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Abstract. In this article we present an algorithm for the approximation through adaptive finite element
methods of solutions to second order elliptic eigenvalue problems, considering Lagrange finite elements
of any degree. We show the convergence of the algorithm for simple as well as multiple eigenvalues under
a minimal refinement of marked elements, for all reasonable marking strategies, and starting from any
initial triangulation. Finally, we discuss briefly the quasi-optimality of the adaptive method and conclude
with some numerical experiments that illustrate the advantages of adaptivity and the relationship between
order of convergence and regularity.
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1 INTRODUCTION

In many practical applications it is of interest to find or approximate the eigenvalues and
eigenfunctions of elliptic problems. Finite element approximations for these problems have
been widely used and analyzed under a general framework. Optimal a priori error estimates for
the eigenvalues and eigenfunctions have been obtained (see Babuška and Osborn (1991, 1989);
Raviart and Thomas (1983); Strang and Fix (1973) and the references therein).

Adaptive finite element methods are an effective tool for making an efficient use of the com-
putational resources; for certain problems, it is even indispensable to their numerical resolvabil-
ity. A quite popular, natural adaptive version of classical finite element methods consists of the
loop

SOLVE→ ESTIMATE→ MARK→ REFINE,

that is: solve for the finite element solution on the current grid, compute the a posteriori er-
ror estimator, mark with its help elements to be subdivided, and refine the current grid into a
new, finer one. The ultimate goal of adaptive methods is to equidistribute the error and the
computational effort obtaining a sequence of meshes with optimal complexity. A general result
of convergence for linear problems has been obtained in Morin et al. (2008), where very gen-
eral conditions on the linear problems and the adaptive methods that guarantee convergence are
stated. Optimality for adaptive methods using Dörfler’s marking strategy (Dörfler, 1996) has
been proved in Cascon et al. (2008); Stevenson (2007) for linear problems.

In this article we propose a convergent algorithm using adaptive finite element methods for
approximating the eigenvalue problem consisting in finding λ ∈ R, and u 6≡ 0 such that

−∇ · (A∇u) = λBu in Ω, u = 0 on ∂Ω,

under general assumptions on A, B and Ω that we state precisely in Section 2.1.
As we mentioned before, adaptive methods are based on a posteriori error estimators, that are

computable quantities depending on the discrete solution and data, and indicate a distribution of
the error. A posteriori error estimators for eigenvalue problems have been constructed by using
different approaches in Verfürth (1996); Verfürth (1994); Durán et al. (2003); Larson (2000),
they have been developed for A ≡ I and B ≡ 1, but the same proofs can be carried over to
the general case considered here; see Giani and Graham (2007). An important aspect to be
mentioned here is that the a posteriori error estimators are reliable only if the underlying mesh
is sufficiently fine.

Before proceeding with the details of the statement we note some properties of our adaptive
algorithm:

• It does not require that the initial mesh T0 is fine enough. Any initial mesh that captures
the discontinuities of A will guarantee convergence.

• It is possible to use any of the popular marking strategies, not only Dörfler’s (Dörfler,
1996). The only assumption is that non-marked elements have error estimators smaller
than marked ones, see condition (3.2) in Section 3 below. If the marking is done according
to Dörfler’s strategy, then the resulting meshes are quasi-optimal.

• The marking is done according to the residual type a posteriori error estimators presented
in Section 2.3. Even though there are some oscillation terms in the efficiency of the
estimators, we do not require any marking due to these terms. We only need to mark
according to the error estimators, which is what is usually done in practice.
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• The result holds with a minimal refinement of marked elements, one bisection suffices.
We do not require the enforcement of the so-called interior node property.

The rest of the article is organized as follows. In Section 2 we state precisely the problem that
we study, describe the approximants and mention some already known results about a priori and
a posteriori estimation. In Section 3 we state the adaptive loop. In Section 4 we state briefly the
convergence of the adaptive algorithm. In Section 5 we state the quasi-optimality of the adaptive
process and finally, in Section 6 we explore the performance of the adaptive methods through
the computation of the first and second eigenpair of the Laplacian on a domain consisting of
three quarters of a circle.

2 PROBLEM STATEMENT AND NUMERICAL APPROXIMATION

In this section we state precisely the continuous problem that we study and the discrete
problems that we consider as approximants to the continuous one. Furthermore, we will define
a posteriori error estimators and mention their reliability and efficiency.

2.1 General setting

We consider the general eigenvalue problem consisting in finding λ ∈ R and u 6≡ 0 such that

−∇ · (A∇u) = λBu in Ω, u = 0 on ∂Ω,

where Ω ⊂ Rd is a bounded open set with a Lipschitz boundary. In particular, we suppose
that Ω is a polygonal domain if d = 2 and a polyhedral domain if d = 3. Here, A is a
piecewise Lipschitz symmetric-matrix-valued function which is uniformly positive definite, i.e.,
there exist constants a1, a2 > 0 such that

a1|ξ|2 ≤ A(x)ξ · ξ ≤ a2|ξ|2, ∀ ξ ∈ Rd, ∀ x ∈ Ω,

and B is a scalar function such that

b1 ≤ B(x) ≤ b2, ∀ x ∈ Ω,

for some constants b1, b2 > 0.
In order to state the variational formulation of this problem we introduce the following func-

tional spaces. If A ⊂ Ω, we denote by L2(A) the space of the square integrable functions on A
with the norm

‖v‖A :=

(∫
A

|v|2
)1/2

,

and byH1(A) the Sobolev space consisting in functions in L2(A) whose first order weak deriva-
tives are also in L2(A), with the norm

‖v‖H1(A) :=
(
‖v‖2

A + ‖∇v‖2
A

)1/2
.

Finally, H1
0 (Ω) is the subspace of H1(Ω) of functions which vanish on ∂Ω.

We consider the bilinear forms a, b : H1
0 (Ω)×H1

0 (Ω)→ R given by

a(u, v) :=

∫
Ω

A∇u · ∇v, and b(u, v) :=

∫
Ω

Buv,
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and their induced norms

‖v‖a := a(v, v)1/2, v ∈ H1
0 (Ω), and ‖v‖b := b(v, v)1/2, v ∈ L2(Ω).

By the assumptions on A and B, there exist positive constants c1, c2, c3, c4 such that

c1‖v‖H1
0 (Ω) ≤ ‖v‖a ≤ c2‖v‖H1

0 (Ω), ∀ v ∈ H1
0 (Ω),

and
c3‖v‖Ω ≤ ‖v‖b ≤ c4‖v‖Ω, ∀ v ∈ L2(Ω).

Now, the weak formulation of the problem is

Continuous eigenvalue problem. Find λ ∈ R and u ∈ H1
0 (Ω) satisfying{

a(u, v) = λ b(u, v), ∀ v ∈ H1
0 (Ω),

‖u‖b = 1.
(2.1)

It is well known (Babuška and Osborn, 1991) that under our assumptions on A and B prob-
lem (2.1) has a countable sequence of eigenvalues

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . .↗∞

and corresponding eigenfunctions
u1, u2, u3, . . .

which can be assumed to satisfy

b(ui, uj) = δij :=

{
1 i = j,

0 i 6= j,

where in the sequence {λj}j∈N, the λj are repeated according to geometric multiplicity.
For each fixed eigenvalue λ of (2.1) we define

M(λ) := {u ∈ H1
0 (Ω) | u satisfies (2.1)},

and notice that if λ is simple, then M(λ) contains two functions, whereas if λ is not simple, it
consists of a sphere in the subspace generated by the eigenfunctions. Furthermore, we have that
the eigenfunctions u of the problem (2.1) belong to H1+r(Ω), for some r ∈ (0, 1] depending
only on Ω and A.

2.2 Discrete problem

In order to define the numerical approximations to the continuous problem (2.1) we will
consider finite element spaces defined over triangulations of the domain Ω. Let T0 be an ini-
tial conforming triangulation of Ω, that is, a partition of Ω into d-simplices such that if two
elements intersect, they do so at a vertex or a full edge/face of both elements. Let T denote
the set of all conforming triangulations of Ω obtained from T0 by refinement using the newest
vertex bisection procedure in two dimensions and the bisection procedure of Kossaczký in three
dimensions (Schmidt and Siebert, 2005).
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For any triangulation T ∈ T, S will denote the set of interior sides, where by side we mean
an edge if d = 2 and a face if d = 3. And κT will denote the regularity of T , defined as

κT := max
T∈T

diam(T )

ρT
,

where diam(T ) is the length of the longest edge of T , and ρT is the radius of the largest ball
contained in it. It is also useful to define the meshsize hT := max

T∈T
hT , where hT := |T |1/d.

Due to the refinement procedures considered here, the family of triangulations T is shape
regular, i.e.,

sup
T ∈T

κT <∞,

where this uniform constant only depends on the initial triangulation T0.
For each interior side S ∈ S we define ωT (S) as the union of the two elements in T sharing

S. For T ∈ T ,NT (T ) denotes the set of neighbors of T in T , i.e., the subset of T consisting of
the elements which share at least a vertex with T , and ωT (T ) denotes the neighborhood of T ,
i.e., the union of the neighbors of T .

Let ` ∈ N be fixed, and let VT be the finite element space consisting of continuous functions
vanishing on ∂Ω which are polynomials of degree ≤ ` in each element of T , i.e,

VT := {v ∈ H1
0 (Ω) | v|T ∈ P`(T ), ∀ T ∈ T }.

Thus, we use a conforming and nested approximation because VT ⊂ VT∗ ⊂ H1
0 (Ω) whenever

T∗ is a refinement of T .
We are now in a position to define the

Discrete eigenvalue problem. Find λT ∈ R and uT ∈ VT such that{
a(uT , v) = λT b(uT , v), ∀ v ∈ VT ,
‖uT ‖b = 1.

(2.2)

If {φ1, φ2, . . . , φNT } is a basis for VT and K := (a(φj, φi)), and M := (b(φj, φi)) denote
the stiffness and mass matrices, respectively, the corresponding linear system is

KU = λTMU,

where U := (Ui)
NT
i=1 is the coefficient vector defining uT , i.e. uT =

∑NT
i=1 Uiφi. Since K and

M are symmetric and positive definite, the problem (2.2) has a finite sequence of eigenvalues

0 < λ1,T ≤ λ2,T ≤ λ3,T ≤ . . . ≤ λNT ,T ,

and corresponding eigenfunctions

u1,T , u2,T , u3,T , . . . , uNT ,T ,

which can be assumed to satisfy
b(ui,T , uj,T ) = δij.

For j = 1, 2, . . . , NT , it follows from the minimum-maximum principles that λj ≤ λj,T , and
it also follows that if T∗ is any refinement of T then λj,T∗ ≤ λj,T . Furthermore, for j ∈ N we
have that

λj,T −→ λj, as hT −→ 0. (2.3)
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2.3 A posteriori error estimators

A posteriori estimates for eigenvalue problems have been developed by Larson (2000), Durán
et al. (2003), Giani and Graham (2007). Next, we present the residual type a posteriori estimates
for eigenvalue problems that they have developed and state some of their properties. In order to
define the estimators we assume that the triangulation T matches the discontinuities ofA. More
precisely, we assume that the discontinuities of A are aligned with the sides of T . Observe that
in particular, A|T is Lipschitz continuous for all T ∈ T .

For µ ∈ R and v ∈ VT we define the element residual R(µ, v) by

R(µ, v)|T := −∇ · (A∇v)− µBv, (2.4)

for all T ∈ T , and the jump residual J(v) by

J(v)|S := (A∇v)|T1
· −→n1 + (A∇v)|T2

· −→n2, (2.5)

for every interior side S ∈ S, where T1 and T2 are the elements in T which share S and −→ni is
the outward normal unit vector of Ti on S, for i = 1, 2. We define J(v)|∂Ω

:= 0.
The local error estimator ηT (µ, v;T ) is given by

ηT (µ, v;T )2 := h2
T ‖R(µ, v)‖2

T + hT ‖J(v)‖2
∂T ,

for all T ∈ T , and the global error estimator ηT (µ, v) by

ηT (µ, v)2 :=
∑
T∈T

ηT (µ, v;T )2.

The local oscillation term oscT (µ, v;T ) is given by

oscT (µ, v;T )2 := h2
T

∥∥R−R∥∥2

ωT (T )
+ hT

∥∥J − J∥∥2

∂T
,

for all T ∈ T , where, for every T ′ ∈ NT (T ), R|T ′ is the L2(T ′)-projection of R := R(µ, v)

onto P`, and for every side S ⊂ ∂T , J |S is the L2(S)-projection of J := J(v) onto P`. The
global oscillation term oscT (µ, v) is given by

oscT (µ, v)2 :=
∑
T∈T

oscT (µ, v;T )2.

We have that the global a posteriori error estimator defined above is reliable if the meshsize
is small enough.

Reliability of the global error estimator. Let j ∈ N, and let uT be an eigenfunction corre-
sponding to the j-th eigenvalue λT of the discrete problem (2.2), then, if hT is small enough,
there exists an eigenfunction u corresponding to the j-th eigenvalue λ of the continuous prob-
lem (2.1) such that

‖u− uT ‖a ≤ CUηT (λT , uT ),

where CU is a constant depending on the data, but not on u or the meshsize hT .
When the global oscillation term is small, the global a posteriori error estimator is an efficient

indicator of the error in the sense that a big estimator implies a big error.

E.M. GARAU, P. MORIN, C. ZUPPA2226

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Efficiency of the global error estimator. Let j ∈ N. Let uT be an eigenfunction corre-
sponding to the j-th eigenvalue λT of the discrete problem (2.2) and let u be an eigenfunction
corresponding to the j-th eigenvalue λ of the continuous problem (2.1). Then, there holds

CLηT (λT , uT ) ≤ ‖u− uT ‖a + oscT (λT , uT ),

where CL is a constant depending on the data, but not on u or the meshsize hT .
We define nd := 3 if d = 2 and nd := 6 if d = 3. This guarantees that after nd bisections to

an element, new nodes appear on each side and in the interior.

Discrete local efficiency. Let T ∈ T and let T∗ be the triangulation of Ω which is obtained
from T by bisecting nd times each element of NT (T ). Let λT and uT be a solution to the
discrete problem (2.2). Let W be a subspace of H1

0 (Ω) such that VT∗ ⊂ W. If µ ∈ R and
w ∈W satisfy {

a(w, v) = µ b(w, v), ∀ v ∈W,
‖w‖b = 1,

then1

ηT (λT , uT ;T ) . ‖∇(w − uT )‖ωT (T ) + hT ‖µw − λT uT ‖ωT (T ) + oscT (λT , uT ;T ).

Considering that for the oscillation term we have that

oscT (λT , uT ;T ) . hT (2 + λT )‖uT ‖H1(ωT (T )),

the discrete local efficiency implies

ηT (λT , uT ;T ) . ‖∇(w − uT )‖ωT (T ) + hT ‖µw‖ωT (T ) + hT (1 + λT )‖uT ‖H1(ωT (T )). (2.6)

3 ADAPTIVE LOOP

Now, we describe the adaptive method to approximate the j-th eigenvalue and one of its
eigenfunctions. From now on, we keep j ∈ N fixed, and let λ denote the j-th eigenvalue of
(2.1) and u an eigenfunction in M(λ).

The algorithm for approximating λ and M(λ) is an iteration of the following main steps:

(1) (λk, uk) := SOLVE(Vk).

(2) {ηk(T )}T∈Tk := ESTIMATE(λk, uk, Tk).

(3) Mk := MARK({ηk(T )}T∈Tk , Tk).

(4) Tk+1 := REFINE(Tk,Mk), increment k.

This is the same loop considered in Morin et al. (2008), the difference lies in the building
blocks which we now describe in detail.

If Tk is a conforming triangulation of Ω, the module SOLVE takes the space Vk := VTk as
input argument and outputs the j-th eigenvalue of the discrete problem (2.2) with T = Tk, i.e.,
λk := λj,Tk , and a corresponding eigenfunction uk ∈ Vk. Therefore, λk and uk satisfy{

a(uk, vk) = λk b(uk, vk), ∀ vk ∈ Vk,
‖uk‖b = 1.

(3.1)

1From now on, whenever we write A . B we mean that A ≤ CB with a constant C that may depend on A,
B, the domain Ω and the regularity κT of T , but not on other properties of T such as element size or uniformity.
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It is worth mentioning at this point that any algorithm for computing eigenvalues of discrete
problems is able to produce such an output (λk, uk), and thus our assumptions are very prac-
tical. In contrast, the a priori error estimates on eigenvalue problems state that, given an exact
eigenfunction u, there exists a discrete eigenfunction uT which satisfies certain estimates. This
kind of statement is far from the philosophy of a posteriori estimation and adaptivity, where an
estimation or convergence result about the computed discrete solutions is sought.

Given Tk and the corresponding outputs λk and uk of SOLVE, the module ESTIMATE
computes and outputs the a posteriori error estimators {ηk(T )}T∈Tk , where

ηk(T ) := ηTk(λk, uk;T ).

Based upon the a posteriori error indicators {ηk(T )}T∈Tk , the module MARK collects ele-
ments of Tk inMk. The only requirement that we make on the module MARK is that the set of
marked elementsMk contains at least one element of Tk holding the largest value of estimator.
That is, there exists one element Tmax

k ∈Mk such that

ηk(T
max
k ) = max

T∈Tk
ηk(T ).

Whenever a marking strategy satisfies this assumption, we call it reasonable, since this is what
practitioners do in order to maximize the error reduction with a minimum effort. The most
commonly used marking strategies, e.g., Maximum strategy and Equidistribution strategy, fulfill
this condition, which is sufficient to guarantee that

T ∈ Tk \Mk =⇒ ηk(T ) . ηk(Mk) :=

( ∑
T∈Mk

ηk(T )2

)1/2

. (3.2)

This condition is slightly weaker, and will be sufficient to guarantee the convergence of this
algorithm. The original Dörfler’s strategy (Dörfler, 1996) also satisfies (3.2).

The refinement procedure REFINE takes the triangulation Tk and the subsetMk ⊂ Tk as
input arguments. We require that all elements ofMk are refined (at least once), and that a new
conforming triangulation Tk+1 of Ω, which is a refinement of Tk, is returned as output.

In this way, starting with an initial conforming triangulation T0 of Ω and iterating the steps
(1)–(4) of this algorithm, we obtain a sequence of successive conforming refinements of T0

called T1, T2, . . . and the corresponding outputs (λk, uk), {ηk(T )}T∈Tk , Mk of the modules
SOLVE, ESTIMATE and MARK, respectively.

For simplicity, we consider for the module REFINE, the concrete choice of the newest ver-
tex bisection procedure in two dimensions and the bisection procedure of Kossaczký in three
dimensions (Schmidt and Siebert, 2005). As we have mentioned before, both these procedures
refine the marked elements and some additional ones in order to keep conformity, and they also
guarantee that

κ := sup
k∈N0

κTk <∞,

i.e., {Tk}k∈N0 is a sequence shape regular of triangulations of Ω.
We stress that the marking in the module MARK, is done only according to the error esti-

mators; no marking due to oscillation is necessary. It is also worth mentioning that we do not
assume REFINE to enforce the so-called interior node property, and convergence is guaranteed
nevertheless.
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4 CONVERGENCE OF THE ADAPTIVE LOOP

In this section we analyze the convergence of the adaptive loop described in the last section.
Following similar ideas to those of Morin et al. (2008), with some modifications due to the
different nature of the problem, it is possible to prove the convergence; see Garau et al. (2008a)
for details. It consists in proving the following steps:

• The full sequence of discrete eigenvalues converges to a number λ∞ and a subsequence
of the discrete eigenfunctions converges to some function u∞.

• The global a posteriori error estimator converges to zero (for the subsequence).

• The pair (λ∞, u∞) is an eigenpair of the continuous problem.

• The full sequence of the discrete eigenvalues {λk}k∈N0 converges to a eigenvalue λ and
the full sequence of the discrete eigenfunctions {uk}k∈N0 converges to the set of associ-
ated eigenfunctions M(λ).

4.1 Convergence to a limiting pair

Now, we prove that the sequence of discrete eigenpairs {(λk, uk)}k∈N0 obtained by SOLVE
throughout the adaptive loop of Section 3 has the following property: λk converges to some
λ∞ ∈ R and there exists a subsequence {ukm}m∈N0 of {uk}k∈N0 converging in H1(Ω) to a
function u∞.

Let us define the limiting space as V∞ := ∪Vk
H1

0 (Ω)
, and note that V∞ is a closed subspace

of H1
0 (Ω), and therefore it is itself a Hilbert space with the inner product inherited from H1

0 (Ω).
Since Tk+1 is always a refinement of Tk, by the minimum-maximum principle {λk}k∈N0 is a

decreasing sequence bounded below by λ. Therefore, there exists λ∞ > 0 such that λk ↘ λ∞.
From (3.1) it follows that

‖uk‖2
a = a(uk, uk) = λkb(uk, uk) = λk ‖uk‖2

b = λk → λ∞, (4.1)

and therefore, that {uk}k∈N0 is a bounded sequence in V∞. Then, there exists a subsequence
{ukm}m∈N0 weakly convergent in V∞ to a function u∞ ∈ V∞, so

ukm ⇀ u∞ in H1
0 (Ω). (4.2)

Using Rellich’s theorem we can extract a subsequence of the last one, which we still denote
{ukm}m∈N0 , such that

ukm −→ u∞ in L2(Ω). (4.3)

If k0 ∈ N0 and km ≥ k0, for all vk0 ∈ Vk0 we have that a(ukm , vk0) = λkmb(ukm , vk0),
and when m tends to infinity, we obtain that a(u∞, vk0) = λ∞b(u∞, vk0). Since k0 ∈ N0 and
vk0 ∈ Vk0 are arbitrary we have that

a(u∞, v) = λ∞b(u∞, v), ∀ v ∈ V∞. (4.4)

On the other hand, since that ‖ukm‖b = 1, considering (4.3) we conclude that ‖u∞‖b = 1. Now,
taking into account (4.4) we have that

‖u∞‖2
a = λ∞ ‖u∞‖2

b = λ∞.
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From (4.1) it follows that ‖ukm‖
2
a = λkm −→ λ∞, and therefore, ‖ukm‖a → ‖u∞‖a . This,

together with (4.2) yields
ukm −→ u∞ in H1

0 (Ω).

Summarizing, we have proved the following

Theorem 4.1. Let {(λk, uk)}k∈N0 be the sequence obtained by the module SOLVE in the adap-
tive loop described in Section 3. Then, λk → λ∞ ∈ R and a subsequence ukm → u∞ ∈ V∞ in
H1

0 (Ω), where the limiting pair (λ∞, u∞) satisfies{
a(u∞, v) = λ∞ b(u∞, v), ∀ v ∈ V∞,
‖u∞‖b = 1.

It is important to notice that carrying over the steps stated above, from any subsequence
{(λkm , ukm)}m∈N0 of {(λk, uk)}k∈N0 , we can extract another subsequence {(λkmn , ukmn )}n∈N0 ,
such that ukmn converges in H1(Ω) to some function ũ∞ ∈ V∞ that satisfies{

a(ũ∞, v) = λ∞ b(ũ∞, v), ∀ v ∈ V∞,
‖ũ∞‖b = 1.

4.2 Convergence of the global error estimator

We now show that the global a posteriori estimator defined in Section 2.3 tends to zero.
In order not to clutter the notation, we will still denote by {uk}k∈N0 the subsequence {ukm}m∈N0 ,

and by {Tk}k∈N0 the subsequence {Tkm}m∈N0 . Also, we will replace the subscript Tk by k (e.g.
Nk(T ) := NTk(T ) and ωk(T ) := ωTk(T )), and whenever Ξ is a subset of Tk, ηk(Ξ)2 will denote
the sum

∑
T∈Ξ ηk(T )2.

Theorem 4.2 (Convergence of the global error estimator). If {Tk}k∈N0 denote the triangula-
tions corresponding to the convergent subsequence of discrete eigenpairs from Theorem 4.1
and {ηk(Tk)}k∈N0 the a posteriori error estimators given by the module ESTIMATE in the
adaptive loop, then

lim
k→∞

ηk(Tk) = 0.

Sketch of the proof. We can classify the elements in Tk in the following three disjoint groups:

• Elements which themselves and their neighbors are refined at least nd times are in T 0
k ;

• elements which neither themselves nor their neighbors are ever refined are in T +
k ;

• and the other ones are in T ∗k .

Therefore, the global error estimator can be decomposed as

ηk(Tk)2 = ηk(T 0
k )2 + ηk(T +

k )2 + ηk(T ∗k )2,

and it will be sufficient show that ηk(T 0
k ), ηk(T ∗k ) and ηk(T +

k ) tend to zero as k tends to infinity.
1 In order to prove that ηk(T 0

k )→ 0, we notice that the elements in T 0
k are sufficiently refined,

and we can thus use the the local efficiency of the estimator (2.6) with w = u∞, the conver-
gence stated in Theorem 4.1 and the fact that the meshsize function hk |T := |T |1/d converges
uniformly to zero2 over Ω0

k, where Ω0
k is the union of the neighborhoods of the elements in T 0

k .
2This claim is a consequence of the fact that the sequence of triangulations is obtained by refinement only, and

that every time an element T ∈ Tk is refined into Tk+1, hk+1(x) ≤
(

1
2

)1/d
hk(x) for almost every x ∈ T .
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2 To prove that ηk(T ∗k )→ 0 we can use the the local efficiency of the estimator (2.6) with w =
u ∈ H1

0 (Ω) an eigenfunction of the continuous problem, the convergence stated in Theorem 4.1
and the fact that the measure of the interface Ω∗k tends to zero, where Ω∗k is the union of the
neighborhoods of the elements in T ∗k .
3 Finally, to prove that ηk(T +

k ) → 0 we notice that the elements in T +
k whose elements are

never refined. At this point we will use the assumption (3.2) on the marking strategy. This is
technically the most difficult part, but the idea is to use the fact that since the elements in T +

k

are not marked to be refined, ηk(T ) . ηk(T 0
k )+ηk(T ∗k ) for all T ∈ T +

k , and thus ηk(T )→ 0 for
all T ∈ T +

k . Resorting to a generalized Lebesgue dominated convergence theorem we obtain
the claim.

The details of this proof are contained in Garau et al. (2008a).

4.3 The limiting pair is an eigenpair

Next, we prove that (λ∞, u∞) is an eigenpair of the continuous problem (2.1). The idea
in Morin et al. (2008) to prove that u∞ is the exact solution to the continuous problem, consisted
in using the reliability of the a posteriori error estimators. Such a bound does not hold in this
case unless the underlying triangulation is sufficiently fine. We do not enforce such a condition
on the initial triangulation T0, since the term sufficiently fine is not easily quantifiable. Instead
we resort to another idea, we will bound a(u∞, v)−λ∞b(u∞, v) by the residuals of the discrete
problems, which are in turn bounded by the global error estimator, and was already proved to
converge to zero.

Theorem 4.3. The limiting pair (λ∞, u∞) of Theorem 4.1 is an eigenpair of the continuous
problem (2.1). That is, {

a(u∞, v) = λ∞ b(u∞, v), ∀ v ∈ H1
0 (Ω),

‖u∞‖b = 1.

Proof. We know that ‖u∞‖b = 1 due to Theorem 4.1. It remains to prove that

a(u∞, v) = λ∞b(u∞, v), ∀ v ∈ H1
0 (Ω).

Let v ∈ H1
0 (Ω), and let vk ∈ Vk be the Scott-Zhang interpolant (Scott and Zhang, 1990, 1992)

of v, which satisfies

‖v − vk‖T . hT‖∇v‖ωk(T ) and ‖v − vk‖∂T . h
1/2
T ‖∇v‖ωk(T ).

From (3.1) we have
a(uk, vk) = λkb(uk, vk),

for all k, and then

|a(u∞, v)−λ∞b(u∞, v)| = |a(u∞, v)− λ∞b(u∞, v)− a(uk, vk) + λkb(uk, vk)|
≤ |a(uk, v − vk)− λkb(uk, v − vk)|+ |b(λkuk − λ∞u∞, v)|+ |a(u∞ − uk, v)|.

(4.5)

The second term in (4.5) can be bounded as

|b(λkuk − λ∞u∞, v)| ≤ |λk||b(uk − u∞, v)|+ |λk − λ∞||b(u∞, v)|
. (λ0 ‖uk − u∞‖Ω + |λk − λ∞| ‖u∞‖Ω) ‖v‖Ω .
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And the third term in (4.5) is bounded by

|a(u∞ − uk, v)| . ‖∇(u∞ − uk)‖Ω ‖∇v‖Ω .

Finally, the first term in (4.5) can be bounded using integration by parts on each element and
following the steps of the proof of the a posteriori upper bound, as follows:

|a(uk, v − vk)− λkb(uk, v − vk)| =

∣∣∣∣∣∑
T∈Tk

∫
T

A∇uk · ∇(v − vk)− λk
∫
T

Buk(v − vk)

∣∣∣∣∣
=

∣∣∣∣∣∑
T∈Tk

∫
T

R(λk, uk)(v − vk) +
1

2

∫
∂T

(v − vk)J(uk)

∣∣∣∣∣ ,
with R(λk, uk) and J(uk) as defined in (2.4) and (2.5). Now, by Hölder and Cauchy-Schwarz
inequalities we obtain

|a(uk, v − vk)− λkb(uk, v − vk)| ≤
∑
T∈Tk

‖R(λk, uk)‖T ‖v − vk‖T + ‖J(uk)‖∂T ‖v − vk‖∂T

.
∑
T∈Tk

‖R(λk, uk)‖T hT‖∇v‖ωk(T ) + ‖J(uk)‖∂T h
1/2
T ‖∇v‖ωk(T )

.

(∑
T∈Tk

h2
T ‖R(λk, uk)‖2

T + hT ‖J(uk)‖2
∂T

)1/2

‖∇v‖Ω

= ηk(Tk) ‖∇v‖Ω .

Summarizing, we have that

|a(u∞, v)−λ∞b(u∞, v)| .
(

(1 + λ0) ‖uk − u∞‖H1(Ω) + |λk − λ∞| ‖u∞‖Ω + ηk(Tk)
)
‖v‖H1(Ω) .

Using the convergence of uk to u∞ in H1(Ω) and λk to λ∞ in R from Theorem 4.1, and the
convergence of the global estimator to zero from Theorem 4.2, we conclude that

|a(u∞, v)− λ∞b(u∞, v)| = 0,

and the proof is completed.

4.4 Convergence to the solution set

We conclude this section by stating a general convergence result, which is a consequence of
the previous results. We remark that since there exists a set M(λ) of eigenfunctions associated
to a same eigenvalue λ, the error in the eigenfunction is given by

distH1
0 (Ω)(uk,M(λ)) := min

u∈M(λ)
‖u− uk‖H1

0 (Ω).

Theorem 4.4. Let {(λk, uk)}k∈N0 denote the whole sequence of discrete eigenpairs obtained
through the adaptive loop stated in Section 3. Then, there exists an eigenvalue λ of the contin-
uous problem (2.1) such that

lim
k→∞

λk = λ and lim
k→∞

distH1
0 (Ω)(uk,M(λ)) = 0.
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Proof. By Theorem 4.1, taking λ := λ∞, we have that limk→∞ λk = λ, and by Theorem 4.3, λ
is an eigenvalue of the continuous problem (2.1). In order to prove that distH1

0 (Ω)(uk,M(λ))→
0 as k → ∞ we argue by contradiction. If the result were not true, then there would exist a
number ε > 0 and a subsequence {ukm}m∈N0 of {uk}k∈N0 such that

distH1
0 (Ω)(ukm ,M(λ)) > ε, ∀m ∈ N0. (4.6)

It is possible to extract a subsequence of {ukm}m∈N0 which still converges to some function
ũ∞ ∈ V∞. By the arguments of Sections 4.2 and 4.3, ũ∞ is an eigenfunction of the continuous
problem (2.1) corresponding to the same eigenvalue λ. That is, a subsequence of {ukm}m∈N0

converges to an eigenfunction in M(λ), which contradicts (4.6) and completes the proof.

In our algorithm we assumed that each of the discrete eigenvalues λk is the j-th eigenvalue
of the corresponding discrete problem. The result, as stated above, only guarantees that λk con-
verges to one eigenvalue λ of the continuous problem, possibly larger than the j-th eigenvalue.
We can be sure that we approximate the j-th eigenvalue of the continuous problem under any
of the following assumptions:

• A Non-Degeneracy Assumption. No eigenfunction is equal to a polynomial of degree
≤ ` on an open region of Ω. This assumption holds for a large class of problems. More
precise sufficient conditions on problem data A and B to guarantee that this assumption
holds will be stated below.

• The meshsize of the initial triangulation is small enough. This assumption goes against
the spirit of adaptivity and a posteriori analysis, since we cannot quantify what small
enough means. But we state it for completeness, because in some (nonlinear) problems
there may be no way to overcome this.

Theorem 4.5 (General convergence result). Let us suppose that the continuous problem (2.1)
satisfies the Non-Degeneracy Assumption above, and let {(λk, uk)}k∈N0 denote the whole se-
quence of discrete eigenpairs obtained through the adaptive loop stated in Section 3 and λ
denote the j-th eigenvalue of the continuous problem (2.1). Then,

lim
k→∞

λk = λ and lim
k→∞

distH1
0 (Ω)(uk,M(λ)) = 0.

Before embarking into the proof of this theorem, it is worth mentioning that the model case
of A ≡ I and B ≡ 1 satisfies the Non-Degeneracy Assumption, due to the fact that the eigen-
functions of the Laplacian are analytic. A weaker assumption on the coefficients A and B
that guarantee non-degeneracy of the problem are given in the following Lemma, which is a
consequence of the regularity results stated in Han (1994).

Lemma 1. If A is continuous, and piecewise P1, and B is piecewise constant, then prob-
lem (2.1) satisfies the Non-Degeneracy Assumption.

We believe that in the assumptions of the previous lemma, A can be allowed to be piecewise
continuous with discontinuities along Lipschitz interfaces. The only thing needed is a proof of
the fact that solutions to elliptic problems with coefficients like these cannot vanish in an open
subset of Ω unless they vanish over all Ω. We conjecture that this could be proved using Han’s
result (Han, 1994) in combination with Hopf’s lemma (Gilbarg and Trudinger, 1983), but it will
be subject of future work.

We now proceed to prove Theorem 4.5, which will be a consequence of the following lemma.
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Lemma 2. Let {hk}k∈N0 denote the sequence of meshsize functions obtained through the adap-
tive loop stated in Section 3. If the continuous problem (2.1) satisfies the Non-Degeneracy
Assumption, then ‖hk‖L∞(Ω) → 0 as k →∞.

Proof. We argue by contradiction. If ‖hk‖L∞(Ω) does not tend to zero, then there exists k0 ∈ N0

and T ∈ Tk, for all k ≥ k0. Since ‖ukm − u∞‖L2(T ) → 0 as m→∞, and uk |T ∈ P`(T ), for all
k ≥ 0, using that P`(T ) is a finite dimensional space we conclude that

u∞|T ∈ P`(T ). (4.7)

Theorem 4.3 claims that u∞ is an eigenfunction of (2.1) and thus (4.7) contradicts the Non-
Degeneracy Assumption.

It is important to notice that the convergence of hk to zero is not an assumption, but a con-
sequence of the fact that a subsequence is converging to an eigenfunction u∞ and the Non-
Degeneracy Assumption.

Proof of Theorem 4.5. In view of Theorem 4.4 it remains to prove that λk converges to the j-th
eigenvalue of (2.1). By Lemma 2 the result follows from (2.3).

We conclude this section with several remarks.

Remark 1. At first sight, the convergence of ‖hk‖L∞(Ω) to zero looks like a very strong state-
ment, especially in the context of adaptivity. But the uniform convergence of the meshsize to
zero should not be confused with quasi-uniformity of the sequence of triangulations {Tk}k∈N0 ,
the latter is not necessary for the former to hold. Thinking about this more carefully, we realize
that if we wish to have (optimal) convergence of finite element functions to some given func-
tion in H1(Ω), then hk must tend to zero everywhere (pointwise) unless the objective function
is itself a polynomial of degree ≤ ` in an open region of Ω. We have that the convergence of
hk to zero is also uniform, and this does not necessarily destroy optimality (Cascon et al., 2008;
Stevenson, 2007; Garau et al., 2008b).

Remark 2. A sufficient condition to guarantee that we converge to the desired eigenvalue is to
assume that hk → 0 as k → ∞. This condition is weaker than the Non-Degeneracy Assump-
tion, but it is in general impossible to prove a priori.

Remark 3. Another option to guarantee convergence to the desired eigenvalue is to start with
a mesh which is sufficiently fine. In view of the minimum-maximum principles, it is sufficient
to start with a triangulation T0 that is sufficiently fine to guarantee that λj,T0 < λj0 , where
j0 > j is the minimum index such that λj0 > λj . This condition is verifiable a posteriori
if we have a method to compute eigenvalues approximating from below. Some ideas in this
direction are presented in Armentano and Durán (2003), where the effect of mass lumping on
the computation of discrete eigenvalues is studied.

5 QUASI-OPTIMALITY OF THE ADAPTIVE FINITE ELEMENT METHOD

Let N ∈ N and let TN be the set of all possible conforming triangulations generated by at
most N bisections of T0, i.e.,

TN := {T ∈ T | #T −#T0 ≤ N}.
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The elements T of this set will be called triangulations of complexity≤ N . For an eigenvalue λ
of the continuous problem (2.1), the minimum error attainable with triangulations of complexity
≤ N is given by

σ(λ,D;N) := inf
T ∈TN

inf
v∈VT
‖v‖b=1
µ∈R

errorT (µ, v),

where D := {A,B,Ω} is the problem data set and the total error errorT (µ, v) is given by

errorT (µ, v) :=
(
|λ− µ|2 + distH1

0 (Ω)(v,M(λ))2 + oscT (µ, v)2
)1/2

.

We say that (λ,D) ∈ As if the error of the best approximation in TN decreases as

σ(λ,D;N) = O(N−s).

It can be proved (Garau et al., 2008b) that when the eigenvalue λ is simple and (λ,D) ∈ As,
the sequence of meshes Tk and discrete eigenpairs (λk, uk) obtained by our adaptive algorithm
using Dörfler’s marking strategy3 satisfy

errorTk(λk, uk) = O((#Tk −#T0)−s),

for all k ∈ N. In other words, the adaptive algorithm produces a sequence of meshes and
approximate solutions with the same complexity as the optimal ones.

6 NUMERICAL EXPERIMENTS

We conclude this article illustrating the advantages in using adaptive refinement instead uni-
form one when we are approximating eigenfunctions having singularities of different strength.

We consider the computation of the eigenpairs of Laplace’s operator given by{
−∆u = λu, in Ω,

u = 0, on ∂Ω,

where Ω consists of three quarters of a circle, described in polar coordinates as

Ω := {(ρ, ϕ) | 0 < ρ < 1, 0 < ϕ < 3
2
π} ⊂ R2.

The variational form is the classical problem:{ ∫
Ω
∇u · ∇v = λ

∫
Ω
uv, ∀ v ∈ H1

0 (Ω),
‖u‖Ω = 1,

which correspond to the choices A ≡ I and B ≡ 1 in the problem (2.1), and the convergence
result of the Theorem 4.5 holds. The exact eigenvalues and eigenfunctions of this problem
are known, and we will use them to test the behavior of the adaptive algorithm and investigate
experimentally the regularity and optimal order of adaptive approximation.

In order to implement the adaptive algorithm described in Section 3, we use the finite element
toolbox ALBERTA (Schmidt and Siebert, 2005), and consider the approximation of the first and
the second eigenpairs.

3Based upon the a posteriori error indicators {ηk(T )}T∈Tk
and the marking parameter θ ∈ (0, 1], the Dörfler

property consists in select a minimal subset of marked elementsMk ⊂ Tk satisfying∑
T∈Mk

ηk(T )2 ≥ θ2
∑

T∈Tk

ηk(T )2.
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Approximation of the first eigenvalue

The first eigenvalue is λ1 ≈ 11.394747279 and its corresponding eigenfunction is given in
polar coordinates by

u1(ρ, ϕ) = c1J 2
3
(
√
λ1ρ) sin

(
2
3
ϕ),

where J 2
3

is a Bessel function of the first kind, and c1 is a constant chosen to achieve ‖u1‖Ω = 1.
Figure 1 shows the energy error ‖u1 − u1,T ‖H1(Ω) (left) and the eigenvalue error |λ1 − λ1,T |

(right) versus the degrees of freedom (DOFs) when using Lagrange finite element spaces of
degree ` = 1 (top) and ` = 2 (bottom). The energy error decay when using Global (uniform)
Refinement is approximately of order N−0.33 (where N denotes the number of degrees of free-
dom) indicating that the function u1 belongs to the Sobolev space H1+ 2

3 (Ω). Nevertheless,
when using adaptive refinement, either the Maximum Strategy (MS) or Dörfler’s Strategy (DS),
the orders are approximately N−1/2 when using linears and N−1 for quadratic elements. These
rates are the same that would be obtained if u ∈ H2(Ω) for ` = 1 or if u ∈ H3(Ω) for ` = 2
with uniform refinement, and are usually called optimal convergence rates.
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Figure 1: Error decay for the computation of the first eigenvalue with linear (top) and quadratic finite elements
(bottom). When considering the energy error ‖u1 − u1,T ‖H1(Ω) (left), the decay with Global Refinement (GR) is
approximately N−0.33 in both cases, and the decay with adaptive refinement, either with the Maximum Strategy
(MS) or with Dörfler’s (DS) is N−1/2 for linears and N−1 for quadratics. When considering the error |λ1−λ1,T |,
the decay with global refinement is approximatelyN−0.67 in both cases, and the decay with the considered adaptive
methods is approximately N−1 for linears and N−1.5 for quadratics.
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These rates are in complete agreement with the theory, since the eigenfunction u1 is equal to a
positive power of ρ times an H∞(Ω) function and according to the results of Gaspoz and Morin
(2008) the order of adaptive approximation should be N−

`
d , as observed in the experiments.

The error |λ1 − λ1,T | in the approximation of the eigenvalue is comparable with the error
of the eigenfunctions measured in L2(Ω). It is approximately N−0.67 when using global refine-
ments and linear or quadratic elements, whereas it is approximately N−1 and N−1.5 when using
adaptivity with linears and quadratics respectively.

Approximation of the second eigenvalue

The second eigenvalue is λ2 ≈ 18.278538262 and its corresponding eigenfunction is given
in polar coordinates by

u2(ρ, ϕ) = c2J 4
3
(
√
λ2ρ) sin(4

3
θ),

where J 4
3

is a Bessel function of the first kind, and c2 is the constant to achieve ‖u2‖Ω = 1.

This second eigenfunction belongs to H2+ 1
3 (Ω) and is thus regular for its approximation with

linear elements. That is, global refinement yields ‖u2 − u2,T ‖H1(Ω) = O(N−1/2) for linear
elements. Adaptive refinement also presents the same decay, and this is corroborated by the
error curves depicted in Figure 2 (top). On the other hand, when considering the approxi-
mation with quadratic finite elements, the order of approximation using global refinements is
approximately N−2/3, not reaching the optimal rate N−1 because u2 /∈ H3(Ω). However,
the adaptive methods are able to capture the singularity and yield the optimal convergence rate
‖u2−u2,T ‖H1(Ω) = O(N−1), which is also predicted by the theory of Gaspoz and Morin (2008)
and Garau et al. (2008b).

An interesting conclusion that can be drawn from these observations is the following: De-
spite the fact that it is not worth increasing the polynomial degree when using global refinement
and the function is not regular, increasing the polynomial degree can drastically improve the per-
formance of adaptive methods, leading to quasi-optimal convergence rates. More specifically,
given a fixed polynomial degree, using adaptive methods on singular solutions leads to the same
order of convergence that is obtained when using global refinements on regular solutions.
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