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Abstract. In this research work, a finite element strategy specially devised to simulate the structural
degradation of corroded reinforced concrete members is presented. The proposed model is able to re-
produce many of the mechanical effects induced by corrosion processes in the embedded steel bars and,
mainly, their influences on the structural ultimate load carrying capacity predictions. For these pur-
poses, two different and coupled mesoscopic problems are considered. This mechanical model can be
used to simulate generalized or localized reinforcement corrosion. Each component of the Reinforced
Concrete (RC) structure is modeled by means of a suitable finite element (FE) formulation. For the con-
crete, a cohesive model based on the Continuum Strong Discontinuity Approach (CSDA) is used. The
steel reinforcement bars are simulated by means of a elasto-plastic model. The steel-concrete interface
is simulated using contact-friction elements with the friction degradation as a function of the depth of
corrosion attack. Experimental and previous numerical solutions are used to compare and validate the
proposed models.
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1 INTRODUCTION

Reinforced concrete structures (or simply RC structures) have been widely used across the
world due to many technical and constructive advantages. However, several degradation mech-
anisms affect its durability and the long-term structural reliability. In this context, the corrosion
of the embedded reinforcement steel bars is identified as one of the most critical fenomenon
influencing the RC service life. The problem must be carefully analyzed because it could cause
premature deterioration and, sometimes, the necessity of costly repairs, strengthening, replace-
ment or even the demolition of existing structures (Cairns and Millard, 1999).

The economic importance and the technological consequences of this problem have moti-
vated, in the last years, numerous research projects. Thus, they can be mentioned many ex-
perimental works reporting the unfavorable corrosion effects on RC elements, see for example
Rodriguez et al. (1994, 1995, 1996); Okada et al. (1988); Uomoto and Misra (1988); Tachibana
et al. (1990); Cabrera and Ghoddoussi (1992); Almusallam et al. (1996); Al-Sulaimani et al.
(1990); Huang and Yang (1997), and also analytical studies and numerical models (Bazant,
1979b,a; Bhargava et al., 2006, 2007; Vecchio, 2001; Castellani and Coronelli, 1999; Coronelli
and Gambarova, 2004; Fang et al., 2006) addressed to understand this complex degradation
process.

Many kinds of problems are involved in the corrosion of RC members. Here, we specially
focus in only one of them, the structural mechanical problem. In this context, we describe a
numerical model suitable to simulate the evolution of the mechanical degradation mechanisms
of RC structural elements caused by the reinforcement fiber corrosion. Phenomena such as: (i)
expansion of the corroded bars, (ii) crack pattern distribution, (iii) loss of steel-concrete bond
adherence, (iv) net area reduction of the steel fiber cross section and (v) the effects of the above
mentioned mechanisms on the structural load carrying capacity, can be analyzed as a function
of the reinforcement corrosion degree. A key point in our contribution is that the corrosion
attack depth on each steel reinforcement bar, denoted as X , is a priory known input data.

The proposed numerical model can be applied to any RC structure through two succesive
and coupled mesoscopic mechanical analyzes, as follows:

• STAGE I: at the cross section level, we simulate the reinforcement fiber expansion due to
the volume increase of the steel bars as a consequence of corrosion product accumulation
(see Section 2). Damage distribution and cracking patterns in the concrete is evaluated,
which defines the concrete net section contribution.

• STAGE II: considering the results of the previous analysis, a second mesoscopic model at
the structural level evaluates the mechanical response of the structural member subjected
to an external loading system (see Section 3). This evaluation determines the global
response and the macroscopic mechanisms of failure.

We call them mesoscopic analysis because, from the numerical point of view, each compo-
nent of the RC structure (concrete, steel bars and steel-concrete interface) is represented by itself
by means of a suitable FE formulation. Besides, in Section 4, a consistent coupling between the
two problems in STAGE I and STAGE II, is presented.

Finally, applications of such strategies to determine limit loads in RC beams, as a function
of the corrosion attack depth, are shown. The obtained quantitative structural ultimate load
predictions are compared with available experimental and numerical results.
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2 STAGE I: THE MESOSCOPIC CROSS SECTION MODEL (EXPANSION MODE)

The products derived from the steel bar corrosion reduce the net steel area and accumulate
causing volumetric expansion of the bars (see Figure 1-(a)), what induces a high tensile stress
state in the surrounding concrete. As a consequence the concrete undergoes a degradation
process displaying two common fracture patterns (Capozucca, 1995): (i) inclined cracks and
(ii) delamination cracks, as we can observe in Figure 1-(c) . In this section, we present a finite
element technique that is specially devised to study this phenomenon.

The 2D plane strain mesoscopic model considers three different domains (see Figure 1-(b)):
(i) the concrete matrix, (ii) the steel reinforcement bars and (iii) the steel-concrete interface,
each of them are characterized by a different constitutive response and FE technology that takes
into account the main mechanisms involved in the corrosion process.

Concrete

Reinforcement

Interface

Interface

Reinforcement

Delamination

Inclined cracking

(b) (c)(a)

Ri
R =R + Rf i D

X
X+ RD

Ri : initial (uncorroed) bar radius
Rf : final (expanded) bar radius
X: corrosion attack depth

+

DR: radius increment

x

y

Figure 1: RC structural member cross section. Plane strain mesoscopic 2D model: (a) Corrosion-expansion mech-
anism. (b) Numerical model idealization. (b) Typical pattern of cracks.

2.1 The concrete material

The model adopted for analyzing the concrete matrix is an isotropic continuum damage
model regularized by the Continuum Strong Discontinuity Approach (CSDA), as described in
Oliver et al. (2002). This technique has been widely discussed in many previous articles. Here
we only summarize the main features of this model. Additional details can be obtained else-
where (Oliver and Huespe, 2004a,b).

The macroscopic discontinuities arising in a quasi-brittle solid, such as fractures, are math-
ematically described by means of a strong discontinuity kinematics. Let be given a body Ω
experiencing displacement jumps across the surface S (see Figure 2). This surface (S) divides
the body in two disjunct domains Ω+ and Ω−. Then the displacement u(x) and the compatible
strain field tensor ε(x), in Ω, can be written as:

u(x) =

continuous
︷ ︸︸ ︷

u(x) +

discontinuous
︷ ︸︸ ︷

HS(x) [[u]](x) ; HS(x) =

{

1 ∀x ∈ Ω+

0 ∀x ∈ Ω−

(1)

ε(x) = ∇symu(x) = ε(x)
︸︷︷︸

regular

+ δS(x)
(
[[u]]⊗ n

)sym

︸ ︷︷ ︸

singular

(2)

where u(x) is a C0 continuous function in Ω, [[u]](x) represents the displacement jump across
the surface S and HS(x) is the Heaviside’s step function. Note that the strain field shows a
singular term, the second one in equation (2), given by the Dirac’s delta distribution δS(x).
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Figure 2: Strong discontinuity kinematics.

Elastic stress-strain relationship

σ =
q(r)

r
Ce : ε = [1− d(r)]

σ

︷ ︸︸ ︷

Ce : ε (3)

Ce = λ ( I1⊗ I1) + 2µ II (Isotropic elastic tensor) (4)

I1 = δij (ei ⊗ ej) ; II =
1

2
(δikδjl + δilδjk) (ei ⊗ ej ⊗ ek ⊗ el) (5)

Damage criterion

φ(σ, q) = τσ − q ≤ 0 (6)

τσ = χ
√

σ : (Ce)−1 : σ = χ [1− d(r)]
√

σ : (Ce)−1 : σ (7)

χ =

∑i=3

i=1
〈σi〉

∑i=3

i=1
|σi|

[

1− 1

nσ

]

+
1

nσ
(8)

nσ =
σCu
σu

; 〈•〉 =
1

2
{ •+ ‖ • ‖} (9)

σi ≡ principal values of σ (10)

Softening evolution law

ṙ = γ ; r0 = r|t=0 =
σu√
E

(11)

q̇ = H(r) ṙ ; q0 = q|t=0 = r0 (12)

(γ ≡ damage consistency parameter) (13)

Loading-unloading complementarity conditions

φ(σ, q) ≤ 0 ; γ ≥ 0 ; γ φ(σ, q) = 0 (14)

Table 1: Continuum damage model for the concrete response simulation.
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Concrete can be quite appropriately modelled by means of an isotropic continuum damage
models equipped with a regularized strain softening modulus in order to make possible the onset
of material instabilities, strain localization and crack propagation. Table (1) defines the adopted
material law, where damage in tension and compression is possible, but different ultimate limit
stresses are used (Oliver et al., 1990).

There, σ and ε represent the stress and strain tensors, q and r are internal variables defining
the standard scalar damage variable d = 1 − (q/r). The elastic material parameters E, λ
and µ are the Young’s modulus and the Lamé coefficients. Also we define σC

u and σu as the
compressive and tensile limit strength, respectively.

The compatibility between the strong discontinuity kinematics, eqs. (1)-(2), and the contin-
uum damage material model is taken into account by introducing an intrinsic softening modulus
H̄ = δS H , whose value is computed from the classical parameters used in the Fracture Me-
chanics context: H̄ = f(σu, Gf , E), where Gf is the concrete fracture energy. This intrinsic
modulus allows to define a bounded stress state in S through the standard continuum damage
model of Table (1), even when the strain tensor has a singular term (see equation (2)).

The vector traction continuity across the discontinuity interface S, internal equilibrium con-
dition, requires that:

tS = σS · n = σΩ+ · n (15)

When the strong discontinuity kinematics (1)-(2) is consistently introduced in this continuum
setting, a cohesive model (traction separation law) tS = f([[u]]) is automatically projected
onto the interface S (Oliver, 2000). This traction-separation cohesive model governs the crack
opening evolution in the strong discontinuity regime.

The previously discussed model is numerically implemented by using an enhanced finite el-
ement technique with embedded strong discontinuities. Basically, this methodology consists
of enriching the standard continuous displacement modes adding enhanced discontinuous ones
and, consequently, additional degrees of freedom. It makes possible to capture the crack trajec-
tory inside the finite elements irrespective of the size and orientation of them. In particular, so
called the Embedded Finite Element Method E-FEM (Oliver et al., 2006) has been adopted in
the present work, see Figure 3. This strategy permits the condensation of the extra discontin-
uous modes at elemental level and, therefore, the additional d.o.f. does not enlarge the size of
final equation system.

S

S

W+

W+

W

W

W

-

-
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M
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enriching d.o.f.

enriched elements

1

Figure 3: Embedded finite elements with internal enhanced d.o.f. (E-FEM technique).
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2.2 The steel reinforcement bars

Let us assume that the cross section of a typical RC member is contained in the the x-y
plane, as we can observe in the Figure 1-(a). A standard linear elastic (isotropic) constitutive
behavior is assumed for the steel bars. The expansion effect, due to the corrosion phenomenon,
is considered through a (pseudo) volumetric initial deformation mode ε0. Making use of the
standard Voigt’s notation for tensors and assuming a plane strain state, the total strain (ε) can
be expressed as the superposition of two terms:

ε = ∇symu =







εxx
εyy
γxy
εzz






=







εxx
εyy
γxy
0






=

ε
e

︷ ︸︸ ︷





1

E
(σxx − νσyy − νσzz)

1

E
(σyy − νσzz − νσxx)

2(1+ν
E

)σxy
1

E
(σzz − νσxx − νσyy)






+

ε
0

︷ ︸︸ ︷





D
D
0
0







(16)

where D is the value of the dilatational component and εe the elastic strain tensor. Note that,
the dilatational effect is not included in the z direction.

Taking into account an elastic constitutive relation, the stress field can be computed as:

σ =







σxx

σyy

τxy
σzz






=







λ+ 2µ λ 0 λ
λ λ+ 2µ 0 λ
0 0 G 0
λ λ 0 λ+ 2µ













εxx −D
εyy −D

γxy
0







(17)

where G is the shear modulus.
The dilatation parameter D can be estimated as a function of X (which is an experimentally

determined value):

D ≈
R2

f (X)−R2
i

2R2
i

(18)

An approximation for the final bar radius, Rf = R̂f (X), will be given in Section 5.

2.3 The steel-concrete interface (contact FE)

The shear stress transference, between the steel reinforcements and the concrete, has a limit
value (maximum adherence stress τmax) that depends on several factors: bar diameter, bar sur-
face texture, confining effects, corrosion level, etc. Also, when high expansion values in the
steel are reached, separation between both materials, steel and concrete, must be expected.
These effects have important consequences in the concrete fracture pattern prediction, what
motivates the introduction of special contact finite elements in order to simulate (appropiately)
the steel-concrete interface, see Figure 4-(a).

The contact linear triangular element adopted in the present work has been taken from Oliver
et al. (2007), where additional details can be obtained. In every contact finite element, a local
cartesian system {η, t} is defined, where η is the unit vector normal to the contact surface.
The strains are evaluated from the (symmetric) gradient of nodal displacement, as it is done in
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standard finite elements. The mechanical response of the contact-friction model is expressed by
means of the following constitutive law:

σ = Ψ(g)

[

σηη(εηη) (η ⊗ η) + τηt(εηt) [(η ⊗ t) + (t⊗ η)]
]

(19)

where the scalar step function Ψ(g), that takes into account the unilateral contact restriction, is:

Ψ(g) =

{

1 ; if g < g0

0 ; if g ≥ g0

(20)

and the gap function, g(εηη), is computed as:

g(εηη) = he(1 + εηη) (21)

he being the length of the finite element in the η direction and g0 represents an initial gap, which
for the present work is assumed g0 = he.

The normal contact stress, σηη, is obtained as a function of the constant strain component
εηη (εηη = η · ε · η), following a 1D linear elastic law (see Figure 4-(c)). The friction stress
component, τηt, is determined as a function of the constant shear strain component εηt (εηt =
η ·ε ·t) by means of a classical 1D elasto-plastic constitutive model, as detailed in Table (2) (see
also Figure 4-(d)). The elasto-plastic model of Table (2) only applies when Ψ(g) = 1, otherwise
no evolution of plastic flow is considered. Thus, the proposed contact-friction model is defined
by four parameters: the normal stiffness (Kηη), the shear stiffness (Kηt), the maximum stress
adherence (τmax) and the hardening/softening shear modulus (K).

Contact elements

Steel (elastic) elements

Contact surface

(a) (c) (d)

Q1

Q2

P

e

e

+

(b)

Figure 4: Contact finite element at the interface: (a) Representative scheme. (b) Typical contact finite element.
(c) Scheme of the constitutive law for the contact normal stress (σηη). (d) Scheme of the constitutive law for the
friction shear stress (τηt).

3 STAGE II: THE MESOSCOPIC STRUCTURAL MODEL (FLEXURE)

Now we introduce a 2D mesoscopic model for the quantitative prediction of residual load
carrying capacity of corroded RC members, where each component of the structure (concrete,
steel and steel-concrete interface) is independently represented. An idealized scheme of the
adopted discrete model, applied in particular to a RC beam, can be observed in Figure 5.

The present (plane stress) mesoscopic strategy shares many features with the previous (plane
strain) mesoscopic model of the Section (2). In fact, for the concrete we use, again, the CSDA
with identical enhanced finite elements technology, isotropic (tension-compression) continuum
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Incremental elastic stress-strain relationship

τ̇ηt = Kηt (ε̇ηt − ε̇pηt) (22)

Yield condition

φ(τηt, α) = |τηt| − (τmax +Kα) ≤ 0 (23)

Flow rule and hardening/softening evolution law

ε̇pηt = γ sign(τηt) (24)

α̇ = γ (25)
(γ ≡ plastic multiplier)
(α ≡ accumulated equivalent plastic strain)

Loading-unloading complementarity conditions

φ(τηt, α) ≤ 0 ; γ ≥ 0 ; γ φ(τηt, α) = 0 (26)

Table 2: Basic equations for the 1D elasto-plastic friction model (τηt shear stress).

Concrete Bottom bar

Top barTop bar

Interface
Stirrups

+

+

Concrete

Interface
Reinforcement
Interface

Concrete

Figure 5: Plane stress mesoscopic 2D model.
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damage model and crack propagation scheme, as it was described in sub-Section 2.1. Also, the
same contact finite elements technique, presented in sub-Section 2.3, is used here to simulate
the interface effects.

The mechanical behavior of the longitudinal reinforcement steel bars is simulated with an
elasto-plastic model, which is briefly discussed next.

3.1 Elasto-plastic model for the reinforcement bars

The steel bar response is characterized by a 2D finite element model. Each triangular FE
has associated a local normalized cartesian basis {η, t}, where the vector η is computed such
that it is orthogonal to the longitudinal bar axis, see Figure 6-(a). The mechanical behavior of
reinforcements reproduces a 1D standard elasto-plastic model in the σtt normal stress compo-
nent, while the remaining stress tensor components behave elastically. Also we have assumed a
Poisson relation: ν = 0.

Steel (elasto-plastic) elements

Bar axis

e

+

(c)(b)(a) (d)

Figure 6: Elasto-plastic reinforcement element: (a) Representative scheme. (b) Typical steel element. (c) Scheme
of the constitutive law for σηη and τηt stresses. (d) Scheme of the constitutive law for σtt stress.

Taking into account the previous considerations, the stress tensor is given by:

σ = σηη (η ⊗ η) + τηt
[
(η ⊗ t) + (t⊗ η)

]
+ σtt (t⊗ t) (27)

where σηη = E εηη, τηt = τtη = Gεηt (G being the shear elastic modulus) see Figure 6-(c), and
σtt is given by the standard 1D plasticity model, see Figure 6-(d).

4 COUPLING STRATEGY: CROSS SECTION MODEL - STRUCTURAL MODEL

Figure 7 shows a simple scheme of the strategy adopted in this contribution to couple the
two models presented in the previous sections, i.e., the cross section analysis (STAGE I) and the
structural member analysis (STAGE II).

As we can observe in the figure, for an arbitrary control cross section, we transfer from one
domain of analysis to the other, the average value of the damage variable “d” across horizontal
slices. This projection is consistent because both analysis use the same continuum isotropic
damage model for simulating the concrete domain. Thus, the final degradation state of concrete,
induced by the steel bar volumetric deformation process, is considered to be the initial damage
condition for the subsequent structural analysis.

In this paper we are specially interested in the simulation of generalized corrosion phe-
nomenon, then a unique control cross section is considered, for each RC member, and the map-
ping of the damage variable is applied homogeneously in the length of this structural member,
see Figure 7. However, the same coupling strategy could be easily adapted to model localized
corrosion.
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ConcreteBottom reinforcement  bar

Considered

effects

Considered

effects

Figure 7: Coupling strategy between the cross section analysis and the structural member analysis.

5 APPLICATIONS TO CORRODED RC BEAM TESTS

In this section, a set of numerical simulations are addressed in order to validate the numerical
performance of the described FE formulations. Two types of RC beams have been analyzed:
Beam type 11 and 31 (additional indices will be added to indicate different corrosion levels for
each beam). The geometry and boundary conditions of the problems are shown in Figure 8.
Table 3 presents additional information.

Figure 8: RC Beams: (a) Dimensions and boundary conditions. (b) Cross section scheme for Beam Type 11. (c)
Cross section scheme for Beam Type 31.

For these specimens, experimental results are available, see Rodriguez et al. Rodriguez et al.
(1995, 1996). In these works a process of accelerated corrosion was induced. Table 4 shows
some experimental measurements of the attack depth X , for different levels of corrosion and
types of reinforcement.

Linear triangular finite elements have been adopted for all the tests. In particular, enhanced
strong discontinuity triangular elements are used for the concrete material, see sub-Section 2.1.
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(1) (2) (3) (4) (5) (6) (7)
Beam Dimensions Top bars: Bottom bars: Stirrups: Concrete Steel yield
type l × b ×h number and number and diameter and strength: stress:

diameter diameter spacing σCu σY
[m] [mm] [mm] [mm] [MPa] [MPa]

11 2.00× 0.15× 0.20 2φ 8 2φ 10 φ 6/170 50− 34 575
31 2.00× 0.15× 0.20 4φ 8 4φ 12 φ 6/85 49− 37 575

Table 3: RC beams. Material description

(1) (2) (3) (4) (5)
Beam Bottom bars Top bars Stirrup τmax

denomination attack: XB attack: XT attack: XS

[mm] [mm] [mm] [MPa]
11− 1 — — — 6.86
11− 4 0.45 0.52 0.39 4.10
11− 5 0.36 0.26 0.37 4.13
11− 6 0.70 0.48 0.66 4.04
31− 1 — — — 7.82
31− 3 0.30 0.20 0.35 5.12
31− 4 0.48 0.26 0.50 5.06

Table 4: Experimental corrosion attack measures and residual adherence stress τmax. Beams Type 11 and 31

Each numerical problem is solved by imposing an arc-length control strategy. In the plane
strain expansion tests, the control is applied over the dilatation variable D. For the bending
examples, we control the vertical displacement of the beam central point. A very robust consti-
tutive integration scheme is adopted, namely the Impl-Ex method (Oliver et al., 2007). Also, in
order to optimize the computational resources, we have taken advantage of as many symmetry
conditions as possible.

The material parameter characterization considers the following aspects (in this sense we
follow very close the guidelines reported in Coronelli and Gambarova (2004)):

• The concrete compressive limit strength, σC
u , is given in Table 3, column 6 (the first

figure corresponds to the concrete used in the not corroded beams and the second one to
the contaminated concrete mixture). The ultimate concrete tensile stress, σu, is assumed
as: σu = 0.10σC

u . Other material properties for the concrete, as for example Young’s
modulus, Poisson’s ratio, fracture energy and softening modulus, have been adopted by
setting standard values.

• The contact model depends on the ultimate adherence stress τmax(X). Column 5 of Table
4 (see also Rodriguez et al. (1994)) provides a reasonable estimation for the bond-slip
model, as a function of the corrosion attack depth.

• The dilatation coefficient D, used in the mesoscopic plane strain model, is computed
from equation (18). Following Molina et al. (1993) and Coronelli and Gambarova (2004)
we adopt the approximation: Rf = Ri + X , which is based on the incompressibility
assumption of the corrosion products. For each solved case, the X value is adopted from
Table 4, columns 2-4.

• Finally, the steel yield stress (σY ) is reported in Table 3, column 7. The reinforcement
cross section reduction, due to corrosion, is computed assuming an effective bar radius
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Reff = Ri − X . Note that both characterizations apply only to the structural member
analysis.

5.1 Numerical results: the mesoscopic cross section model

The sequence of Figures 9-11 shows, for the beam type 11 at the final stage of analysis,
the iso-displacement contour lines, the FE mesh in the deformed configuration and the damage
distribution in the cross section. A complete degradation of the surrounding concrete is observed
for the applied expansions level. It can be noted that the main local failure mechanism is an
inclined crack pattern.
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Figure 9: Plane strain expansion analysis. Beam type 11-4: (a) Iso-displacement contour lines (pattern of cracks).
(b) Deformed configuration. (c) Damage map.
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Figure 10: Plane strain expansion analysis. Beam type 11-5: (a) Iso-displacement contour lines (pattern of cracks).
(b) Deformed configuration. (c) Damage map.
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Figure 11: Plane strain expansion analysis. Beam type 11-6: (a) Iso-displacement contour lines (pattern of cracks).
(b) Deformed configuration. (c) Damage map.

Figures 12-13 show, for the beam type 31 and at the final stage of analysis, the iso-displacement
contour lines, the deformed configuration and the damage map. A complete concrete degrada-
tion around the bars is observed. In this case, the local failure mechanism consists of delamina-
tion, between adjacent bars, and inclined cracking for the extreme steel fiber.
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Figure 12: Plane strain expansion analysis. Beam type 31-3: (a) Iso-displacement contour lines (pattern of cracks).
(b) Deformed configuration. (c) Damage map.

In general, at the cross section level and from a qualitative point of view, it can be observed
that the proposed numerical scheme captures physically admissible failure mechanisms.

5.2 Numerical results: the mesoscopic structural model

Figures 14-15 depict the obtained damage distribution, the trajectory of macro cracks as iso-
displacement contour lines (in the x-direction) and the contour fill of the axial σzz stress, for
two of the beams type 11 (the not corroded case 11-1 and the corroded one 11-4, see Table 4).

The same analysis of the obtained numerical results can be applied to beam type 31, see
Figures 16-17.

In all the studied cases a vertical macro crack, located in the central zone of the beam, has
been identified as the fundamental macroscopic failure mechanism determining the limit load.
It is characterized by a mode I of fracture, which is the typical ones for those cases of slightly
RC beams.

In the Figures 18-24, we show the vertical load vs. the mid span vertical displacement curves
for the beam type 11. A good agreement with the experimental data (Rodriguez et al., 1995)
and numerical results of Coronelli and Gambarova (2004), has been obtained.
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Figure 13: Plane strain expansion analysis. Beam type 31-4: (a) Iso-displacement contour lines (pattern of cracks).
(b) Deformed configuration. (c) Damage map.
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Figure 14: Qualitative results for plane stress mesoscopic model. Beam type 11-1 (not corroded): (a) Contour fill
of damage. (b) Iso-displacement contour lines in x-direction. (c) Contour fill of σzz .
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Figure 15: Qualitative results for plane stress mesoscopic model. Beam type 11-4: (a) Initial damage condition.
(b) Final contour fill of damage. (c) Iso-displacement contour lines in x-direction. (d) Contour fill of σzz .
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Figure 16: Qualitative results for plane stress mesoscopic model. Beam type 31-1 (not corroded): (a) Contour fill
of damage. (b) Iso-displacement contour lines in x-direction. (c) Contour fill of σzz .
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Figure 17: Qualitative results for plane stress mesoscopic model. Beam type 31-3: (a) Initial damage condition.
(b) Final contour fill of damage. (c) Iso-displacement contour lines in x-direction. (d) Contour fill of σzz .
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Experimental results: Rodriguez et al. 1995
Previous numerical results: Coronelli et al. 2004
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Figure 18: Load vs. displacement structural response. Beam type 11-1
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Figure 19: Load vs. displacement structural response. Beam type 11-4
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Experimental results: Rodriguez et al. 1995
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Figure 20: Load vs. displacement structural response. Beam type 11-5
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Figure 21: Load vs. displacement structural response. Beam type 11-6
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Figure 22: Load vs. displacement structural response. Beam type 31-1
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Figure 23: Load vs. displacement structural response. Beam type 31-3
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Figure 24: Load vs. displacement structural response. Beam type 31-4
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6 CONCLUSIONS

In this contribution, we have presented applications of the CSDA to solve RC structural
beams undergoing a generalized corrosion phenomenon. As a novel contribution, two different
mesoscopic size-scale model have been developed. A coupling strategy between them has also
proposed.

Contact finite elements were introduced in these formulations in order to improve the sim-
ulation of the steel-concrete interface effects. Following the proposed methodology, the most
relevant corrosion mechanisms can be simulated, as for example: expansion of steel bars, dam-
age/cracking/spalling in the concrete, yielding in the reinforcement, bond stress degradation at
the interface and steel section reduction. In summary, the proposed model represents a viable
technique to analyze deteriorated RC members.

The mesoscopic (plane strain) cross section model captures, adequately, the experimental
patterns of cracks. Inclined cracking or delamination modes have been obtained, depending
on the location and separation of reinforcement bars. The proposed model can be applied to
more sophisticated RC cross sections geometrical designs to obtain a qualitative idea of the
deterioration mechanisms induced by the expansion-corrosion process.

The mesoscopic (plane stress) structural model captures physically admissible concrete degra-
dation patterns. In all the analyzed cases a typical mode I of fracture, characterizing the final
macroscopic failure mechanism, has been observed. The sensitivity of the limits load evalua-
tions with the reinforcement corrosion level as been acceptably computed.
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