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Abstract. The authors successfully applied the so-called Discrete Element Method (DEM) to 

determine the dynamic response of concrete and rock structures that fracture under the action of static 

and dynamic loading. When on account of the size of the model larger elements must be employed, the 

issue of mesh objectivity must be addressed. In response determinations of structures with initial 

cracks or high stress gradients, which result in fracture localization, well established procedures lead 

to results that are mesh independent. However, in elements subjected to approximately uniform stress 

fields a hitherto unknown problem arises in the analysis of non-homogeneous materials: the need to 

know a priori the degree of fracturing of the element. This should also affect finite element analysis in 

cases in which there is no clear fracture localization. 

Within this context, in this paper a scheme to circumvent this difficulty is suggested by the authors. 

The applicability of the proposed solution is tested in several numerical examples involving large 

concrete or rock structures. 
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1 INTRODUCTION 

The determination of the static or dynamic response of solids by means of numerical 
methods, such as Finite Differences (FDM), Finite Elements (FEM) or Discrete Elements 
(DEM) requires the estimation of computational errors, i.e., the sensitivity of the solutions to 
the size or other features of the mesh adopted in the analysis. In Linear Elasticity problems 
the issue is commonly addressed by comparing solutions obtained with increasingly finer 
meshes until convergence is reached with the desired accuracy. In Linear Elastic Fracture 
Mechanics (LEFM), a similar approach is possibly the only feasible alternative to assess 
convergence of the solution. The performance of the DEM has been evaluated both in the 
solution of Linear Elasticity problems as well as in connection with problems of LEFM, as a 
preliminary step before application of the method to non-linear problems (Iturrioz, 1995; 
Dalguer et al., 2003; Miguel et al., 2008). 

Figure 1 shows the critical stress in a homogeneous plate with an edge crack subjected to a 
uniform tensile stress applied at the upper and lower plate boundaries according to theoretical 
LEFM and computed using a DEM model by Rocha and Riera (1990). The length of the 
elements was in all cases equal to 0.01m, size that appears to yield accurate results except in 
the case of the shortest edge crack, which might require adopting a finer mesh. In such cases, 
assessing the adequacy of a given mesh presents no difficulty except eventually high 
computational costs. 
 

Figure 1: Critical stress for tensile fracture of a rectangular plate (0.12×0.24m) in plane stress with edge crack 
computed by DEM model (solid dots) and predicted by LEFM (Rocha and Riera, 1990). 

 
A somewhat different situation appears in the solution of problems involving non-

homogeneous materials, because in such case the size of the elements must be sufficiently 
small both in relation to the size of the crack as well as in relation to the correlation lengths of 
the fields that model the material non-homogeneities. These requirements can rarely be met in 
engineering practice on account of the resulting computational costs, demanding resort to 
larger DEM or FEM elements. In this context, the determination of the static strength of rock 
dowels reported by Miguel et al. (2008) is discussed next. In this case a cubic rock dowel 
fixed at its base is subjected to a uniform tangential stress (shear) at its upper face. Figure 2(a) 
shows the resulting applied tangential stress vs. mean angular distortion of the dowel, 
computed using five different DEM meshes, ranging from element lengths equal to 0.05m 
(model with 8000 cubic cells shown in Fig. 2b) to lengths equal to 0.20m (model with only 
125 cells shown in Fig.2c). The material in the example was assumed homogeneous, with the 
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mean properties of granite: Young’s modulus E = 7.5×1010Pa, specific fracture energy Gf = 
1300N/m, Poisson’s ratio ν = 0.25 and mass density  ρ = 2700kg/m3. In all cases the analysis 
predicts the occurrence of fracture starting at the intersection of the dowel with the foundation 
plane, thus clearly indicating stress localization. The difference between the results obtained 
with the various models is negligible for engineering purposes, in spite of the coarse mesh 
adopted in the less dense models. 
 

 

Figure 2: (a) Tangential stress vs. distortion for a 1m cube using five different meshes. (b) Mesh 1: 5×5×5 cubic 
modules, (c) Mesh 5: 20×20×20. 

 
It may be concluded that the DEM, as employed by the authors for determining the 

response of homogeneous solids subjected to arbitrary static or dynamic loading, including 
LEFM problems, is robust and reliable. In case of non-homogeneous materials, the authors 
obtained solutions by simulation, generating samples of the random fields that define the 
spatial variation of material properties (Rios and Riera, 2004; Miguel et al., 2008). In such 
case, the issue of mesh-independence requires a more detailed examination, which is the 
subject of this paper. The basic features of the DEM in these applications are summarized in 
Section 2. Examples that cover the full range of possible situations, from strong stress 
localization to no stress localization are presented in Sections 3 and 4, providing numerical 
evidence for the conclusions advanced in Section 5. 
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2 THE DISCRETE ELEMENT METHOD IN FRACTURE PROBLEMS 

The Discrete Element Method employed in this paper is based on the representation of a 
solid by means of an arrangement of elements able to carry only axial loads The equivalence 
between an orthotropic elastic continuum and the cubic arrangement of uni-axial elements 
consisting of a cubic cell with eight nodes at its corners plus a central node was shown by 
Nayfeh and Hefzy (1978). The discrete elements representation of the orthotropic continuum 
was adopted by the authors to solve structural dynamics problems by means of explicit direct 
numerical integration of the equations of motion, assuming the mass lumped at the nodes. 
Each node has three degrees of freedom, corresponding to the nodal displacements in the 
three orthogonal coordinate directions. 

The equivalence between the orthotropic elastic solid with orthotropy axes oriented in the 
direction parallel to the longitudinal elements of the discrete elements model was extensively 
verified by Hayashi (1982). The equations that relate the properties of the elements with the 
elastic constants of an isotropic medium are: 
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in which E and ν denote Young’s modulus and Poisson’s ratio, respectively, while An and Ad 
represent the areas of normal and diagonal elements. 

The resulting equations of motion may be written in the well-known form: 

 ( ) ( ) 0=−++ tPtFxx r

rrr
&

r
&& CM  (2) 

in which xr  represents the vector of generalized nodal displacements, M the diagonal mass 
matrix, C the damping matrix, also assumed diagonal, ( )tFr

r
 the vector of internal forces 

acting on the nodal masses and ( )tP
r

 the vector of external forces. Obviously, if M and C are 
diagonal, Equations (2) are not coupled. Then the explicit central finite differences scheme 
may be used to integrate Equation (2) in the time domain. Since the nodal coordinates are 
updated at every time step, large displacements can be accounted for in a natural and efficient 
manner. 

Thus, in all cases the integration is performed employing the explicit central finite 
differences method. Therefore, the integration time step must to be smaller than a critical 
value Δtcrit, which may be estimated as ρEL. 060 , in which the denominator represents 
the velocity of propagation of P-waves in an isotropic elastic medium. The numerator denotes 
the length of the shortest elements in the model, i.e., the diagonal bars. 

In the present paper, the relation between tensile stress and strain in the material was 
assumed to be triangular, as indicated in Figure 3. The limit strain εr is determined to satisfy 
the condition that, upon rupture of the element, once the strain reaches the value εr, energy 
Uelem is liberated, according to Equation (3): 

 
0L
GA

U ff
elem =  (3) 

in which Af is the fractured area bar, L0 is the normal bar length and Gf is the specific fracture 
energy that characterized the material toughness. 
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Figure 3: Triangular constitutive law for brittle material. 

 
Note that the fracture energy, i.e., the energy dissipated by the total rupture of one element, 

depends on the numerator of Equation (3), which is the product of the fracture area within the 
element times the specific fracture energy of the material. In previous papers (Rocha, 1989; 
Riera and Iturrioz, 1998; Miguel et al., 2008), the assumption that Af equals the area of the 
basic brick element 2

0L  was implicit. On that basis, the fracture area of the longitudinal bars is 
given by: 

 2
0LcA af =  (4) 

In which the coefficient ca was computed as 0.1385. For diagonal bars, ca equals 0.1593. 
This assumption is valid as long as there is a strong localization effect, leading to a rupture 
configuration characterized by a single large crack. One such example is fracture of a rock 
dowel (Miguel et al., 2008), which occurs in most cases as a crack that, starting near the 
intersection between the dowel wall and the base, propagates through the dowel. Invariance of 
the results with different element sizes is shown for such case in Figure 2. 

Another important feature of the approach is the assumption that all material properties, 
such as E and Gf, are not constant throughout the structure. In this paper, a Weibull 
distribution with coefficient of variation of 25% is adopted for both material properties. It 
should be underlined again that fracture localization weakens as the non-homogeneous nature 
of the material becomes more pronounced, i.e., as the coefficients of variation of the fields 
that describe the material properties increase. On account of this effect, LEFM solutions for 
plates with edge cracks, such as the theoretical and numerical values shown in Figure 1, for 
example, are not applicable to non-homogeneous materials like concrete or rock. 

Applications of the DEM in studies involving non-homogeneous materials subjected to 
fracture, like concrete and rock, may be found in Iturrioz (1995), Riera and Iturrioz (1998), 
Dalguer et al. (2001), Rios (2002) and Miguel et al. (2008). Additionally, Dalguer et al. 
(2003), Riera et al. (2005), Miguel (2005), Miguel et al. (2006) and Miguel and Riera (2007), 
contributed to demonstrate the reliability of the approach. 
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3 SIZE EFFECT IN FRACTURE ANALYSIS IN NON-HOMOGENEOUS PLATE 

Rock plates under plane stress, fixed at their lower face and subjected to tension on their 
upper face were analyzed up to failure through numerical simulation. The size of the samples 
ranges from 1.0 to 15.0m. The response of larger specimens may be determined in a similar 
manner, starting from the constitutive criteria for the individual elements. The smallest array 
that leads to satisfactory results consists of 10×10×1 cubic modules, with 1026 DOF, used for 
the 1.0m plate, while the 15.0m plate presents 150×150×1 cubic modules, with 204306 DOF, 
constituting the largest array used in this study. Table 1 shows the basic dimensions of the 
four sample sizes analyzed, while Table 2 details the material properties. 
 

Table 1: Basic dimensions of the plate samples. 

Plate L0 L
Plate 1.0 0.1m 1.0m
Plate 4.0 0.1m 4.0m
Plate 8.0 0.1m 8.0m
Plate 15.0 0.1m 15.0m

 
 

Table 2: Properties of brittle materials: granite rock. 

Property Value 
E(E)  (expected value of Young’s modulus) 7.5E10N/m2 
ρ  (mass density) 2700kg/m3 
ν  (Poisson’s ratio) 0.25 
E(Gf)  (expected value of specific fracture energy) 1300N/m 
εp  (critical strain) 1.1E-4 
CV(E)  (coefficient of variation of E) 25% 
CV(Gf)  (coefficient of variation of Gf) 25% 

 
 

The nodes on the upper face of the specimens were subjected to controlled displacements 
that smoothly increase from zero to a limit value. In loading case A, uniform displacements 
along the upper edge induce a nominally uniform tension in the specimen. In loading case B, 
the test specimens were subjected to a triangularly distributed controlled displacement, 
inducing a non-uniform tension in the specimen. 

Six simulations were carried out for each loading case and for each plate size. The 
resulting stress-strain curves for all simulations for the 4.0m plate are shown in Figure 4. Note 
that Young’s modulus of the material as well as its fracture energy are regarded as random 
fields with the properties indicated in Table 2, so each virtual test leads to a different strength 
and a different stress-strain curve. The mean curve for all simulation is also shown in Figure 
4. The mean curves for all tested sizes are shown in Figure 5. 
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Figure 4: Normal stress on the lower face vs. mean strain for the 4m plate, for all simulations and resulting mean 

curve (Case A - uniform imposed displacements). 
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Figure 5: Normal stress on the lower face vs. mean strain for the mean curve of all tested sizes (Case A - 

uniform imposed displacements). 

 
Next, the plates were subjected to triangularly distributed displacements on their upper 

face. Six simulations were also performed for each plate size. The resulting stress-strain 
curves for all simulations for the 4.0m plate are shown in Figure 6, which also presents the 
mean curve. Figure 7 shows the mean curves for all simulated sample sizes. 
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Figure 6: Normal stress on the lower face vs. mean strain for the 4m plate, for all simulations and resulting mean 

curve (Case B - triangular imposed displacements). 
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Figure 7: Normal stress on the lower face vs. mean strain for the mean curve of all tested sizes (Case B - 

triangular imposed displacements). 

 
Typical cracked granite plates in numerical simulation for loading case A are shown in 

Figure 8, while Figure 9 presents the cracking patterns for case B. In these figures, the colors 
cyan, orange and red represent the undamaged, damaged and broken elements, respectively. 
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Figure 8: Rupture configuration of granite plates subjected to uniform tensile stress (Case A): (a) 1m plate, (b) 
4m plate, (c) 8m plate and (d) 15m plate. 

 

Figure 9: Rupture configuration of granite plates subjected to triangular tensile stress (Case B): (a) 1m plate, (b) 
4m plate, (c) 8m plate and (d) 15m plate. 

 
The models capture both the size effect as well as cracking patterns, i.e., the damage 

distribution in the plates. The size effect is clearly visible in Table 3, which illustrates the 
decrease of the average tensile strength as the size of the plate increases. In Figures 8 and 9 it 
may be seen that damage localization is more pronounced in presence of a stress gradient 
(Case B). Both damage, indicated by the orange-tainted regions, as well as crack surfaces are 
more widely distributed in loading case A (Figure 8). Although no experimental results for 
this size range are known to the authors, the effects unquestionably exist. Therefore, as 
discussed later, both features of the non-linear problem should be taken into consideration if 
larger DEM or FEM elements must be resorted to in order to reduce computational costs. 
 

Table 3: Maximum (rupture) mean tensile stress of simulated plates. 

Plate Case A Case B
Plate 1.0 10.23MPa 7.80MPa
Plate 4.0 10.04MPa 7.16MPa
Plate 8.0 9.88MPa 6.92MPa
Plate 15.0 9.62MPa 6.77MPa

(a) L = 1.0m (b) L = 4.0m (c) L = 8.0m (d) L = 15.0m 

(a) L = 1.0m (b) L = 4.0m (c) L = 8.0m (d) L = 15.0m 
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4 SIZE EFFECT IN FRACTURE ANALYSIS OF LONG ROCK TENDONS 

In this section, long rock tendons, fixed at their lower face and subjected to nearly uni-
axial tension, were also analyzed up to failure through numerical simulation. The length of 
the strut specimens ranges from 2.0 to 150.0m. The smallest specimen consists of 20×2×2 
cubic modules, with 807 DOF, while the 150.0m tendon presents 1500×2×2 cubic modules. 
Table 4 shows the basic dimensions of the four sample sizes analyzed, while the material 
properties are given in Table 2. 
 

Table 4: Basic dimensions of the tendon samples. 

Tendon L0 L
2.0 long tendon 0.1m 2.0m
50.0 long tendon 0.1m 50.0m
100.0 long tendon 0.1m 100.0m 
150.0 long tendon 0.1m 150.0m 

 
The nodes on the upper face of the specimens were subjected to a controlled displacement 

that increases smoothly from zero up to failure, inducing a nearly uniform tension in the 
specimen. Six simulations were carried out for each tendon size. The resulting stress-strain 
curves for all simulations for the 50.0m tendon are shown in Figure 10. The mean curve for 
all simulation is also shown in Figure 10. The mean curves for all tested tendons are shown in 
Figure 11. 
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Figure 10: Normal stress on the lower face vs. mean strain for the 50m tendon, for all simulations and resulting 

mean curve. 
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Figure 11: Normal stress on the lower face vs. mean strain for the mean curve of all tested tendons. 

 
In this case, the influence of size on the tendon strength is again quantified by the model, 

as shown by the decrease of tendon average strength with size, shown in Table 5. Since in an 
approximately uni-dimensional body, local damage hardly affects the global stress 
distribution, the problem is much simpler and reduces to the so-called Weibull effect of the 
strength of materials. 

It is important to observe that in some stress-strain curves the simulated response presents 
severe oscillations after the peak stress is reached, that is, after rupture. These oscillations are 
due to vibrations of fractured regions and as such they are outside the scope of this study. 
 

Table 5: Average tensile strength and corresponding coefficients of variation for the struts. 

Tendon Strength CV (%) 
2.0 long tendon 7.99MPa 4.39
50.0 long tendon 7.22MPa 1.18
100.0 long tendon 7.18MPa 1.44
150.0 long tendon 7.21MPa 2.40

 

5 ON MESH DEPENDENCE IN DEM FRACTURE PREDICTIONS 

The authors correctly quantified size effects in the assessment of rupture of concrete or 
rock structures subjected to static or dynamic loading employing discrete elements of the 
same size (Rocha and Riera, 1990; Rios and Riera, 2004; Miguel et al., 2008). In 3-D 
problems involving large systems, such as NPP containments, dams or rock foundations, 
larger elements must be resorted to in order to reduce computational costs or to simply render 
the analysis feasible. Dalguer et al. (2003) studied the formation of new cracks in rock layers 
during an earthquake employing DEM elements with a very large size (several hundred 
meters) and assumed constitutive relations for rock. Recognizing the need to reliably assess 
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those relations, for which direct experimental evidence is definitely out of reach, Riera and 
Iturrioz (2005) suggested the following scheme: determine the constitutive relations of large 
cubes by simulating tensile tests up to failure of 3-D models, employing for such purpose 
constitutive elements of a size that can be tested in laboratory experiments. By repeating the 
scheme, the response of very large cubes could be theoretically inferred. 

To illustrate the approach, the effective stress-strain curves shown in Figure 5 for plates 
with sizes ranging from 1.0 to 15.0m will be used. All of them were computed with models 
consisting of basic 0.1m elements, which are characterized by the stress-strain diagram shown 
in Figure 3, derived in turn from laboratory tests. Now, it is clear that 1m elements would 
present the stress-strain curve indicated in blue, while 15m elements would present the curve 
drawn in yellow (Figure 5). Use of larger elements requires re-evaluation of the properties of 
the random fields that define material properties, in this case, E and Gf , subject discussed in 
detail by Riera and Iturrioz (2005). In this reference however, an important issue was not 
taken into consideration: the energy dissipated in the process of rupture is computed by means 
of Equation (3) which, if the coefficients ca indicated in Section 2 are used, implies that only 
one crack goes through the element. As clearly shown by Figures 8 and 9 and in uncountable 
laboratory experiments, in large plates or cubes the total fracture surface may largely exceed 
the minimum fracture surface needed to separate the plate or cube in two parts. 

From the preceding reasoning, it is clear that when employing larger elements with length 
L0, care must be taken to preserve the energy dissipated in the rupture process, condition the 
may be satisfied by calculating a new fractured area Af , as follows: 

 2
0LcA *

af =  (5) 

in which the modified coefficient ca
* must be computed jointly with the evaluation of the 

effective stress-strain curves for the larger element and represents the ratio between the 
energy actually dissipated and the minimum energy required to split the element in two parts, 
given by Equation (3). One difficulty is that the energy depends on the stress field applied, 
which can be visually confirmed by inspecting Figures 8 and 9. The fractured areas for a 
given plate size are not the same. 

Research is presently under way to develop criteria to predict values of ca
* for elements of 

various sizes, which is not an easy task because ca
* is not independent of the scale of 

correlation of material properties. It should thus be expected that as size of the element 
increases, ca

* will tend to the original ca values. 

6 CONCLUSIONS 

It was shown that the prediction of fracture in non-homogeneous materials using DEM 
models is feasible and yields reliable results. The use of large elements, in which extensive 
cracking within the basic element of the model may be expected, requires additional research. 
As applied so far, the approach is successful only in cases where there is intense fracture 
localization, while tending to underestimate the strength otherwise. 
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