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Abstract. The direct numerical simulation, DNS, of a fully developed turbulent plane Couette flow with
heat transfer has been performed. The main goals of the present workis to analyse natural dissimilarity,
and axial momentum and thermal energy turbulent transport mechanism in thiskind of turbulence. It
has been chosen a low Reynolds number equal to 1,300 as a function of half the walls distance and half
the velocity of the moving wall. This Reynolds gives a Reynolds number as a function of half walls
distance and friction velocity of about 84. The energy equation was solved for a molecular Prandtl
number equal 1, and with isothermal boundary conditions at both walls. Forinstance, the streamwise
velocity and temperature fields were solved with the same kind of boundary conditions, in order to have
the same direction of momentum and thermal turbulent fluxes. Buoyancy effects were neglected, thus
the temperature was considered as a passive scalar.

The main results of this work show that axial velocity and temperature fluctuations have the same
kind of natural dissimilarity present in turbulent channel flow. While natural de-correlation between axial
velocity and temperature fluctuations starts in the very near-wall region dueto the most energetic events
there, the contribution of these events to the total natural dissimilarity is less thanfifty percent in the
whole flow.

Analysis of longitudinal velocity and temperature fluctuations in the frequencydomain, using spec-
tral density functions, shows that the main cause of natural dissimilarity is the shift toward higher fre-
quencies of temperature fluctuations in comparison to those belong to axial velocity, in the viscous,
buffer, and beginning of the logarithmic region. Based on the spectra of pressure fluctuations and wall
normal fluctuations, it is clear that wall normal velocity plays an important rolein the natural dissimilarity
of streamwise velocity and temperature fluctuation fields.
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1 INTRODUCTION

Turbulent heat transfer is a phenomenon of fundamental importance in science and technol-
ogy. In many situations, however, its prediction in appliedproblems uses the Reynolds analogy
or similarity between momentum and heat transfer, which is not universal. (In this context,
similarity between momentum and heat transfer means mean flow and fluctuations similarity,
between axial velocity and temperature). For this reason velocity and temperature similarity and
dissimilarity in turbulent flows has been extensively studied experimentally, and numerically,
for different situations. The correlation between these fluctuations in wall bounded turbulent
flow has been intensively investigated in the last three decades, first experimentally and then
numerically. And as it has been shown in the literature with experimental works (Bremhorst
and Bullock 1970; Orlando, Moffat, and Kays, 1974; Zaric 1975; Fulachier and Dumas, 1976;
Hishida and Nagano 1979; Iritani, Kasagi, and Hirata 1985; Antonia, Krishnamoorthy, and Fu-
lachier 1988), and numerical works (Kim and Min, 1989; Kasagi, Tomita, and Kuroda, 1992;
Kawamura, Abe, and Matsuo 1999; Na, Papavassiliou, and Hanratty 1999; Na, and Hanratty
2000; Kong, Choi, and Lee 2000, and Kong, Choi, and Lee 2001), the similarity between the
axial velocity and temperature fields, is very strong in the viscous and buffer region of a turbu-
lent boundary layer. In those cases, for instance, with similar boundary conditions for the axial
momentum and thermal fields, the normal fluxes of axial momentum and heat have the same
direction, and the similarity is stronger.

A special and interesting study case is without doubt developed plane turbulent Couette
flow. Plane Couette turbulent flow is one of the canonical flow cases. In comparison with zero
pressure gradient boundary layers and pressure driven channel flow, plane Couette flow has the
unique feature of combining the parallel flow property with zero pressure gradient. For this
reason this kind of turbulent flow is an excellent flow case foraxial velocity and temperature
similarity and dissimilarity study. For instance heat transfer in plane Couette flow with isother-
mal walls has the same kind of axial velocity and temperatureboundary conditions, while the
axial momentum and thermal turbulent fluxes have also the same direction. All these features
make turbulent plane Couette flow with isothermal walls a veryspecial experiment for velocity
and temperature similarity-dissimilarity study.

Developed plane turbulent Couette flow, however, has proved to be more difficult to simulate
numerically than other canonical flows like as, for example,developed channel turbulent flow.
The difficulty is mainly due the existence of very large streamwise structures in the center
region of the flow. In the last decade, however, there have been enough research that gives
some confidence using this kind of turbulence in numerical experiment for heat transfer study
(Komminaho, Lundbladh, and Johansson, 1996; Tillmark and Alfredsson, 1992; Debusschere
and Rutland, 2000; Bech et al, 1995).

Developed turbulent Couette flow has some similar characteristics to fully developed turbu-
lent channel flow. But these flows present also some important differences. For example, both
flows have similar near-wall structure (Aydin and Leutheusser, 1991), however the Reynolds
stresses distribution is different. In turbulent channel flow the Reynolds stresses are maximum
near the wall and then approach zero at the center line. In Couette flow, in contrast, Reynolds
stresses increase from the wall to a maximum at the center line. The turbulent kinetic energy
production, on the other hand, in a Couette flow has a finite value through the whole flow, while
in turbulent channel flow the production of turbulence goes to zero at the centerline of the chan-
nel. For these reasons it seems appropriate to perform numerical experiments with heat transfer
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in this kind of turbulence, with the objective to see if natural dissimilarity of axial velocity and
temperature fluctuations present the same behavior as in turbulent channel flows.

In a previous work (Pasinato, 2007) the natural dissimilarity in a fully developed turbulent
channel flow was studied using DNS. The main results of this work was that natural dissimilarity
occurs basically due to the background turbulence. Or in other words, that the most energetic
events in the wall layer, as a consequence of sweeping and ejection motions, do not contribute
significantly in a direct way to the de-correlation between axial velocity and temperature afar
from the wall. For a developed turbulent channel flow the natural dissimilarity in the wall layer
increases afar from the wall, mainly owing to the shift toward higher frequencies of temperature
fluctuations, in comparison with axial velocity fluctuations. Thus in this works the main goal is
to look at the same phenomena, and with the same technique, ata turbulent plane Couette flow.

Thus the main goal of the present work has been to perform numerical experiments in a de-
veloped turbulent plane Couette flow and look at natural dissimilarity, and transport mechanisms
in this kind of turbulence. It has been chosen a low Reynolds number equal to 1,300, as func-
tion of half the walls distance,h, and half the velocity of the moving wall,V0, Reh = V0ρh/µ,
which gives a Reynolds number approximately of about 84 as a function of the friction velocity.
The energy equation, on the other hand, is solved with isothermal boundary conditions. As in
previous work for the fully developed turbulent channel flow, buoyancy effects were neglected,
thus the temperature was considered as a passive scalar.

2 NUMERICAL METHOD

In this section a short description of the numerical aspects, and simulation parameters is given.
A validation of the numerical code for a fully developed turbulent flow with heat transfer has
been presented in a previous work (Pasinato, and Squires, 2006).

In this paper,u, v, andw are the instantaneous velocities in the streamwise(x), wall-normal
(y), and spanwise(z) directions, respectively. All instantaneous variables are decomposed in
a mean value and a fluctuation; e.g.u = U + u′. A plus symbol is used in order to denote
nondimensionalization with the wall parameters,uτ andν; e.g.y+ = y uτ/ν.

The DNS of the turbulent plane Couette flow with heat transfer has been performed with
periodic boundary condition inx andz directions. The size of the computational box, figure 2,
which has a moving upper wall with velocity equal to2V0, is 20πh × 2h × 4πh in x, y, and
z directions, respectively. This box means 5270, and 1050 in wall units inx, andz directions,
respectively. This computational domain is discretized with a256 × 72 × 256 grid, which in
wall units means∆x+ = 20.6, ∆y+ = 0.57 − 4.04, and∆z+ = 4.12, in the three directions
respectively. This computational box and discretization was chosen based on previous works in
the literature, and some performed numerical tests, as it iscommented in the next section.

The governing equations in dimensionless form are the continuity, the unsteady Navier-
Stokes and energy equations for incompressible flow and heattransfer,

∂ui

∂xi

= 0 (1)

∂ui

∂t
+

∂

∂xj

(ujui) =
1

Rτ

∂2 ui

∂xj∂xj

−
∂p

∂xi

(2)
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∂θ

∂t
+

∂

∂xj

(ujθ) =
1

PrRτ

∂2θ

∂xj∂xj

(3)

wherei andj are for1, 2, 3, and the non-dimensionalization used in the posprocessingof the
results was done using the wall friction velocity,uτ , half the distance between wallsh, and the
friction temperatureTτ = qw/ρ cp uτ . Whereθ is the dimensionless temperature,qw is the heat
flux at the wall, andcp andρ are the constant pressure specific heat coefficient and the density,
respectively. In these equationsPr, andRτ are the molecular Prandtl, the turbulent Reynolds
numbers based on the wall friction velocity and half channeldistance between walls,h, which
values are1 and approximately84, repectively, as it is previously commented.

Figure 1:Computational domain for fully developed turbulent plane Couette flow with heat transfer.

The unsteady Navier-Stokes equations were solved numerically at a Reynolds numberReh =
hV0/ν equal to 1300, which results in aRτ of about84, whereV0 is half the velocity of the
moving wall. The numerical code used in the present work for the velocity fields was originally
developed by Prof. Kyle Squires’ group at ASU. In this code the incompressible momentum
equation are discretized by the second-order accurate central-difference scheme. The Poisson
equation for the pressure field is Fourier-transformed withrespect to the streamwise and span-
wise periodic directions and the resulting three-diagonalequations are solved directly for each
time step. The flow field is advanced in time using a fractional-step method (Kim and Moin,
1985), with the Crank-Nicolson second-order scheme for the viscous terms and the Adams-
Bashforth scheme for the non-linear terms. Periodic boundary conditions are used for the ho-
mogeneous x (streamwise), and z (spanwise) directions, respectively. And non-slip boundary
conditions at both walls.

After the velocity field is calculated at each time step, the temperature field is obtained
integrating the energy equation. Any buoyancy effect was neglected, thus temperature was
considered as a passive scalar. The thermal field is solved with the same space, and time dis-
cretization, and same numerical scheme used for the velocity field. As boundary conditions,
constant wall temperature was used with a hot upper wall, anda cold lower wall.

The time step was0.01h/V0 or 0.05ν/u2
τ , and the time integration was taken approximately

equal to400h/V0 = 2, 200ν/u2
τ , in order to define mean values.
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3 RESULTS AND DISCUSSION

3.1 Mean values

Study Reτ Nx × Ny × Nz Lx/h Lz/h ∆x+ ∆z+ ∆y+

Lee and
Kim (1991) 170 192 × 129 × 288 4π 8/3π 11.1 4.9
Kristoffersen
at al. (1993) 83.2 96 × 64 × 64 4π 2π 10.9 8.2 0.2-0.4
Papavassiliou
and Hanratty (1994) 150 128 × 65 × 128 4π 2π 14.8 7.4
Bech et al. (1995) 82.2 256 × 70 × 256 10π 4π 10.1 4.0 0.7 - 3.9
Komminaho
at al (1996) 52.2 256 × 70 × 256 28π 8π 13.5 7.7 1.9 - 1.9
Debusschere and
Rutland(2004) 186 231 × 200 × 64 12 2 8.3 5.1 1.6 - 1.6
Present 83.2 256 × 73 × 256 20π 4π 20.4 4.08 0.5 - 4.1

Table 1:Comparison of domain size and discretization with previous studies.

As it was commented in the introduction, plane Couette flow hasproved to be more difficult
to simulate, due to the existence of very large streamwise structures in the center region of
the flow in numerical simulations. Several simulations haverevealed these long streamwise
vortical structures at the centerline of the plane turbulent Couette flow. However there are
doubts yet that these structures can be physical or only a spurious numerical problem. For
example Andersson, Lygren, and Kristoffersen (1998) have not observed experimentally these
structures, and suggested that such kind of secondary flow can be a numerical spurious flow
phenomenon, owing to the self-amplification that can produce periodic boundary conditions.

As a consequence of this situation, in this work, special care was taken in order to define the
box size. In table 1 a list of different DNSs of turbulent plane Couette flow is given, together
with details of the computational parameters. Also in this Table is the box size and discretiza-
tion finally used in the present work, which has almost the same Reh and discretization of the
numerical simulation performed by Bech et al. (1995). The only difference between both sim-
ulations is the axial size of the computational domain, and therefore the axial discretization.
However in the present work an axial length of20π, based on the streamwise two-point corre-
lation coefficients, was defined as the minimum axial size of the computational domain in order
to have a decorrelation of axial structures, as it is explained below.

Figures 2(a)-2(b)-2(c), and 2(d) present the streamwise and spanwise two-point correlation
coefficients, at two positions from the wall− one close to the wall aty+ = 5, and the second
in the center region aty+ = 72 −. In these figures, the two-point correlations inx− and
z− directions at twoy−locations show that they fall off to zero values for large separations,
indicating that the computational domain is suffricientlylarge. From figures 2(a)-2(b) it is clear
the streamwise decorrelation of axial velocity at the middle of the computational domain, where
there are the expected elongated streamwise structures.
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Figure 2:Two-point streamwise, and spanwise, correlation coefficients,Ruu; Rvv; Rww; Rθθ, in the
near-wall region aty+ = 5, (a-c), and in the center region aty+ = 72, (b-d). Solid line,Ruu; ◦ · · ◦ · · ◦ ,
Rθθ; −−− , Rvv; −. − .− , Rww. Dotted line denotes half the computational domain.
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Figure 3:Distribution of mean velocity and temperature for fully developed turbulent plane Couette flow
with Reh = 1, 300 andPr = 1. (a) Solid line, mean velocity;◦ · · ◦ · · ◦ , mean temperature;+ · ·+ · ·+ ,
U+ = y+ and2.55 ln(y+) + 4.3; ? · · ? · · ? , Exp. values, Bech et al. (1995). (b) Solid line,
mean velocity;◦ · · ◦ · · ◦ , mean temperature.

20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y+

(a)

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5

3

y+

(b)

Figure 4: Distribution of Reynolds, thermal stresses, and rms for turbulent Couette flow with Reh =
1, 300 andPr = 1. (a) Solid line, Total stresses;+ · ·+ · ·+ ,−〈u′v′〉; −.− .− , dU+/dy+; ·− ·−·−· ,
Total thermal stress;◦ · · ◦ · · ◦ , −〈v′θ′〉; � · ·� · ·� , dθ+/dy+. (b)Solid line,u′

rms; ◦ · · ◦ · · ◦ ,
v′

rms; · − · − ·− · , w′

rms; −−− , θ′rms; + · ·+ · ·+ , DNS, Bech et al(1995);? · · ? · · ? , exp., Bech
et al(1995);� · ·� · ·� , Aydin and Leutheusser (1991).
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Figures 3(a)-3(b), on the other hand, show the distributionof dimensionless mean velocity
and temperature. The mean velocity in the center of the channel is underpredicted by a3% in
comparison with the experimental data of Bech et al. (1995). And figures 4(a)-4(b) show the
Reynolds, thermal stresses, and root mean square, rms, of velocity and temperature fluctuations.
Figure 4(b) shows the comparison of the rms of the axial velocity, with DNS and experimental
data with relatively good agreement. Figure 4(a) reveals that wall normal turbulent transport of
axial momentum and heat are almost the same for the whole flow.

Therefore, previous results reveal that the developed plane turbulent Couette flow forReh =
1, 300, with computational domain of20πh × 2h × 4πh and discretization of256 × 73 × 256,
is well resolved in the mean and turbulent values.
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Figure 5: Wall normal distribution of correlation coefficients, for developed plane Couette turbulent
flow with Reh = 1, 300. Solid line,ρ(u′θ′); ◦ · · ◦ · · ◦ , d(u′θ′); −−− , ρ(v′θ′);; · · · · · , ρ(u′v′);.

3.2 Dissimilarity from most energetic events

One of the reason the plane turbulent Couette flow is a unique test case in order to study axial
velocity and temperature similarity, is the analogy between Reynolds-averaged axial momentum
and energy equations. These equations are,

0 =
1

Rτ

d2U

dy2
−

d

dy
〈u′v′〉 (4)

0 =
1

PrRτ

d2Θ

dy2
−

d

dy
〈θ′v′〉 (5)
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where the mean values are defined along thex − z plane and time.
As it is seen from dimensionless equations (4 - 5), for the special case ofPr = 1, these

equations, as its boundary conditions for heat transfer in Couette flow with wall constant tem-
perature, are analogous. Thus subtracting equation (5) from equation (4), it results in,

0 =
1

PrRτ

∂2Φ

∂y∂y
−

∂

∂y
〈φ′v′〉 (6)

whereΦ = U − Θ, andφ′ = u′ − θ′.
Therefore, as it was proposed in a previous work (Pasinato, 2007) in which the natural dis-

similarity in a fully developed turbulent channel flow was studied forPr = 1, for convenience
the difference of instantaneous dimensionless axial velocity and instantaneous dimensionless
temperatureφ = u − θ is used as a measure of dissimilarity in the analysis of results. In other
words, the new variable is, as all instantaneous variables,the sum of a mean and a fluctuating
value,φ = Φ+φ′ = (U−θ)+(u′−θ′). And the variance ofφ, normalized by the product of the
rms of axial velocity and temperature,u+, θ+, is used as a normalized measure of dissimilarity
of fluctuating values, as the correlation coefficient is a normalized measure of the correlation of
fluctuating values,

d(u′θ′) =
〈φ′2〉

u+θ+
=

〈u′u′〉 − 〈u′θ′〉

u+θ+
+

〈θ′θ′〉 − 〈u′θ′〉

u+θ+
(7)

whered(u′θ′) is zero when correlation coefficientρ(u′θ′) = 1.
Figure 5 shows the distribution ofd(u′θ′) according to equation (7), and also shows the

distribution of the correlation coefficientsρ(u′,θ′), ρ(u′,v′), andρ(θ′,v′). It is clear from this figure
that dissimilarity is minimum at the top of the viscous layer, approximatleyy+ = 5, as the
correlation coefficient is maximum at this point. On the other hand, dissimilarity is maximum at
the center region of the flow, in contrast with the correlation coefficient that is minimum there.
But, why it used this new measure of axial velocity and temperature fluctuations difference?
Why it is not used the instantaneous second momentu′θ′ as a measure of similarity? And the
answer is that it seems more conveniente, for analysis reason, to look at a function which is the
difference of other two functions, rather than at one that isthe product of them.

According to the mean values definition in the present work for a developed turbulent Cou-
ette flow, the Reynolds averaged form of the mean dissimilarity is the results of the balance
between diffusion and the wall normal gradient of Reynolds and thermal stress,

0 =
1

Rτ

d2Φ

dy2
−

d

dy
(〈u′v′〉 − 〈v′θ′〉) (8)

Reynolds and thermal stress, however, have almost the same distribution across the flow
according to figure 4(a), thusΦ should have an almost linear ditribution iny−direction for
developed turbulent Couette flow.

Then in the following of this section the contribution to dissimilarity between axial velocity
and temperature fluctuations, due to natural phenomena occurring in the wall layer, is studied
with the same approach used in Pasinato (2007), which uses the new variableφ in the analysis.
For completeness reasons the basic of the approach is repeated here. Note that all values of
velocity and temperature fluctuations, and moments, are dimensionless values, and thatPr = 1
for the data used in the numerical experiment here.

Thus the idea in this subsection is to detect an event characterized asimportant dissimilarity
eventwith some algorithm and evaluate their mean contribution tothe mean dissimilarity, as it
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Figure 6: Probability of the most energetic events in the wall layer for a plane turbulentCou-
ette flow with heat transfer, withReh = 1300, and Pr = 1.0, that satisfy the following
conditions. (a) Solid line,P (φ̂′ 2 − φ̄2 ≥ kφ+2); − − − , P (φ̂′ 2 − φ̄2 > kφ+2, û′v′ < 0);

◦ · · ◦ · · ◦ , P (φ̂′ 2 − φ̄2 > kφ+2, θ̂′v′ < 0); · · · · · , P (φ̂′ 2 − φ̄2 > kφ+2, û′v′ < 0, v̂′ <

0); � · ·� · ·� ,P (φ̂′ 2 − φ̄2 > kφ+2, θ̂′v′ < 0, v̂′ < 0).(b) Solid line,

P (φ̂′ 2 − φ̄2 > kφ+2, û′v′ < 0, θ̂′v′ < 0); −−− , P (φ̂′ 2 − φ̄2 > kφ+2, ∂̂p′/∂x < 0).

was defined in equation (7). As detection algorithms for animportant dissimilarity event, one
analogous to those used in the literature to detect burst or ejection events, was used. The most
common of these algorithms are theuv quadrant 2, the variable interval time average (VITA),
and theu−label techniques. And they have been used in order to investigate burst period and
high pressure peaks frequency in wall turbulence (Lu and Willmarth, 1973; Blackwelder and
Haritonidis, 1983; Luchik and Tiederman, 1987; Shah and Antonia 1988; Johansson, Her, and
Haritonidis 1987).

Although there is not doubts that the most important dissimilarity events in the wall layer
are produced by events like as burst or ejection, and sweeping motions, in this work, however,
the idea is not to detect these events and then evaluate the dissimilarity associated to them. On
the contrary, the idea is to detect the most important instantaneous oscillations inφ, and then
evaluate their importance in the production of mean dissimilarity. Of course that at the same
time that an important event is detected, it is detected alsowhich kind of events - sweeping
motin, ejection, etc - are associated with it. In other words, in this works two or three important
dissimilarity events are detected and its dissimilarity contribution is evaluated, not matter they
belong or not to the same burst, ejection or sweeping motion events.

Then the algorithms used to detect events that yields an important dissimilarity, based on the
VITA and the second quadrant algorithms, detect one event when the variance of the fluctuation
of φ is,

φ̂′ 2 − φ̄2 ≥ kφ+2 (9)

where the mean values̄φ, and rmsφ+ are evaluated from the whole sample, and the wide-hat
symbol means a mean values in the time filtering intervalT ,
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Figure 7:Dissimilarity contribution of the most energetic events in the wall layer for a planeturbulent
Couette flow with heat transfer, withReh = 1300, andPr = 1.0, that satisfy the following condi-

tions. (a) Solid line, Total dissimilarity of the whole sample;+ · · + · · + , P (φ̂′ 2 − φ̄2 ≥ kφ+2);
− − − , P (φ̂′ 2 − φ̄2 > kφ+2, û′v′ < 0); ◦ · · ◦ · · ◦ , P (φ̂′ 2 − φ̄2 > kφ+2, θ̂′v′ < 0); · · · · · ,
P (φ̂′ 2 − φ̄2 > kφ+2, û′v′ < 0, v̂′ < 0); � · ·� · ·� ,P (φ̂′ 2 − φ̄2 > kφ+2, θ̂′v′ < 0, v̂′ < 0).

φ̂(t, T )′ =
1

T

∫ t+T/2

t−T/2

φ′(τ)dτ (10)

The algorithms above have two parameters, the filtering timeperiodT and the threshold
k. k was taken equal to2.5 based on the pdf ofφ (values ofφ out of the interval±2.5φ+),
using the same criteria used in Pasinato (2007) for a turbulent channel flow. As regarding the
second parameter, the filtering periodT , this period in dimensionless form used in this work
wasT+ ≈ 1.2, which is out the range,6 < T+ = tu2

τ/ν < 13, for dimensionless burst
period found in the literature. On the other hand, because the mean and the rms values ofφ, φ+

andφ̄, used in the algorithms are evaluated for the whole sample, the algorithms can be used
for instantaneous values without any filter. Moreover, numerical tests were done which shown
that results were only slightly sensible to the filtering period for values ofT+ < 10.

Therefore, using the algorithms above, once an event that qualify as important dissimilarity
event was detected, conditional probability with different conditions were used in order to char-
acterize whether these events with strong dissimilarity inaxial velocity and temperature, satisfy
a second, or a second and a third condition. Some of the conditions used were,

P (φ̂′ 2 − φ̄2 > kφ+2, û′v′ < 0) (11)

aiming at to detect how many of the events detected as important dissimilarity events, also
belong to events in the second quadrant, Q2.
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P (φ̂′ 2 − φ̄2 > kφ+2, û′v′ < 0, v̂′ < 0) (12)

aiming at to detect events characterized as important dissimilarity events, that belong to Q2, for
which the wall normal velocity is negative (sweeping motion).

P (φ̂′ 2 − φ̄2 > kφ+2, ∂̂p′/∂x < 0) (13)

P (φ̂′ 2 − φ̄2 > kφ+2, ∂̂p′/∂x > 0) (14)

aiming at to detect whether dissimilarity is associated with local instantaneous favorable or
adverse axial pressure gradient.

Then figures 6(a)-6(b)-7 show the results of this section. Figure 6(a) shows that the prob-
ability of the events characterized as important dissimilarity events, is approximately constant
along the whole flow between plates and close to10%. This means that the number of events
with strong dissimilarity in the wall layer for a developed turbulent Couette flow are only a10%
of the total. This figure shows also that70% of events that produce dissimilarity belong to Q2
quadrant for velocity, and almost the same percentage belong to the Q2 quadrant for tempera-
ture. And moreover these values for both velocity and temperature are aproximately constant
along the whole flow. However, from these events that belong to Q2 quadrant in both fields,
the probability of those that are sweeping motions, or inrushes of hot fluid with high momen-
tum toward the walls, decreases toward the centerline of theflow, from 70% at the wall to a
30% percent at the centerline. In other words, it is seen that theinrushes or movements of high
momentum toward the wall are felt in the whole flow, and that the number of events detected
with this condition is more or less equal to70% in the viscous layer, decreasing slowly afar
from the wall. On the other hand, figure 6(b) shows that not allevents that yields important
dissimilarity are in Q2 quadrant for velocity, and at the same time in Q2 quadrant temperature.
At the centerline only a60% of events in Q2 quadrant for velocity are also in Q2 quadrant for
temperature. As regards the instantaneous local pressure gradient, figure 6(b) shows that it is
not a direct link at all to velocity and temperature fluctuations dissimilarity.

Figure 7 in first place shows that the sample used in the analysis of event detection, have the
same distribution of mean dissimilarityd(u′θ′) to that from the whole period of time integration
for definition of mean values (figure 5). And shows also that the contribution to dissimilarity
d(u′θ′) from the most energetic events is nearly constant from the wall to the centerline, close
to or something less than50%. Other interisting result from figure 7 is that the major partof
the contribution tod(u′θ′) by the most energetic events are from events of the Q2 quadrant. And
from this last contribution, the sweeping motions toward the wall account for a50% in the center
region of the flow, and for the total at the wall. In other words, at the very near-wall sweeping
motions are responsable for almost all dissimilarity associated with most energetic events.

These are basically the most important results from the analysis in this section. And it can
be concluded that for developed turbulent Couette flow, as it is for developed turbulent channel
flow, it is the background turbulence the main source of natural dissimilarity between velocity
and temperature fluctuations. In the next section a short analysis in the frequency domain is
done in order to see how the energy of the fluctuations ofφ, or oscillations of velocity and
temperature differences, change from the wall to the centerline of the flow.
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3.3 Dissimilarity analysis in the frequency domain

Figures 8, 9(a), and 9(b) show the spectra for the fluctuations of velocity components, temper-
ature, the difference between axial velocity and temperature, φ, and pressure, normalized by
their rms, at four positions from the wall. These position are aty+ = 5, or final of the viscous
layer,y+ = 16, or buffer region,y+ = 30, or beginning of the logarithmic region, andy+ = 72,
or center region of the flow. There were selected these four positions because they give a more
or less complete picture of the spectra modification in the wall layer. In these figures is plotted
the decimal logarithmic ofωδ/uτ in the abscissa, and the product of(ωδ/uτ )Φa in ordinate,
whereΦa is the spectral density function of the variablea normalized to unity. The area un-
der any section of figures 8, 9(a), and 9(b) is proportional tothe fraction of total〈a′ 2〉/a+2 in
that particular frequency range. In other words, the spectra show the energy distribution of the
normalized fluctuations.

Figure 8 shows the spectra ofu′, andθ′, and its difference, at the four positions. From this
figure it is clear a shift toward higher frequencies of all spectra, but mainly ofφ′, and thusθ′.
And this difference increases quickly in the first three positions from the wall. Then this ten-
dency decreases slightly toward the center region. In both spectra for velocity and temperature,
as positiony+ increases for the first three positions, the peaks decreasesas its position change
toward higher frequencies. This results agree with was found by Antonia et al. (1987), who did
observations in a heated turbulent boundary layer fory+ < 40. Then at the center of the flow
in figure 8 the peaks ofu′ andθ′ spectra increases in comparison to those in the beginning of
logarithmic layer,y+ = 30.

On the other hand, figure 9(a) shows the spectra forv′, w′, andφ′. And figure 9(b) shows
a comparison of previous spectra ofu′ andθ′ with p′ spectrum. From these figures it is clear
the energy distribution generated by instantaneous pressure gradient. And it seems that the
wall normal velocity component produces the major part of axial velocity and temperature fluc-
tuations dissimilarities, taking energy from the streamwise velocity through the instantaneous
pressure gradient.

Therefore, a picture of axial velocity and temperature fluctuations in the frequency domain
is that the whole kind of turbulent events in the wall layer yields a gradual de-correlation, taken
energy form velocity and injecting it in temperature mainlytrough wall normal velocity, and in
second place by spanwise velocity. Although it seems that spectra have a convergence toward
the center of the flow, axial velocity has always its maximum energy at lower frequencies.
Although it seems to be a simple picture explained in most turbulence text book (Tennekes, and
Lumly, 1972), the previous analysis gives information thatwill be worth in future numerical
experiments, and heat transfer modeling in turbulent flows.

4 CONCLUSION

A direct numerical simulation, DNS, of a fully developed turbulent plane Couette flow with
heat transfer has been performed. The main goal was to look atnatural dissimilarity, and axial
momentum and thermal energy transport mechanism in this kind of turbulence. The Reynolds
number,Reh, is 1,300 as a function of half the walls distance and half thevelocity of the moving
wall. ThisReh gives a Reynolds as a function of half walls distance and friction velocity,Reτ ,
of about 84. The energy equation was solved for a molecular Prandtl number, Pr, equal 1, and
with isothermal boundary conditions at both walls. The temperature was considered as a passive
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Figure 8:Frequency analysis of dissimilarity for a developed turbulent Couette flow with heat transfer,
for Reh = 1300, andPr = 1.0. Spectral density function ofu′, θ′, andφ′, at four positions from the
wall, (top-left)y+ = 5; (top-right)y+ = 16; (bottom-left)y+ = 32; (bottom-right)y+ = 72. Solid line,
a = u′/u+; −−− , a = θ′/θ+; · · · · · , a = φ′/φ+.
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Figure 9:Frequency analysis of dissimilarity for a developed turbulent Couette flow with heat transfer,
for Reh = 1300, andPr = 1.0. (a) Spectral density function ofv′, w′, andφ′, at four positions from
the wall, (top-left)y+ = 5; (top-right)y+ = 16; (bottom-left)y+ = 32; (bottom-right)y+ = 72. Solid
line, a = v′/v+; − − − , a = w′/w+; · · · · · , a = φ′/φ+. (b) Spectral density function ofu′, θ′, φ′

andp′, at four positions from the wall, (top-left)y+ = 5; (top-right)y+ = 16; (bottom-left)y+ = 32;
(bottom-right)y+ = 72. Solid line,a = u′/u+;− − − , a = θ′/θ+; · · · · · , a = φ′/φ+; ◦ · · ◦ · · ◦ ,
a = p′/p+.
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scalar.
The main results of this work show that axial velocity and temperature fluctuations have

the same kind of natural dissimilarity present in turbulentchannel flow. While natural de-
correlation between axial velocity and temperature startsin the very near-wall region due to the
most energetic events there, the contribution of these events to the total natural dissimilarity is
less than fifty percent in the whole flow.

Analysis of longitudinal velocity and temperature fluctuations in frequency domain, using
spectral density functions, shows that the main cause of natural dissimilarity is the shift toward
higher frequencies of temperature in comparison to axial velocity, in the viscous, buffer, and
beginning of the logarithmic region. Based on the spectra of pressure and wall normal fluctu-
ations, it is clear that wall normal velocity, which receives energy from axial velocity through
the pressure field, plays an important role in the natural dissimilarity of streamwise velocity and
temperature fluctuations.

Therefore, the contribution to dissimilarity of the most energetic events in the wall layer is
important, but do not explain the major causes of correlation degradation between axial velocity
and temperature fluctuations toward the center of the flow. Neither they explain the major
fraction of dissimilarity in the viscous and buffer regionswhere these events are the strongest.
This result is the same obtained for turbulent channel flow. As it was verified in a previous work
for developed turbulent channel flow (Pasinato, 2007), for developed plane turbulent Couette
flow, the wall normal velocity plays a fundamental role in theaxial velocity and temperature
fluctuations dissimilarity. In other words, it is through wall normal velocity that thermal field
receives most energy from the longitudinal velocity. This is a simple picture that is explained
in most book on fundamental aspects of turbulence, however the analysis presented here gives
information possible to be used in future numerical experiments, or heat transfer modeling in
perturbed turbulent flows.

ACKNOWLEDGMENT

This work was partially sponsored by the Air Force Office of Scientific Research under
Grant No. FA9550-07-1-0393.

REFERENCES

Andersson H.I., M. Ligren, and R. Kristoffersen. Roll cells inturbulent plane Couette flow:
Reality or artifact?Proc. of the Sixteenth Int. Conf. on Numerical Methods in Fluid
Dynamics. Springer-Verlag, Berlin, pp. 117-122, 1998.

Aydin E.M., and H.J. Leutheusser. Plane-Couette flow betweensmoth and rough walls.Exp.
Fluids, 11, pp. 302-312, 1991.

Akselvoll K., and P. Moin. Large-Eddy simulation of turbulent confined coannular jets and
turbulent flow over a backward facing step. Report TF-63, Thermoscience Division, De-
partment of Mechanical Engineering, Stanford University,1995.

Antonia R.A., H.Q. Danh and a. Prabhu. Response of a turbulent boundary layer to a step
change in surface heat flux.J. Fluid Mech., 80, 153, 1977.

H.D. PASINATO1634

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Antonia R.A. and H.Q. Danh. Structure of temperature fluctuations in a turbulent boundary
layer.Physics of Fluids, 20(7), 1050-1057, 1977.

Antonia R.A. Behavior of the turbulent Prandtl number near thewall. Int. J. Heat Mass
Transfer, 23, 906-908, 1980.

Antonia R.A., L.V. Krishnamoorthy, and L. Fulachier. Correlation between the longitudinal
velocity fluctuation and temperature fluctuation in the near-wall region of a turbulent
boundary layer.Int. J. Heat Mass Transfer, 31(4), 723-730, 1987.

Bech K.H., N. Tillmark, P.H. Alfredsson, and H.L. Andersson.An investigation of turbulent
plane Couette flow at low Reynolds numbers,J. Fluid Mech.. 286, 291-325, 1995.

Blackwelder R.F., and J.H. Haritonidis. Scaling of the bursting frequency in turbulent bound-
ary layers.J. Fluid Mech.. 132, pp. 87, 1983.

Debusschere B., and C.J. Rutland. Turbulent Scalar Transport Mechanisms in Plane Channel
and COuette Flows.J. Fluid Mech., 2000.

Fulachier L. and R. Dumas. Spectral analogy between temperature and velocity fluctuations
in a turbulent boundary layer.J. Fluid Mechanics, 77, 257-277, 1976.

Hamilton J.M., J. Kim, and F. Waleffe Regeneration mechanismof near-wall turbulence struc-
tures.J. Fluid Mech., 287, 317-348, 1995.

Hishida M., and Y. Nagano. Structure of turbulent velocity and temperature fluctuations in
fully developed pipe flow,J. Heat Transfer. 101, 15-22, 1979.

Inaoka J., J. Yamamoto, and K. Suzuki. Dissimilarity between heat transfer and momentum
transfer in a disturbed turbulent boundary layer with insertion of a rod - modeling and
numerical simulation.Int. J. Heat Fluid Flow, 20, 290-301, 1999.

Iritani Y., N. Kasagi, and M. Hirata. Heat transfer mechanism and associated turbulence struc-
ture in the near wall region of a turbulent boundary layer, inTurbulent Shear Flow. 4,
223-234, 1985.

Johansson A.V., J.Y. Her, and J.H. Haritonidis. On the generation of high-amplitude wall-
pressure peaks in turbulent boundary layer and spots.J. FLuid Mech, 176, pp. 119-142,
1987.

Kasagi K., Y. Tomita, and A. Kuroda. Direct numerical simulation of the passive scalar field in
a turbulent channel flow.Transaction of ASME, Journal of Heat Transfer, 114, 598-606,
1992.

Kasagi N. and Y. Ohtsubo. Direct numerical simulation of lowPrandtl number thermal field
in a turbulent channel flow. InTurbulent Shear Flow, 8, 97-119, 1993.

Kawamura H., H. Abe, and Y. Matsuo. DNS of turbulent heat transfer in channel flow with
respect to Reynolds and Prandtl number effects.Int. J. Heat Fluid Flow, 20, 196-207,
1999.

Mecánica Computacional Vol XXVII, págs. 1619-1636 (2008) 1635

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Kim J., and P. Moin. Application of a fractional-step methodto incompressible Navier-Stokes
equations.J. Comp. Physics, 59, pp. 308-323, 1985.

Kim J., and P. Moin. Transport of Passive Scalar in a Turbulent Channel Flow. InTurbulent
Shear Flow, 6, 86-96. 1989.

Komminaho J., A. Lundbladh, and A. Johansson. Very large structure in plane turbulent Cou-
ette flow.J. Fluid Mech., 320, 259-285, 1996.

Kong H., H. Choi, and J.S. Lee.Dissimilarity between the velocity and temperature fields in a
perturbed turbulent thermal boundary layer.Physics of Fluids, 13(5), 1466-1479, 2001.

Luchik T.S. and W.G. TIederman. Timescale and structure of ejections and bursts in turbulent
channel flowsJournal of Fluid Mechanics. 174, 529-552, 1987.

Lu S., and W.W¿ Willmarth. Measurements of the structure of Reynodsl stress in a turbulent
boundary layer.Journal of Fluid Mechanics. 60, pp. 481, 1973.

Na Y., D.V. Papavasiliou, and T. J. Hanratty. Use of direct numerical simulation to study the
effect of Prandtl number on temperature fields.Int. J. Heat and Fluid Flow, 20, 187-195,
1999.

Nagano Y. and M. Tagawa. Statistical characteristics of wall turbulence with a passive scalar,
Journal of Fluid Mechanics. 196, 157-185, 1988.

Pasinato H.D., and K. Squires. On the Effect of Perturbed Channel Flow on Thermal Field,
ENIEF2006, Santa Fe, 2006.

Pasinato H.D. Velocity and Temperature Natural Dissimilarity in a Turbulent Channel Flow,
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