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Abstract. A moving finite element method based on a posteriori error estimate is presented 
for three-dimensional compressible flows, with emphasis on shock waves. The adaptation 
procedure uses an interpolation error estimate whose magnitude and direction are controlled 
by the Hessian, containing second derivatives of the specific mass. This error is projected 
over mesh edges and drive the nodal movement scheme to satisfy an optimal mesh criterion. 
While traditionally the optimal mesh criterion is one in which the error is equidistributed 
over the elements, in this work the error is equidistributed over the edges. Mesh anisotropy is 
avoided employing a formulation based in variational principles. Finally, numerical result 
obtained with current method are presented and analyzed for several examples. 

 

2149

Administrador
Cuadro de texto
Mecánica Computacional Vol. XXIV
A. Larreteguy (Editor)
Buenos Aires, Argentina, Noviembre 2005




 

1 INTRODUCTION 

The numerical solution of complex problems in many engineering fields normally requires 
the uses of a large number of mesh points to accurately capture phenomena exhibiting high 
gradients of one or more variables such as those appearing in boundary layers, regions with 
stress concentration, shock waves, etc.. As regions where the phenomena take place are not 
known a priori in many case, it is rarely feasible to create a suitable initial mesh with small 
elements at the corresponding location where high gradients may be found. Several 
approaches have been employed for both structured and unstructured mesh adaptation. The 
most widely used approaches consist in nodal re-allocation, automatic mesh 
refinement/unrefinement and changes of the approximation order of the variables. Sometimes 
it could be appropriated to use simultaneously more than one of these approaches. Most of 
these subjects are well summarized in Löhner1, where many references are given. 

A strategy for mesh adaptation, using only mesh movement and nodal re-allocation, has 
the advantage that the mesh connectivity and number of elements and nodes do not vary with 
respect to the initial mesh and hence computational cost does not increase when a new 
flowfield is calculated on the adapted mesh. The node movement technique was originally 
presented by Gnoffo2, and was after generalized by Nakahashi and Deiwert3, for fluid flow 
problems. The scheme used by these authors are based in the spring analogy, where the mesh 
is viewed as a set of springs with their constants representing error measures. Each apex (or 
node) is moved until equilibrium are reached by the spring forces. The refinement technique 
using exclusively nodal movement has been less popular in the finite element community; the 
main difficulty seems to be the lack of a reliable and general procedure to determine the mesh 
movement. Nevertheless, as this method is easy to implemented and inexpensive, because 
only the initial mesh with non complex data structure is needed to originate continuos 
changes or the mesh in the time-space domain, it is worthwhile to employ this technique 
whenever it is possible. Hawken et al.4 presented a review of adaptive node-movement 
techniques in finite elements and finite differences. Ait-Ali-Yahia et al.5 studied a 
methodology for quadrilateral elements using an edge-based error estimate, but high aspect 
ratios (such as 50 for some elements) were obtained. Tam et al. 6 extended this methodology 
for 3-D hexahedral elements, where mesh refinement is also considered. 

In the presented work a node-movement technique is implemented for compressible flows 
characterized by strong shock waves, analized with the Finite Element Method (FEM) using 
hexahedral isoparametric elements with eight nodes. An edge-based error estimate drives 
nodal movement to satisfy an optimal mesh criterion. The error is equidistributed over the 
edges and an initial mesh is continuously adapted during the solution process, keeping as well 
as possible mesh smoothness and local orthogonality with an unconstrained optimization 
method. An Arbitrary Langrangean-Eulerian (ALE) description is used in order to obtain a 
conservative  computation of the flow when the adaptive mesh procedure transport 
informations from the old to the new mesh. Classical computational fluid dynamics problems 
such as the supersonic flow over a ramp, and the supersonic flows around a cylinder are 
presented to apply the proposed methodology. 
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2 THE NUMERICAL SCHEME 

The mass, momentum and energy conservation equations for compressible flows, 
neglecting viscous and heat diffusion term using an ALE description, may be written in a 
compact form as:  
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where U  and iF  are vectors containing field and flux variables, respectively. In these 
expressions, iv  and iw  are the fluid and mesh velocity components in the direction of the 
spatial coordinates ix , respectively, ρ  is the specific mass, p is the thermodynamic pressure 
and e is the total energy. Finally, ijδ  is the Kronecker delta and t is the time coordinate. 

Equation (1) is complemented by the equation of state for an ideal gas. The problem is 
completely defined when initial and boundary conditions are added to these equations. 

The system of partial differential equations is solved with an explicit scheme using the 
finite element method, employing a Taylor series and the classical Bubnov-Galerkin 
method1,7 for time and space discretization, respectively. An isoparametric eight node 
hexahedrical element is used and the corresponding element matrices are obtained 
analytically employing reduced numerical integration. This code has been validated against 
analytical and experimental results for several compressible flows (Kessler and Awruch8, 
Bono9). 

3 MESH ADAPTION 

3.1 The error estimation 

Assume a one-dimensional problem, in which a variable ρ is approximated by hρ  using 
piecewise linear interpolation functions. The root mean square error interpolation in an 
element e is given by (Peraire et al.10):  
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provided that the approximation is exact at the nodes. In Eq. (3), h is the element length.  An 
optimal mesh is obtained when the error is equidistributed, that is:  
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where C is a specific tolerance. For a three-dimensional problem, the second derivative of the 
variable approximated by hρ  with respect to a direction defined by the versor V is given by:  
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where H is the Hessian matrix. As hρ  is interpolated with linear shape functions, the second 
derivative of hρ  at a node I can be calculated using a weak formulation6 obtaining:  
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where M -1 is the inverse of the mass matrix, which is given by:  
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where φ is a vector containing the shape functions, ΩI is the volume of all the elements 
sharing the node I and ΓI is the corresponding boundary. I varies from 1 until the total number 
of nodes in the finite element mesh, nj represents the cossine of the angle formed by a normal 
axis to ΓI with the coordinates axis xj. The first derivatives of hρ  are nodal values that can be 
obtained using a smoothing process based in the mean square method. In Eq. (6) as well as in 
the smoothing process to obtain values of h jxρ∂ ∂  at the nodes, the lumped mass matrix may 
be used instead the consistent mass matrix, indicated in Eq. (7). 

The matrix H can be diagonalized and, in this case, Eq. (5) may be written as follows:  
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Where Λ is a diagonal matrix containing the eigenvalues of H and R contains the 
corresponding eigenvectors. As the error must be positive, the original matrix H is substituted 
by H , where the absolute values of the eigenvalues are taken. It results in:  
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In the current approach, the error, given by Eq. (4), is equidistributed over the mesh edges, 
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where h is the Euclidian length of an element edge, and the second derivative of hρ  is now 
given by Eq. (9), where V is a unit vectors that support this specific edge. An optimal mesh 
would by defined as the one in which all the edges have the same length in the Riemann 
metric defined by TV H V . Thus the edge-baser error estimate is computed evaluating 
numerically the following expression on each edge i-j:  

 ( ) ( )( )
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where j ix x h− =  and s is an independent variable, such as 0 s h≤ ≤ .  

3.2 The mesh movement 

In general, the adaptive process with nodal redistribution consists of the three main steps. 
The first step is to define an appropriated monitoring function, which is representative of 
important solution features. The second, and probably the most crucial step, is to redistribute 
the node in the computational domain in a manner consistent with the aforestated monitoring 
function. It is crucial that the geometric fidelity of solid boundaries be maintained during the 
redistribution process. Mesh quality, measured by orthogonality and smoothness, must be also 
maintained. In third step the metric terms are modified to reflect mesh movement with a 
consistent node speed to re-evaluate the flow variables at the new mesh using an appropriate 
scheme. 

Brackbill and Saltzman11 formulated the grid equations in a variational form to produce 
satisfactory mesh concentration while maintaining relatively good smoothness and 
orthogonality. Their approaches has become one of the most popular methods used for mesh 
generation and adaptation in the past. In order to improve computational efficiency and 
reliability of this method Carcaillet et al.12 and Kennon and Dulikravich13 adopted a more 
heuristic formulation for the local adaptation problem. 

Consider a typical cell, formed by eight element in the three-dimensional case, as it is 
shown in Figure 1. Pijk = P ( xijk ) is a common node belonging to the eight elements forming 
the cell, which is connected to the other nodes by straight segments defined as position 
vectors. The six position vectors with origin at the node Pijk are used to form twelve scalar 
products, which are squared and summed to control orthogonality, ORijk, of the typical cell. A 
measure quantifying the local smoothness, SMijk, is given by the sum of the six scalar 
products of the position vectors forming the typical cell. The sum will be zero if all adjacent 
elements are equal volume. Details of local orthogonality and local smoothness formulation 
can be found in Kennon and Dulikravich 13. 

The global objective function to be minimized is given by:  
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with 0 1δ≤ ≤  and 0 1β≤ ≤ , where δ and β are weighting parameters, while ORmax and 
SMmax are the largest values or ORijk and SMijk, respectively, in order to ensure values of the 
same order in Eq. (11); l, m and n are the number of nodes in directions i, j and k, 
respectively. In Eq. (11), dijk is obtained by the summ of the square values of the edge-based 
error-estimate, given in Eq. (10), for all the element edges having Pijk as a common end.  

 
Figure 1: Typical cell defined for three-dimensional case 

The conjugated gradient method, proposed by Fletcher-Reeves 14, is used to vary the node 
positions until the non-linear objective function ( ){ }:1 , 1 , 1ijk i l j m k n≤ ≤ ≤ ≤ ≤ ≤F x  is 

minimized. The conjugated gradient method has the following forms:  

 1p p p pα+ = +x x d  (12) 

with,  
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where ( )p pF= ∇g x , pα  is a scalar and pβ  is a step size obtained by means of a one-
dimensional search for descent direction and called exact line search. 

Vector pd  is a descent direction if , 0p p <g d , where ,i i  is the scalar product. This 
relationship may be written as:  

 ( )' 0 0p <F  (14) 

with ( ) ( )' ,p p p p pα α=F g d , since we consider functions of the scalar pα  verifying:  

 ( ) ( )p p p p p pα α= +F F x d    and   ( ) ( )p p p p p pα α= +g g x d  (15) 
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We note that ( )0p p=F F  and ( )0p p=g g . Moreover, the requirement 1p p+ <F F  
translating decrease of F at each iteration is unsatisfactory since the decrease can be 
negligible when compared with reduction which can be obtained in an optimum reduction 
process based on exact line search. This exact line search supposes that pα  satisfies the 
Strong Wolfe conditions:  
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Value for pβ  was proposed by Fletcher-Reeves:  

 
1 1

,
0

,
p pFR

p
p p

β
− −

= ≥
g g

g g
 (17) 

Restrictions are prescribed to the motion of the nodes belonging to the boundaries surfaces. 

4 NUMERICAL EXAMPLES 

For all test cases investigated, the specific mass is the variable used for the error estimate, 
and the adaptive process was applied when a relatively small value of the residual value 
corresponding to ρ was reached. 

The following values were adapted for the weighting parameters in Eq. (11): δ = 0.5 and β 
= 1.0. The fluid properties are assumed to be constant with γ = 1.4. Boundary nodes are free 
to move on the corresponding boundary planes or surfaces.  

4.1 Steady supersonic flow over a ramp 

In this example, the current methodology is applied to a steady supersonic flow over a 
ramp forming 16º with the horizontal axis. This example tests certain features of the 
algorithm, including the resolution of the oblique shock and its proper angle. 

The freestream has a Mach number equal to 3.0 and dimensionless specific mass equal to 
1.0. This case was computed using an mesh with 42 x 26 x 4 elements. 

In Fig. 2 the initial and final meshes are shown, and it is observed that the elements are 
aligned with the shock wave conserving a mesh with a good quality. 

The final mesh with some details is presented in Fig. 3 and the specific mass distribution 
for y = 0.5 is shown in Fig. 4, it is observed that the adaptive method improves results in 
regions with strong gradients. This result agrees well with the analytical values presented in 
the NACA Report 1135 15. 
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Figure 2: Initial and final mesh 

 
Figure 3: Final mesh and detail 

4.2 Steady supersonic flow over a circular cylinder 

A steady supersonic flow over a circular cylinder is analyzed in this section. The 
freestream flow has the following properties: Mach number 3.0M∞ =  and specific mass 

1.0ρ∞ = . The domain is discretized using a mesh with 25 x 5 x 25  elements. 
In Fig. 5 the final mesh is shown, and it is observed that the elements are aligned with the 

shock wave conserving a mesh with a relatively good quality. The distributions of the 
pressure field for both, the initial and the final meshes, are shown in Fig 6, and it is observed 
that the proposed adaptive method improves result in regions with strong gradients. 

Finally, the specific mass distribution in the stagnation line is presented in Fig. 7, where it 
is observed the difference between the gradients obtained with the initial and the final mesh. 
Results are similar to those obtained by Le Beau and Tezduyar16. 
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Figure 4: Distrubution of the specific mass along the y = 0.5 

 

 
Figure 5: Final mesh after the adaptation process 
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Figure 6: Comparison of the pressure distribution for both meshes 

 

 
Figure 7: Specific mass distribution in the stagnation line 

5 CONCLUSIONS 

The development of a versatile and computationally effective methodology to adapt finite 
element mesh to simulate compressible flows with strong shock waves was the main objective 
of this work. The nodal re-allocation adaptivity, used in this study, starts from an initial mesh 
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and the grids are concentrated in the desired region without any grid tangling. The method is 
characterized by error estimation measured in the element edges using a Riemann metric, 
which is defined employing the Hessian matrix. An optimization procedure is used to 
preserve as well as possible mesh orthogonality, smoothness and equidistribution of the error. 

Good results for supersonic flows were found, showing that they were improved using the 
adaptive procedure with respect to those obtained with the initial mesh. 
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