
NUMERICAL SIMULATION OF THE HEAT TRANSFER IN THREE
DIMENSIONAL GEOMETRIES

María V. Santosa,b, Noemí Zaritzkya,c, Alicia Califanoa and Victoria Vampab

aCentro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT-La Plata,
CONICET; Facultad de Ciencias Exactas, UNLP –. 47 y 116, La Plata (1900). Argentina

b Área Dep. Ciencias Básicas, Facultad de Ingeniería, UNLP
c Área Dep. Ingeniería Química, Facultad de Ingeniería, UNLP

Keywords: three dimensional geometries, Heat Transfer, Finite Element Method, Mesh
Processing.

Abstract. A finite element procedure for transient three dimensional (3D) heat transfer problems was
developed and implemented. The domain was divided into linear tetrahedral elements using a three
dimensional mesh generator software. A pre-processing program was developed in order to the mesh
information to be compatible with finite element program. All the numerical algorithms have been
implemented using Matlab 6.5. Results were validated by comparing with analytical solutions of heat
transfer in a finite cylinder and a sphere, and with the numerical solution generated by commercial
software for heating an irregular piece of meat. A post-processing code was implemented in order to
obtain further information from the results, such as the temperature prediction at an arbitrary point,
and the average temperature. The code can also be used to determine concentration profiles in mass
transfer problems (3D domains) and to simulate heat transfer problems in food processing with
convective boundary conditions. The open source program can be easily applied with the important
advantage that it can be coupled with macroscopic balances, microbial inactivation rates, or with
different objective functions that optimize the process (e.g. quality attributes).

Mecánica Computacional Vol XXVII, págs. 1705-1718 (artículo completo)
Alberto Cardona, Mario Storti, Carlos Zuppa. (Eds.)

San Luis, Argentina, 10-13 Noviembre 2008

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

INTRODUCTION

Many engineers today are required to routinely solve complex problems in heat and mass
transfer, structural mechanics, fluid dynamics, vibrations, and acoustics, using computational
tools such as solid modelers, computer-aided design and finite element simulation software
packages. The proficiency in using such systems enables engineers to model complex
engineering design and to analyze problems efficiently. Commercial software based on finite
element analysis is often used as a “black box” program, where the user is not allowed to see
its inner code. Even though many physical problems can be simulated with a software
package, simulations involving safety and quality of foods in biological systems have not yet
been incorporated (Martins, 2004). Some of the advantages of working with an open
computer program are, for example, the ability to combine the microbial inactivation kinetics,
food quality, and manufacturing cost equations, which are then used for optimization
techniques in the food industry (Erdogdu et al., 2005; Martins, 2006, Santos et al., 2008). In
commercial software packages the ability to couple macroscopic heat balances is generally
not possible, even though it is useful for the evaluation and prediction of the actual industrial
conditions. Besides commercial softwares are very expensive for small scale industry.

For three dimensional (3D) problems the finite element method is often more difficult to
implement, in contrast with one or two dimensional problems. An important issue when
trying to generate an open source program in three dimensions is that the mesh data produced
by external mesh generators are hard to integrate with other codes, especially because there is
a lack of information about the assignment of the node points and elements numbering.
Therefore, the ability to understand and to use the mesh information is valuable to create a
three dimensional finite element program. Preprocessing of the mesh data must be
implemented in order to be compatible with the finite element code, as well as the
postprocessing of the results.

Many food engineering processes involve heat transfer with convective boundary
conditions. For regular shapes a finite difference method gives accurate predictions, however
the finite element method is more suited when dealing with non-conventional shapes (Arce et
al., 1983, Ngadi et al., 1996), especially in three dimensions.

The goals of this work are:

• to develop a three dimensional finite element program to solve heat or mass transfer
equations in transient state with convective boundary conditions.

• to develop a preprocessing program that combines the mesh information from 3D
geometries obtained from an external mesh generator in order to be compatible with
the main program.

• to generate a postprocessing program that calculates the dependent variable
(temperature or concentration) in any given point of the domain and also integrates
these variables on the surface or volume of the irregular object.

• to validate the model comparing the output with analytical solutions and commercial
software simulations of the three dimensional problems.

1 MATHEMATICAL MODEL

The governing differential equations for transient state heat conduction in a region Ω with
convective boundary conditions are the following (Carslaw and Jaeger, 1959):

M.V. SANTOS, N.E. ZARITZKY, A.N. CALIFANO, V. VAMPA1706

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

T)k(
τ
ΤρC p −⋅=
∂
∂ t in Ω (1)

)TT(hT ∞−=⋅nk- Ωδ in (2)

The variable T is the temperature scalar function T(x, y, z, t), T∞ is the external fluid
temperature, k is the thermal conductivity (isotropic), Cp the specific heat, ρ the density, n the
outward normal unit vector to the boundary surface, h the surface heat transfer coefficient,

and t)
z

,
y

,
x

(
∂
∂

∂
∂

∂
∂

= where x, y, and z are the cartesian coordinates. The initial condition is

T=T0 at t= 0 in Ω .

Representing the temperature using a finite dimensional space Vh with shape functions H,

 (Galerkin Method) (
∧

⋅= TH z)y,(x,T~ Zienkiewicz and Taylor, 1994a; Zienkiewicz and
Taylor, 1994b; Bathe, 1996) and applying the divergence theorem the following equation is
obtained:

0)(dTh)](dk)())(dh([))(dC(p =+⋅⋅+− ∫∫∫∫ ∞

∧

ΩδΩΩδΩ

ΩδΩΩδΩρ ttt
*

t HTHHHHTHH (3)

 CG KG FG

Where CG is the global capacitance matrix, KG is the global conductance matrix, and FG the

global force vector. is the vector that represents the temperature values at the node points,

and represents the

∧

T

t∂
∂

∧

T*
T . This semi discrete problem (equation (3)) is a system of stiff

ordinary differential equations. For the time discretization we considered the classical
backward Euler method (Johnson, 1986).

1.1 Mesh generation and preprocessing

The spatial discretization of the domain was done by means of a mesh generator using
linear tetrahedral elements. The mesh information given by the program is generally
transferred using three important matrices; the “p”, point matrix, “tm” tetrahedral matrix, and
“e” boundary matrix. The point matrix represents the x, y, and z coordinates of the node points
given in three columns, where each row represents the node number. The “tm” matrix gives
the element connectivity with the nodes; it is a 4 x N matrix, being N the number of elements;
in each row the node numbers are given in a specific order, according to the numbering of the
reference tetrahedral described in Figure 1.

Mecánica Computacional Vol XXVII, págs. 1705-1718 (2008) 1707

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure1: Reference tetrahedral

 The linear shape functions are the following:

h1= r
h2= s
h3= t
h4= 1-r-s-t

The boundary matrix “e” contains information of the node points (three) that are the
vertices of the surface triangle in contact with the interface Ωδ . However there is no
information of the element number to which this surface triangle belongs. This is an important
issue when computing the element matrices, since the finite element code computes a “for”
loop by elements.

The triangle surface in contact with the interface contains three of the four vertices. These
three node points are together in a particular order in the element matrix “tm”. As four is the
number of node points of the tetrahedral, and three is the number of node points in the
triangle surface the program must include as many “if” loops as the total combinations that
the three node points can be found in the “tm” matrix which amounts to 24 (six for each of the
four surface triangles).

The pre-processing program helps to integrate the surface information required by the
main program. As an example one of the 24 “if” loops in Matlab language, to determine the
element number to which the surface triangle belongs, considering that length (e) is the
number of boundary elements and length (tm) equals the total number of elements;

for k=1:length(e)
for i=1:length(tm)

 %%%First main “if” loop of one of the 24 if loops%%%%%%%%%
 if tm(1,i)==e(1,k)
 if tm(2,i)==e(2,k)
 if tm(3,i)==e(3,k)
 element(1,k)=1;
 element(2,k)=1;
 element(3,k)=1;

r

s

Node 1

Node 2

Node 3

t

Node 4

M.V. SANTOS, N.E. ZARITZKY, A.N. CALIFANO, V. VAMPA1708

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

 element(4,k)=0;
 element(5,k)=i;
 end
 end
 end
%%%%%end of the first main “if” loop

The element number that contains the surface triangle is accumulated in the matrix “element”
in the fifth row. The value zero is assigned to the node that does not belong to the surface
triangle; in this example the shape function h4 is zero, thus row 4 of the element matrix is
zero. The case h4 = 0 is named as surface triangle S4, which involves local node points 1, 2,
and 3. The surface triangle S1 involves the local node points 2, 3 and 4 (h1 = 0), S2 involves
the local node points 1, 4, and 3 (h2 = 0), and S3 the node points 1, 2, 4 (h3 = 0). Figure 2
illustrates all possible surface triangle cases and the node points that correspond to each
surface type.

 a) b)

c) d)

Figure 2: Surface triangles and local node points that constitute each surface type. a) S1, b) S2, c) S3, d) S4

The Figure 2 d) which is the surface type S4 corresponds to the case described in the example.

1.2 Finite element program

The preprocessed mesh information is then used in the main program, which is written
following the construction scheme presented in Becker et al., (1983). Figure 3 shows a flow
chart explaining how the program works, where det(J) is the determinant of the Jacobian, aux
is the module of the normal outward vector, and w is the vector that contains the weights of
the quadrature integration rules.

Mecánica Computacional Vol XXVII, págs. 1705-1718 (2008) 1709

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 3: Flow chart of the finite element program.

(#) The calculation concerning the boundary integration is explained in detail in the following
paragraphs:

For each element when the computation of the Ke and Ce element matrices is completed,
the boundary integration is performed if the tetrahedral contains a triangle that is exposed to
the surface. The “element” matrix contains information of the surface type involved: S1, S2,
S3 or S4. In a three dimensional space the integration of a function over a surface is
represented by the following equation, (Leithold, 1998)

 dAfdSf
AS
∫∫∫∫ = n (4)

If i =N the element loop has finished else
continue for next element

Assembly of element matrices into global
matrices KG, CG, FG

Compute the element matrix and force vector
Kq=Kq+ 0.5*H'*h*H*det (J)*w*aux

Fe=Fe+ 0.5*H'*h*H*Te*det (J)*w*aux
Area=Area+ w*det(J)*0.5*aux

Integration rule for
triangles

Loop on Boundary Conditions (#)

Integration rule for
tetrahedral

Compute the element matrices
Ke=Ke+1/6*det (J)*w* tH∇ *k* H∇
Ce=Ce+1/6*det (J)*w*H'*H*ρ *Cp

Loop on total elements N
For i=1:N

Loading: Mesh data, initialization of
matrices and variables, and thermal

properties

Loop on time
Calculate Tt+∆t

End

M.V. SANTOS, N.E. ZARITZKY, A.N. CALIFANO, V. VAMPA1710

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

As an example, if it is assumed that S4 has a boundary condition, the three involved node
points that represents the surface is:

 c1(x-x1) + c2 (y-y1) + c3 (z-z1) = 0 (5)

where c1, c2, and c3 are:

 c1= (y3-y4)*(z2-z4)-(z3-z4)*(y2-y4) (6)

 c2= (z3-z4)*(x2-x4)-(x3-x4)*(z2-z4) (7)

 c3= (x3-x4)*(y2-y4)-(y3-y4)*(x2-x4) (8)

When calculating the normal vector to the surface triangle special attention must be
focused on the detection of a surface that is parallel to a coordinate plane, therefore the
maximum value of cI with I= 1, 2, or 3 is identified by using the simple Matlab sentence
code,

[Value, Imax] = max (abs(c)) where c = [c1 c2 c3]

 The next step calculates the Jacobian of the transformation y=y(r,s), z=z(r,s), since the
surface is projected over the plane “yz” when c1 is the maximum value of the vector c. The
Jacobian is defined as follows:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

dr
dz

ds
dz

dr
dy

ds
dy

J (9)

Finally, the evaluation of the function is done by numerical integration using the quadrature
rule points for the triangle, obtaining the following expression (Bathe, 1996):

 (10) ∑∫∫ ≅
i

aux*5.0*)Jdet()i(w))i(s),i(r(fdSf

nWhere i denotes the corresponding quadrature integration point for the triangle, aux = , and

w(i) are the weights of the quadrature rules (Hughes, 1987). The final computation for each
element of the matrix Kq, vector Fe, and the area of the element triangle can be calculated,
where the f(r(i), s(i)) is a polynomial function formed by multiplications of the interpolating
functions (see Figure 3).
 The time discretization with the α -Method (Segerlind, 1984), using =1 was used,
therefore an implicit scheme was implemented (see equation

α
14). It was used a time step of 1

s (∆t =1 s).
tΔtt TKGCGFGTKGCG ~)t(~)t(11 αΔαΔ −+=+ −+− (11)

1.3 Postprocessing

The results can be obtained using a postprocessing program that enables the user to
calculate, for example, the temperature at any given point in the domain. A subroutine or
function such as the next sentence (in Matlab language) can be implemented where the input

Mecánica Computacional Vol XXVII, págs. 1705-1718 (2008) 1711

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

information are (for the point of interest M) the x, y, z coordinates of the point, and the “p”
and “tm” matrices. The output information involves the node points and the interpolation
functions evaluated at M.

function [h1,h2,h3,h4,node1,node2,node3,node4]=pospro(x, y, z, p, tm)

The function “pospro” calculates for each element the distance from M to the geometric
center of the tetrahedral, and finds the least square distance storing the element number. A
few code lines are shown below as an example.

for i=1:length(tm)

 %% square distance
 xnode1=p(tm(1,i),1)
 ynode1=p(tm(1,i),2)
 znode1=p(tm(1,i),3)

xm=(xnode1+xnode2+xnode3+xnode4)/4
………….
dc(i)=(xm-x)^2+(ym-y)^2+(zm-z)^2
end

%%%%find minimum distance%%%%%%%%%
[dcmin , element] = min(dc)

 Since the nodes that constitute the element are known, as well as their coordinates, the x
coordinate of the point M is written as:

 x = xnode1*h1+xnode2*h2+xnode3*h3+xnode4*h4 (12)

 Combining the interpolation functions, h4=1-h1-h2-h3, a simple system of three equations
with three unknown variables h1, h2 and h3 is defined. With these data, the temperature (or
concentration) at any point M is:

 T=T(node1)*h1+T(node2)*h2+T(node3)*h3+T(node4)*h4 (13)

 When the final concentration of a substance is the object value to be found, the
concentration values of the nodes are stored and the computation of the volume is required.

for n=1:length(tm)
C1=c(tm(1,n))
C2=c(tm(2,n))
C3=c(tm(3,n))
C4=c(tm(4,n))

for i=1:pp %%%%%integration points in tetrahedral

Cp=C1*h1+C2*h2+C3*h3+C4*h4
 Volume=Volume+ det(J)*w/6
 Cm=Cm+ Cp*det(J)*w/6

End
End
Cfinal = Cm/Volume

M.V. SANTOS, N.E. ZARITZKY, A.N. CALIFANO, V. VAMPA1712

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

2 RESULTS AND DISCUSSION

2.1 Code validation and testing of the numerical program with analytical solutions

The analytical solution of the heat transfer with convective boundary conditions in a
sphere is well known (Welty, 1974, Carslaw and Jaeger, 1959), therefore it was used to
corroborate the accuracy and convergence of the numerical temperature predictions using
different mesh sizes. The thermal properties of an acrylic material were used (k=0.2075 W/m
ºC, Cp=1464 J/ kg ºC, ρ =1180 kg/m3). The initial temperature of the solid was 20º C and the
fluid temperature was 60.3º C, and the heat transfer coefficient was 55 W/m2 ºC. The radius of
the sphere (r) was 0.0152 m.

The mesh information was obtained using a mesh generator called “DistMesh” (Perssons
and Strang, 2004). This program is a simple MATLAB code that generates unstructured
triangular and tetrahedral mesh. Figure 4 shows an example of two meshes used for the
calculations.

a) b)

Figure 4: Different meshes used in the program, a) Mesh 2 b) Mesh 4.

100
T

TTe
a

na ⋅
−

=of the percentage error (The infinite norm,
∞

) was calculated for

each time step in three points in the domain: center (r=0), middle point (r= 7.6*10-3m) and a
boundary point (r=0.0152m). The time required by the CPU to solve the numerical problem
was also computed as timecpu given in minutes (see Table 1). The PC used for the simulations
was an Intel(R) Core(TM) 2 6300 with a processor speed of 1.86 GHz and has a RAM
memory of 2GB.

Mecánica Computacional Vol XXVII, págs. 1705-1718 (2008) 1713

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

c,
e

∞ m,
e

∞ b,
e

∞
 timecpu

Mesh 1
142 node points 10.92 8.75 6.89 0.23
515 elements
Mesh 2
592 node points 3.75 1.70 3.86 1.02
2726 elements
Mesh 3
1908 node points 0.95 0.73 0.84 11.92
9573 elements
Mesh 4
4500 node points 0.37 0.32 0.23 66.66
23695 elements

Table 1: Maximum percentage error for different meshes and computational time required.

It can be seen that there was an improvement of the solution as the number of node points
increases, however the computational cost becomes higher. The optimal mesh that balanced
the numerical effort in achieving an accurate solution and the execution speed of the code was
Mesh 3, since the numerical error was low (less than 1%) and CPU time, acceptable.

Secondly, the analytical solution of a finite acrylic cylinder was also compared with the
numerical predictions using three different meshes. The height of the cylinder used was
0.0304 m and the radius was 0.0152 m. The same thermal properties and initial conditions
were used.

∞
eFigure 5 shows as an example two of the meshes used. The was calculated in

three points of the domain; center, middle point and a border point as well as the
computational time required for the program to run the simulations (see Table 2).

a) b)

Figure 5: Different meshes for the finite cylinder used in the program, a) Mesh 3 b) Mesh 1.

M.V. SANTOS, N.E. ZARITZKY, A.N. CALIFANO, V. VAMPA1714

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

c,
e

∞ m,
e

∞ b,
e

∞
 timecpu

Mesh 1
392 node points 4.15 1.99 8.23 0.71
1609 elements
Mesh 2
957 node points 2.73 0.88 3.77 2.98
4373 elements
Mesh 3
2960 node points 0.73 0.58 1.86 33.5
14795 elements

Table 2: Maximum percentage error for different mesh and computational time required.

It can be observed that the numerical results for the finite cylinder satisfactorily agreed

with the analytical solutions. The
∞

e decreased as the number of elements increases, but the
computational cost became also higher. The choice of the mesh used for the numerical
program must be made balancing the loss in accuracy against savings in computational cost.
In this case an optimum mesh selection could be an intermediate between Mesh 2 and Mesh
3.

2.2 Code testing in a complex 3D geometry with finite element software

Finally, the program was used to simulate cooking of meat piece (semi-tendinousus
muscle), where the cross-section was scanned and digitalized in order to create the irregular
domain (Califano and Zaritzky (1993)). The mesh generated is shown in Figure 6 a) and it
was obtained form the software package COMSOL, where the mesh information was
exported from the program as a structure named “fem”. The mesh consisted of 3112 node
points and 13735 elements. The irregular shaped meat cut had two domains which
corresponded with two set of different thermal properties as shown in Figure 6 b). The
thermal properties for the meat and fat were obtained by Califano and Zaritzky, (1993) and
the thermal processing conditions are given in Table 3. The numerical prediction in a center
point (7.65, 5.78, 3.5) and border point (3.84, 7.56, 3.5) given in centimeters were compared
with the output temperatures of the software (see Figure 7).

Mecánica Computacional Vol XXVII, págs. 1705-1718 (2008) 1715

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

y

x
z

Figure 6: a) Mesh used for simulation b) Food composition: Meat (orange) and fat (yellow).

Thermal Properties and Process Conditions
Initial Temperature (ºC) 14.6
Fluid Temperature (ºC) 70
Surface Heat Transfer Coefficient h (W/m2 ºC) 300

Meat
Thermal Conductivity (W/m ºC) 0.454
Specific Heat (J/kg ºC) 3477.8
Density (kg/m3) 969.2

Fat
Thermal Conductivity (W/m ºC) 0.175
Specific Heat (J/kg ºC) 4111.95
Density (kg/m3) 930
Table 3: Thermal Properties of the meat piece and process conditions

10

20

30

40

50

60

70

0 1000 2000 3000 4000 5000 6000 7000

time (s)

T
em

pe
ra

tu
re

 (º
C

)

Tcscenter Toscenter

Tcsborder Tosborder

Figure 7: Numerical Predictions in center and border point of the domain using the software (Tcs) and open
source code (Tos).

M.V. SANTOS, N.E. ZARITZKY, A.N. CALIFANO, V. VAMPA1716

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

As can be seen numerical predictions from the commercial software agreed satisfactorily
with the numerical results from the open source code.

3 CONCLUSIONS

A finite element code for three dimensions has been developed to solve the linear unsteady
heat transfer problem with convective boundary conditions. A pre- and post- processing code
was successfully implemented in order to integrate the mesh information with the main
program and to calculate the temperature distribution at any given point inside the domain.
The numerical code was validated by comparing the temperature predictions with the
analytical solutions of a sphere and finite cylinder. The program was then used to simulate
heat transfer in a meat product with irregular domain. The numerical results obtained by the
open source code were also compared with the commercial software predictions resulting in
high agreement. The program code can be applied to three dimensional domains using an
external mesh generator with the advantage that in food processing the microbial inactivation
or quality kinetics can be easily coupled to the heat transfer process.

REFERENCES

Arce, J.A., Potluri, P.L., Schneider, K.C., Sweat, and V.E., Dutson, T.R., Modeling Beef
Carcass Cooling Using a Finite Element Technique. Transactions of the ASAE. Paper nº
816030, 1983.

Bathe, K.J., Finite element procedures. Prentice Hall, New Jersey, 1996.
Becker, E., Carey, G.F. and Oden, J.T., "Finite Elements: An Introduction" (Vol. 1). Prentice-

Hall, Englewood Cliffs, New Jersey, 1983.
Califano, A. N., Zaritzky, N., A Numerical Method for Simulating Heat Transfer in

Heterogeneous and Irregularly Shaped Foodstuffs. Journal of Food Process Engineering,
16: 159-171, 1993.

Carslaw, H. S., and Jaeger, J.C., Conduction of heat in solids. University Press, Oxford. 1959.
Erdogdu, F., Zorrilla, S. E., Singh, R. P., Effect of different objective functions on optimal

decision variables: a study using modified complex method to optimize hamburger
cooking. Lebensmitel-Wissenschaft und –Technologie, 38: 111-118, 2005.

Hughes, T. J. R., The Finite Element Method- Linear Static and Dynamic Finite Element
Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 1987.

Johnson, Claes, Numerical Solution of Partial Differential Equations by FEM, Cambridge
University Press, 1987.

Leithold, L., El Cálculo, 7th ed. Oxford University Press-Harla México, México, 1998.
Martins, R. C., Simple finite volumes and finite elements procedures for food quality and

safety simulations. Journal of Food Engineering, 73: 327-338, 2006.
Martins, R.C., Modelling temperatures abuses to frozen food and effects on quality. PhD

thesis. Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto,
Portugal, 2004.

Ngadi, M.O., Watts, K.C., and Correira, L.R., Finite Element Method Modelling of Moisture
Transfer in Chicken Drum During Deep-fat Frying. Journal of Food Engineering, 32:11-
20, 1997.

Persson, P.O., Strang G., A Simple Mesh Generator in MATLAB.SIAM Review, 46 (2): 329-
345, 2004.

Santos M. V., Zaritzky N., Califano A. N., Modeling heat transfer and inactivation of
Escherichia coli O157:H7 in precooked meat products in Argentina using the finite element
method. Meat Science 79 (3): 595-602, 2008.

Mecánica Computacional Vol XXVII, págs. 1705-1718 (2008) 1717

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Segerlind, L. J., Applied Finite Element Analysis, 2nd ed. John Wiley and Sons, New York,
1984.

Welty, J. R., Engineering Heat Transfer. John Wiley and Sons, New York, 1974.
Zienkiewicz, O.C., y Taylor, R.L., El método de los elementos finitos, volumen I. McGraw-

Hill, Barcelona, 1994 a).
Zienkiewicz, O.C., y Taylor, R.L., El método de los elementos finitos, volumen II. McGraw-

Hill, Barcelona, 1994 b).

M.V. SANTOS, N.E. ZARITZKY, A.N. CALIFANO, V. VAMPA1718

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

