_1) and s00001.0t =Δ  for the coupled solution strategy. The points of the 
longitudinal line C (y = 56.0mm) were observed in this analysis. The different symbols 
represent the following: (O) backward Euler; (•) forward Euler; (�) trapezoidal rule and (∗) 
coupled solution. 

       
Figure 24: β  values, t = 3.2s.                        Figure 25: Displacement values, t = 3.2s. 

It can be observed that the results are similar employing different algorithms. The results 
presented prove that the operator split method was able to give the results at the same 
precision level that other methods capable of solving the coupled problem. The last method is 
more expensive because the computational time to solve the problem. 

6 CONCLUSIONS 
The gradient-enhanced damage theory presented in this paper can describe the non-linear 

evolution of the damage, the stress and the displacement fields on a plate formed by elastic 
brittle materials (concrete, glass and ceramic, for instance). Besides, it allows a 
mathematically correct description of the localization and the strain-softening phenomena 
without problems of mesh dependence Pires-Domingues (1996). 

Despite the strong nonlinearity of the constitutive equations, a simple numerical technique, 
resulting from the combination of the finite element discretization and a operator split 
technique Pires-Domingues (1996), is used in other to approximate the solution of the 
mathematical problem. Such numerical strategy allows handle the nonlinear global problem 
through a sequence of linear problems. Hence, this solution technique can be easily 
implemented from a standard finite element code for linear problems without the necessity of 
radical modifications. It is also important to emphasize that the algorithm has shown in the 
numerical examples has good stability and precision, and has demonstrated no evidence of 
mesh dependence. The numerical method also allows a correct mathematical description of 
the localization phenomena and the softening behaviour without present mesh-dependence 
Carmeliet and Borst (1995). More information about the model and the numerical method can 
be found in Pires-Domingues (1996). 
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