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Abstract. Wavelet multiresolution analysis provides a powerful framework for analyzing functions at
various scales. Due to the fact that wavelets have several good properties, such as compact support
and vanishing moments, it has gained great interest in solving partial differential equations using the
finite element method. In this paper a two-dimensional wavelet finite element is developed in which the
scaling functions are adopted as trial functions. Based on the one-dimensional Daubechies wavelet finite
element, that we have constructed recently [Mecánica Computacional Vol XXVI, pp.654-666], tensor
product is used to calculate the connection coefficients for stiffness matrices and load vectors. Some test
problems are studied and the numerical results are in good agreement with the closed-form or traditional
finite elements solutions.
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1 INTRODUCTION

An important property of wavelet multiresolution analysis is the capability to represent func-
tions at different scales. By means of “two-scale relation”, the scale adopted can be changed
freely according to requirements to improve analysis accuracy.

In structural analysis, classical and standard numerical methods as the finite element method
(FEM), boundary element method (BEM), and Meshless methods have been applied during the
last decades. Recently, due to its desirable advantages, researchers are also paying attention to
wavelet analysis in FEM. For a wide class of elliptic differential operators, wavelet method was
proved to converge [Wei (2000); Chen et al.(2004); Han et al.(2005, 2006)]. In particular, in
Ma et al.(2003) andVampa et al.(2007), Daubechies compactly supported orthogonal wavelets
were used to construct one-dimensional beam elements.

In Xiang et al.(2006) ,C0 plate elements are constructed to solve plane elastomechanics and
moderately thick plate problems. These finite elements are based on two-dimensional tensor
product B-spline wavelet on the interval (BSWI).

In this work, a new class of Daubechies Scaling Wavelet functions finite elements DSCW for
Mindlin-Reisner plate model is presented. The wavelet-finite element scheme is constructed in a
similar manner to the conventional displacement-based FEM: the Daubechies wavelet functions
are used as interpolation functions and the shape functions are expressed by wavelets.

The rest of the paper is organized as follows: Section2 introduces basic concepts of wavelet
analysis including background and a technique for computing connection coefficients; Section3
presents a Mindlin-Reisner plate finite element formulation and shows a comparison of various
numerical test solutions. In Section4 conclusions are presented.

2 MULTIRESOLUTION ANALYSIS AND DAUBECHIES WAVELETS

Wavelets are functions generated by simple operations of dilation and translation, from one
single function called mother wavelet. A mother waveletψ gives rise to a decomposition of the
Hilbert spaceL2(R), into a direct sum of closed subspacesWj, j ∈ Z.

Letψj,k(x) = 2j/2ψ(2jx− k) and

Wj = closL2[ψj,k : k ∈ Z] . (1)

Then,
L2(R) =

∑

j

Wj = · · · ⊕W−1 ⊕W0 ⊕W1 ⊕ · · · (2)

and using this decomposition ofL2(R), a nested sequence of closed subspacesVj, j ∈ Z can be
obtained, where

Vj =

j−1∑

l=−∞

Wl = · · · ⊕Wj−2 ⊕Wj−1 . (3)

These closed subspaces{Vj, j ∈ Z} of L2(R), form a “multiresolution analysis” (Chui, 1992)
with the following properties:

1. · · · ⊂ V−1 ⊂ V0 ⊂ V1 · · ·

2. closL2(
⋃
Vj ) = L2(R)

3.
⋂

j Vj = {0}
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4. Vj+1 = Vj ⊕Wj

5. f(x) ∈ V0 ⇔ f(x− k) ∈ V0 , k ∈ Z

6. f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1 , j ∈ Z

7. There existsφ ∈ V0 that the set{φ(x− k) : k ∈ Z} is a Riesz basis ofV0.

The functionφ ∈ V0 is called “scaling function” and generates the multiresolution analysis
{Vj}j∈Z of L2(R) and by setting

φj,k(x) := 2j/2φ(2jx− k) (4)

it follows that, for eachj ∈ Z, the family

{φj,k : k ∈ Z} (5)

is also a Riesz basis ofVj.
Consequently, a unique sequence{pk} ∈ l2(Z) exists, (l2(Z) denotes the integer space

of all square-summable bi-infinite sequences), such that the scaling functionφ(x) satisfies a
refinement equation

φ(x) =

∞∑

k=−∞

pk φ(2x− k), k ∈ Z (6)

which is also called “two-scale relation”.
On the other hand, the waveletψ ∈ V1 is defined from the scaling function by means of a

second conjugate sequence{gk} ∈ l2(Z)

ψ(x) =
∞∑

k=−∞

gkφ(2x− k), k ∈ Z . (7)

Multiresolution property means thatVj is a subset ofVj+1. So each element ofVj+1 can be
uniquely written as the orthogonal sum of an element inVj and an element inWj that contains
the complementing details, i.e.

Vj+1 = Vj ⊕Wj. (8)

As an example of multiresolution analysis, a family of orthogonal wavelets with compactly
supported property has been constructed byDaubechies(1992).

In her work, Daubechies (Daubechies, 1988) found and exploited the link between vanishing
moments of the waveletψ and regularity of wavelet and scaling functions,ψ andφ. The wavelet
functionψ hasM vanishing moments if

∫
xkψ(x)dx = 0 for 0 ≤ k ≤M (9)

and a necessary and sufficient condition for this to hold is that integer translates of the scaling
functionφ exactly interpolate polynomials of degree up toM . That is, for eachk, 0 ≤ k ≤ M
there exist constantsckl such that

xk =
∑

l

ckl φ(x− l) (10)
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Daubechies introduced scaling functions that satisfying this property have the shortest possible
support. LetψN be the wavelet Daubechies function withN/2 null moments (whereN is an
even integer), andφN the corresponding scaling function.φN has support in[0, N − 1], while
ψN has support in the interval[1−N/2, N/2] (Daubechies, 1988). Thus, according to equation
(10) Daubechies scaling functions of orderN can exactly represent any polynomial of order up
to, but not greater thanN/2 − 1.

2.1 Computation of scaling functions and its derivatives

In using scaling functions of Daubechies wavelets as test functions of finite element method,
derivatives of Daubechies scaling functions have to be calculated. As there is no explicit expres-
sion for the Daubechies scaling functions, the derivatives can only be obtained on some special
points. To evaluate the function or its derivatives,φ

(m)
N (x) = dmφN(x)/dxm, the two-scale

relation is differentiatedm times:

φ
(m)
N (x) = 2m

N−1∑

k=0

pkφ
(m)
N (2x− k) . (11)

Evaluating Eq. (11) for all integer values of the interval[0, N − 1], gives an homogeneous
system ofN linear equations which is singular. Thus, a normalizing condition is required in
order to determine a unique solution and the following proposed by Beylkin can be considered,

∑

k

kmφ
(m)
N (x− k) = m! . (12)

This condition is obtained differentiatingm times (m is a positive integer number), the impor-
tant additional property of Daubechies scaling functionφN , (Beylkin, 1992):

∑

k

kmφN(x− k) = xm +
m∑

k=1

(−1)k m!

(m− k)!k!
xm−k

∫ ∞

−∞
φN(z)zkdz . (13)

Then, solving this new system of inhomogeneous equations, derivatives can be evaluated at
integer values ofx and used to get the values at the dyadic points.

Using the two-scale relation once again the values ofφ
(m)
N (x) at x = i

2n , with n ∈ Z, for
i = 1, 3, 5, . . . , {2n(N − 1)− 1} can be determined. Therefore, the functions are first evaluated
at the integer points{0, 1, . . . , N − 1}, then at half integers and so on, increasing the value ofn
from 0 to the desired resolution.

2.2 Computation of Connection Coefficients

When the wavelet-finite element method is applied to solve one-dimensional differential
equations, different types of connection coefficients are required to form stiffness matrices and
load vectors (Latto et al., 1995), such as:

Γd1d2
i,j =

∫ 1

0

φ(d1)(ξ − i) φ(d2)(ξ − j) dξ , (14)

R
(s)
i =

∫ 1

0

ξs φ(ξ − i) dξ , (15)
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Figure 1:Daubechies scaling functions. Left:φ(x). Right: φ′′(x). Top: N = 6. Bottom:N = 12.

where i, j ∈ Z, φ denotes the basis function and the superscriptsd1 and d2 refer to di-
fferentiation orders.

The typical problem that arises using Daubechies wavelets is how to calculate these connec-
tion coefficients whenφ is a Daubechies-wavelet scaling function. In first place, the difficulty
is due to the lack of an explicit Daubechies scaling function expression. Moreover, the highly
oscillatory nature of the Daubechies basis functions makes standard numerical quadrature im-
practical for computing connection coefficients. To show this, we present the scaling functions
and their second derivative for N=6 and N=12, in Fig.1. The numerical calculations are in
general unstable and it is necessary to provide an alternative method.

To calculate the integral in Eq.14, Latto proposed to substitute the two-scale relation given
by Eq.6 into Eq.14, which yields

Γd1d2
i,j = 2d1+d2

∑

k,l

pkpl

∫ 1

0

φ(d1)(2ξ − 2i− k) φ(d2)(2ξ − 2j − l) dξ . (16)

Doing the adequate transformations the following expression in terms of the original connection
coefficients is obtained

Γd1d2
i,j = 2d−1

∑

r,s

[pr−2ips−2j + pr−2i+1ps−2j+1]Γ
d1d2
r,s (17)

whered = d1 + d2 and−(N − 2) ≤ i, j ≤ 0.
The last equation can also be written in matrix form, as

(2d−1P − I)~Γd1d2 = 0 (18)

where~Γd1d2 is a column vector,I is the identity matrix andP is the matrix composed of wavelet
coefficients combinations, obtained from Eq.(17).

In order to uniquely determine the connection coefficientsΓd1d2
i,j , sufficient number of inho-

mogeneous equations can be obtained by using different values ofm andn in the following
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expression (Latto et al., 1995).

mn . . . (m− (d1 − 1))(n− (d2 − 1))

m+ n− d+ 1
=

∑

k,l

cmk c
n
l Γd1d2

k,l . (19)

Adding them to equation (18) connection coefficients can be determined uniquely.
Connection coefficients for load vectors, Eq.15, can be calculated in a similar way (seeChen

et al.(2006)). Firstly, for s = 0, the system to solve is,

R
(0)
i =

1

2

∑

k

[pk−2i + pk−2i+1]R
(0)
k (20)

where−(N − 2) ≤ i ≤ 0, and the additional inhomogeneous equation

1

Q + 1
=

∑

k

cQk R
(0)
k Q ≤ N/2 − 1 (21)

is required for a unique solution.
On the other hand, connection coefficients fors > 0 are obtained recursively by solving

(2s+1I − B)R
(s)
i =

∑

k

pk−2i+1

s∑

r=1

(
s
r

)
R

(s−r)
k (22)

where

Bl,k = pl−2k + pl−2k+1 (23)

3 THE CONSTRUCTION OF DAUBECHIES MINDLIN-REISSNER PLATE FINITE
ELEMENT

The plate element formulation is based on the theory of plates with the effect of transverse
shear deformations included (like Timoshenko beam theory). This theory, due to E.Reissner
and R.D.Mindlin, needs onlyC0 continuity and uses the assumption that particles of the plate,
originally on a straight line that is normal to the undeformed middle surface remain on a straight
line during deformation, but this line is not necessarily normal to the deformed middle surface.
With this assumption, (in small displacement bending theory) the displacement components of
a point of coordinatesx, y andz are

u = −zθx(x, y) v = −zθy(x, y) w = w(x, y) (24)

whereu andv are inplain displacements,w is the transverse displacement (or called deflection)
andθx andθy are the rotations of the midplane abouty andx axes, respectively (see Fig.2).

According to Mindlin-Reissner theory, the elemental generalized function of potential energy
for Mindlin-Reissner plate bending problem in linear static analysis is,

π =
1

2

∫

Ωe

κTCbκ dxdy +
1

2

∫

Ωe

γTCsγ dxdy −
∫

Ωe

q w dxdy (25)
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where

κ =

{
∂θx

∂x
,−∂θy

∂y
,
∂θx

∂y
− ∂θy

∂x

}T

γ =

{
∂w

∂x
+ θx,

∂w

∂y
− θy

}T

(26)

Cb =
Et3

12(1 − ν2)




1 ν 0
ν 1 0
0 0 1−ν

2


 Cs =

Etk

2(1 + ν)

[
1 0
0 1

]
(27)

Ωe is the elemental solving domain,q is the distributed load,t is the thickness of the plate
(assumed constant),E is Young modulus,ν is Poisson’s ratio andk is the shear correction
factor equal to5

6
.

One thing to be noted here is that the first term in Eq.25 corresponds to bending energy,
while the other is the transverse shear energy and this last term becomes dominant compared to
the bending energy as the plate thickness becomes very small compared to its side length.

3.1 Daubechies Mindlin-Reissner plate finite element

Supposing that one-dimensional Daubechies scaling functionsφ1(ξ) and φ2(η) generate
multiresolution analyses{V 1

j } and{V 2
j } respectively, the tensor product space ofV 1

j andV 2
j ,

j ∈ Z, is

Vj = V 1
j ⊗ V 2

j (28)

{Vj} generates a multi-resolution analysis ofL2(R2). If we call

ϕ1 = {φ1(ξ), φ1(ξ + 1), . . . , φ1(ξ + (N − 2))} (29)

ϕ2 = {φ2(η), φ2(η + 1), . . . , φ2(η + (N − 2))}

the scaling functions of{Vj} can be expressed using the tensor product of the wavelets expan-
sions at each coordinate, i.e.:

ϕ = ϕ1 ⊗ ϕ2 . (30)

The unknown field functionw(ξ, η) can be expressed as follows

w(ξ, η) = ϕ α (31)

whereα is the vector of corresponding wavelet coefficients. The elemental transformation
matrixT is

T = T 1 ⊗ T 2 (32)

whereT 1 andT 2 are the transformation matrices corresponding to one-dimensional problem
(Ma et al.(2003); Xiang et al.(2006); Vampa et al.(2007)).

For the plate problem, Eq.(25), independent interpolation is considered and the same shape
functions are used for the displacements and slope interpolations. In this way, the elemental
displacement functions, Eq.(24), can be replaced by

θx = ϕ T−1 θ̂x, θy = ϕ T−1 θ̂y, w = ϕ T−1 ŵ (33)

Mecánica Computacional Vol XXVII, págs. 2253-2263 (2008) 2259

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



whereθ̂x, θ̂y andŵ, are the physical DOFs of elemental nodes, see Fig.(2).
Then, substituting Eq.(33) into Eq.(25) and according to the stationarity condition ofπ (δπ =

0), we can obtain the elemental stiffness matrix.
Finally, the elemental FEM solving equations can be expressed by:



K1 K2 K3

K4 K5 K6

K7 K8 K9






θ̂x

θ̂y

ŵ


 =




0
0
P


 , (34)

where

P = ((T )−1)T

∫ 1

0

∫ 1

0

q(ξ, η)ϕTdξdη

K1 = D0{A11
1 ⊗ A00

2 + (1 − µ)/2 A00
1 ⊗ A11

2 } + C0 A
00
1 ⊗ A00

2

K2 = D0{A10
1 ⊗ A01

2 + (1 − µ)/2 A01
1 ⊗ A10

2 } + C0 A
00
1 ⊗ A00

2

K3 = −C0 A
01
1 ⊗ A00

2

K4 = (K2)T

K5 = D0{A00
1 ⊗ A11

2 + (1 − µ)/2 A11
1 ⊗ A00

2 } + C0 A
00
1 ⊗ A00

2 (35)

K6 = −C0 A
00
1 ⊗ A01

2

K7 = (K3)T

K8 = (K6)T

K9 = C0 A
11
1 ⊗ A00

2 + A00
1 ⊗ A11

2

andD0 = E t3

12(1−ν2)
and C0 = E t k

2(1+ν)
. In this formulation,

Ad1d2
s = l1−(d1+d2)

e,s (T−1
s )T Γd1d2

s T−1
s , s = 1, 2 (36)

wherele,s is the finite element side length,Γd1d2
s is the connection coefficients matrix defined

in Section2.2, (Eq.14) and subscripts denotes the Daubechies scaling functionϕs (Eq. 29)
considered.

Adopting two dimensional Daubechies scaling functions withN coefficients to construct
elements,Ω can be divided into uniform meshes. One Daubechies Scaling Wavelet element
with N coefficients (DSCWN) has(N − 1)2 total nodes. As, in this model, each node has
three DOFs, one DSCWN Mindlin-Reissner element has3 × (N − 1)2 DOFs.

In the following section the finite element implementation is validated using Daubechies
scaling functions of order 6. Numerical solutions obtained with DSCW6 elements are firstly
compared with the approximations presented inXiang et al.(2006), which use B-spline wavelets
on the interval (BSWI) for the Mindlin-Reissner plate model. Also, a comparison is made with
other wavelet based finite element method and with standard finite elements.

3.2 Applications

The formulation of two-dimensional tensor product Daubechies Mindlin-Reissner element
developed in Section3.1, is applied to a typical numerical example: a square isoparametric plate
simply supported on all four edges. Two cases were considered: uniform and concentrated load.
Let Poisson’s rateµ be fixed as 0.3,t denote thickness andL denote side length.
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Figure 2:Mindlin-Reissner Plate element

wc/(qL
4/100D0)

t/L (1x1)DSCW6 (2x2)DSCW6 BSWI23 Exact
0.001 0.3121 0.3441 1.8 10−4 0.4063
0.01 0.3125 0.3452 0.0173 0.4063
0.05 0.3203 0.3647 0.2174 0.4107
0.1 0.3411 0.4006 0.3510 0.4273
0.15 0.3713 0.4397 0.4152 0.4536
0.2 0.4104 0.4842 0.4678 0.4906
0.3 0.5166 0.5979 0.5861 0.5956
0.35 0.5843 0.6691 0.6579 0.6641

Table 1: Central displacements for simply supported square plate subjected to uniform loadwc/(qL4/100D0)

Table1 and2 show the comparison of central displacements obtained with DSCW6 (with 6
coefficients) Mindlin-Reissner elements with those presented inXiang et al.(2006), obtained
with one BSWI23 element (B-splines ofm order, withm = 2 and scalej = 3) for the thickness-
span ratio from0.001 to 0.35. Also, exact solutions are presented.

As it can be observed the method we proposed shows a non-locking behavior: even using
scalej = 0 and only one element (75 DOFs), our results are better than BSWI23 (243 DOFs) for
t/L ≤ 0.05. With a 2×2 mesh excellent results are obtained for all the thicknesses considered.

We also made a comparison with the multivariable wavelet base finite element method pre-
sented in [Han et al.(2005)] to solve bending problems of thick plates. Table3 shows that the
6 × 6 mesh DSCW6 elements, yields a more accurate solution.

Regarding thin plates, it is well known that shear locking problems can appear using standard
finite elements and a lot of methods have been suggested to alleviate this phenomenon.There
are several mixed finite elements methods which present good approximations to the solutions
and are free from locking. A successful approach is that of the MITCn elements developed by
Bathe and Dvorkin(1985) (MITC stands for mixed interpolation tensorial components andn
refers to the number of element nodes). This family of plate bending elements uses mixed inter-
polation of transverse displacement section rotation and transverse shear strains. In particular,
the MITC4 is a reliable and efficient low order plate element.

Table4 shows the comparison between the results obtained with MITC4 and those obtained
with DSCW6 and DSCW10 elements, fort/L = 0.01. Also computational time required is
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wc/(qL
4/100D0)

t/L (1x1)DSCW6 (2x2)DSCW6 BSWI23 Exact
0.001 0.7990 0.7991 0.0504 10−2 -
0.01 0.8009 0.8059 0.0485 1.127
0.05 0.8429 0.9296 0.6325 1.209
0.1 0.9589 1.157 1.0973 1.353
0.15 1.134 1.418 1.416 -
0.2 1.368 1.727 1.752 1.851
0.3 2.016 2.540 2.614 -
0.35 2.432 3.054 3.159 -

Table 2: Central displacements for simply supported square plate subjected to concentrated loadwc/(qL4/100D0)

wc/(qL
4/100D0)

Mesh Han et al.(2005) DSCW6 Exact
6x6 0.3218 0.3224 0.3227

Table 3: Central displacements for clamped square plate subjected to uniform loadt/L = 0.3

presented. It can be observed that with MITC4, the required CPU time is about four times
larger than with DSCW6 element to achieve similar accuracy. On the other hand, with one
individual DSCW10 element a very good approximation is obtained and the computational
effort is comparable with MITC4. This results confirm that the Daubechies wavelet element
proposed performs well.

4 CONCLUSIONS

In this work, we have demonstrated the feasibility and capability of using wavelet bases in
the FEM. In particular, for Mindlin-Reissner plate model, Daubechies Scaling Wavelet elements
(DSCWN) presented in this paper are efficient to solve plate bending problems. These elements
can be easily constructed due to independent interpolation of each displacement function. Due
to the orthonormal, compactly supported and nesting properties of the Daubechies wavelets,

wc/(qL
4/100D0)

Mesh MITC4 CPU(in s) DSCW6 CPU(in s) DSCW10 CPU(in s)
1x1 – 0.3125 0.375 0.3570 1.65
2x2 0.3189 1.91 0.3454 0.453

Thin plate sol. 0.40625

Table 4: Central displacements and computational time required, for simply supported square plate subjected to
uniform loadt/L = 0.01
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results are in good agreement with exact solutions for thick and thin plates, even with coarse
meshes.

We are convinced that the wavelet-based methods are a powerful tool to deal with several
problems in structural analysis and that more advantages could be obtained increasingj-scale
level.
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