
A TENSOR LIBRARY FOR SCIENTIFIC COMPUTING

A.C. Limachea and P.S. Rojas Fredinib

aInternational Center of Computational Methods in Engineering (CIMEC) INTEC-CONICET.  
Santa Fe, Argentina. http://www.cimec.com.ar/alimache

bDepartment of Informatics, FICH, National University of the Litoral (UNL). Santa Fe, Argentina.
 

Keywords: LTensor, scientific computing, tensor library, C++ library, indicial notation.

Abstract. The majority of physical phenomena and their computational simulations are described 
mathematically in terms of tensors and their different algebraic operations. Possibly the most used 
tensors are the ones of rank 1 and 2, which correspond to the algebraic concepts of vectors and 
matrices, respectively. Nevertheless, higher rank tensors (specially 3 and 4) appear at all times in 
different  branches  of  physics  and  in  numerical  methods.  One  of  the  major  drawbacks  of  high 
performance computing is that the code necessary to perform such tensor operations looks different 
and it is several lines longer than the corresponding one-line mathematical representation. Here we 
present  a C++ tensor library,  called LTensor,  that  we have developed using modern concepts  of 
object oriented design and expression templates. As it will be shown, the LTensor library is able to 
mimic the classical indicial notation and follows Einstein convention about indices. Furthermore, it 
has  other  additional  features  than  distinguish  it  from other  libraries  based  on  similar  concepts: 
dynamic dimension size, arbitrary contraction order, customizable storage, inherited class structure, 
arbitrary looping positions on indicial notations, etc.
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1 INTRODUCTION

The C++ programming language has interesting features that make it an excellent choice 
for  scientific  and  engineering  applications.  One  of  these  known  features  is  operator 
overloading.  Operator  overloading  makes  it  possible  to  write  algebraic  expressions 
containing vectors or matrices in a similar way one would write them in a piece of paper. 
For example given a matrix (Tensor2) A and three vectors (Tensor1) b, c, d one can perform 
the following algebraic operation:

c = A*b+d;                                                     (1)

once one declares them as:

Tensor2 A;
  Tensor1 b,c,d;

But this  level of abstraction comes at  a high cost,  since tensors are usually  implemented 
using  temporary  objects  (Veldhuizen,  1995).  The  code  generated  by  expression  (1)  is 
equivalent to:

Tensor1 t1 = A*b;
Tensor1 t2 = t1+d;
c = t2;

Each  of  the  above  expressions  uses  a  loop  to  evaluate  the  operation,  so  the  compiler 
generates three sequential loops to accomplish the original expression. This represents a big 
overhead compared to the classic C-programming style where the desired operation can be 
accomplished with the following code: 

double **A;
double *b,*c,*d;

// here goes allocation and initialization

for (int i=0;i<dim;i++)
{

for(int j=0;j<dim;j++)
{

c[i]+= A[i][j] * b[j];
}

  c[i]+= d[i];
}

Using  the  C-programming  style  only  two  loops  are  needed,  which  results  in  a  shorter 
evaluation time. We also have another benefit: the temporaries are not necessary. However, 
in the C-style approach the syntax is far more complex and less intuitive than the operation 
overloading alternative  defined in eq. (1).  Also  if  we need to  do a  minor change in the 
operation,  for example,  if  instead  of  an  inner contraction  we  want  to  compute  an  outer 
contraction,  we need to  modify the routine completely.  This is  specially  annoying when 
working  with  arbitrary  tensor  contractions.  The  situation  gets  worst  when  dealing  with 
higher order tensors, where nested loops make the code error prone and harder to follow. 
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Because  of  these  reasons  some people  usually  prefer  interpreted  languages  like  Matlab, 
Octave, Python, etc., which offer a clear syntax and are easier to use, but their performance 
is by far not comparable to native C or FORTRAN performance.

The above described panorama has changed drastically in favor of C++ with the work by 
Veldhuizen and his  colleagues  (Veldhuizen, 1995a;  Veldhuizen and Jernigan,  1997) who 
developed a  technique  known  as  template  expressions.  They  described  how  to  use  an 
unintended template  feature to  evaluate  expressions in a  single  pass  by building trees of 
expression objects. This opened a new world of possibilities, and motivated the development 
of new libraries which exploded this technique (Veldhuizen, 1998;  Landry, 2002; Ahlander ; 
Jeremic , B. , Sture, S , 1998; Ilyin, V. , Kryukov, A , 1996; Blinn, 2000). Along with this 
technique  emerged another  one called  template  metaprogramming (Veldhuizen,  1995b; 
Veldhuizen,  1999)  ,  which  allowed  the  generation  of  code  at  compile  time  with  some 
restrictions.

FTensor (Landry, 2002) and Blitz (Veldhuizen, 1998) have had the biggest influence at 
the time of developing the present library.  FTensor is highly focused on performance, at the 
cost  of some sacrifices regarding flexibility, like the impossibility  to change the size of a 
particular dimension of an array at runtime. It incorporates indicial notation with Einstein 
convention to C++ syntax in a natural way, making possible to write expressions like the 
one defined in Eq. (1) as:

Tensor2 A;
Tensor1 c,b;
c(i)=A(i,j)*b(j)+d(i);                                         (2)

This not only offers an improved legibility but also is efficient, evaluating the expression on 
a single loop, with no temporaries.

On the other hand Blitz library offers much more flexibility but the syntax for Einstein 
notation is not as clear as the previous one in the case of contractions. 

Taking these  ideas,  a  library  was  developed named LTensor,  featuring multi-indexed 
arrays up to rank 4, Einstein notation with a natural syntax, dynamic dimension size, and an 
inheritance structure offering a good balance between flexibility, performance and legibility.

2 DESIGN OVERVIEW

The  library  was  designed  with  flexibility  in  mind.  An  inherited  class  structure  was 
chosen  like  in  Fig.  1.  The  main  class  is  Marray  which  inherits  from  Base  the  main 
functionality.  The  other  important  class  is  TExpr;  this  is  the  one  that  allows  the 
implementation of the index notation as it will be shown later.

+tensorOperations()
+commonOperations()

Marray<class type,int rank,class base>

+baseAlgorithms()

-data : Store

Base<class type,int rank>

Figure 1: Inheritance design

Mecánica Computacional Vol XXVII, págs. 2907-2925 (2008) 2909

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



2.1 Base class

Base is the base class templatized with rank and type. It is responsible of offering the 
basic functionality for an array of rank=1, 2, etc. and of type=int, double, complex, etc. It 
manages  the  memory where  the  data  will  be stored,  it  is  in charge  of  allocation  an  de-
allocation of memory and basic operations on the data. The member data in Fig.1 is only a 
guideline, depending on the base class implementation it can have a total  different shape, 
although there is an interface that must be met in order to provide all the methods needed by 
the Marray class.

This way, is possible to have different behaviors and optimizations regarding the natural 
structure of the data for the problem at hand.

2.2 Marray class

This is probably the most important class from the perspective of the programmer. This 
class  is  specialized  on  the  template  parameter  rank,  allowing  different  implementations 
depending on the tensor rank. This could look like a design fault, but saves many runtime 
instructions that  otherwise would be needed on each method to determine the rank of the 
tensor at hand.

The first template parameter indicates the type of the data that will be stored in the array. 
The third  parameter  defines which  will  be the  class  to  inherit  from. Although there  are 
different specializations of this class, it should be noted that the Base is the same on all of 
them. So Base must provide functionality for all ranks.

The class  Marray implements all the required methods to support indexed expressions, 
generic functionality  and numeric algorithms referred as  commonOperations()   in Fig. 1. 
No data is actually stored on this class; it acts as a wrapper adding the functions described 
earlier. 

Because of this design pattern, it is possible to have different types of tensors like sparse, 
symmetric, etc. But it is not limited to different tensor types; it is possible to have arbitrary 
memory ordering, for example, FORTRAN-style arrays. 

The  equals  and  index  operators  of  Marray  call  the  Base  equals  and  index  operator 
respectively, as shown in Fig. 2 for the case of the index operator.  Marray class doesn’t 
know where the data comes from, nor if it is preprocessed or altered in some way. This is 
what gives freedom of implementation to the Base class. A simple change of the Base class 
results  in  a  tensor  with  the  characteristics  defined  by  the  base  and  the  functionality  –
including the index expressions- of the Marray class.

Base<type,rank>Marray<type,rank,base>mainApp

operator()

type value

operator()

type value

Figure 2: Sequence of operator  relying
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2.3 Tensor Expressions

One of  the  main  features  of  the  present  library  is  the  possibility  to  write  complex 
operations using the Einstein summation convention in a natural way. For this task two new 
classes were needed to act as index entities: IndexF and IndexG, as shown in Fig. 3.

IndexG is the simplest class. It is a container of a char character which plays the role of 
the index identifier.  When these indices are  used the compiler knows that  loops have to 
performed over all the dimension of the indicated tensor component. The IndexF class has 
an additional member named indexes which is used to specify the positions the index will 
loop over.

The main class  involved in the tensor expressions is TExpr,  which is a  container for 
objects of type determined by its own template parameter. This way TExpr holds pointer to 
objects, whose only restriction is to have the operator() defined.

IndexG<char i>

+indexOperations()()

-indexes : Marray<class type ,int rank,class base>

IndexF<char i>

Figure 3: Index classes

Generically speaking there are two classes of objects a TExpr can hold:

1. Unary Objects
2. Binary Objects

The first one is an object that holds a pointer to a Marray or to another TExpr object, 
but only one. The Unary object can apply modifications to the object it holds, like making it 
negative or scaling by a constant for example.

The second is an object that  holds two pointers instead of one, to another  TExpr, or 
Marray. This object performs binary operations between them.

Both of them have the  operator () defined, allowing the creation of trees of  TExpr as 
shown in Fig. 4.  

There are objects TExpr for the different ranks supported by the library, named TExprN 
with N=1..4. Those objects have operations defined between them by operator overloading, 
and between them and the Marray class. Those operators are the ones in charge of doing the 
loop and assignation along the TExpr dimensions, because in the end the TExpr represents 
a complex expression that  can be indexed. The calling sequence is shown in Fig. 5 for a 
simple case. It can be seen how the indexing operator is spread up the tree and every object  
applies the operation it represents. For example in Fig. 5, the BinaryObject could be an add 
operator, adding the two  Expr2 and returning the result. This way, in a single for loop is 
possible to evaluate the whole expression.

The Binary and Unary Objects  fall  in different categories depending on the task  they 
perform:

1. Encapsulation Object: this object works as an encapsulation for Marray objects. It 
makes possible to encapsulate Marray objects of different dimensions than the TExpr 
container.  It  is  useful  in  the  cases  where  constant  indexes  appear  on expressions, 
lowering the number of free indexes. This class also provides the mechanisms for the 
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two kinds of indexes described earlier to work, keeping a reference to the indexes in 
the  case  of an IndexF,  and returning the  correct  value of the contained expression 
according to them.

2. Binary Operators: the objects falling under this category perform binary operations 
on the two contained TExprs, and return another TExpr with the result of the op. One 
of  the  most  relevant  is  the  Contraction  object  that  given  two  TExpr  with  their 
associated indexes returns the results of the contraction.

3. Unary Operators: the most common operations involving objects from this category 
include Marray sign inversion and operations involving scalars. 

Marray2

TExpr2

BinaryObject

UnaryObject

TExpr2 TExpr2

Marray 2

UnaryObject

TExpr2

Marray2

UnaryObject

TExpr2

BinaryObject

Figure 4: Simplified tree expression representation
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TExpr2 TExpr2BinaryObject TExpr2

Operator(n1,n2)

Operator(n1,n2)

Operator(n1,n2)

Type data

Type data

Type data

Figure 5: Expression calling sequence

2.4 Equal operator overloading

This is the key for the described hierarchy to work. The responsible of performing the 
evaluation  of the  Texpr is  the  operator  equal  (operator=)  of  the  Marray class  and the 
operators equal of the TExpr classes. Each one of them performs a loop along the indexes of 
the Texprs evaluating the whole tree on each iteration, and assigning the returned value to 
the left side of the assignation, that of course can be another TExpr tree. 

3 IMPLEMENTATION

Currently two base classes are implemented to act  as the Base object,  TinyArrayBase 
and ArrayBase, each one of them designed for different usage scenarios.

The  Marray  classes  provide  implementations  of  common numeric  algorithms,  but  of 
course, lack of possible optimizations according to the type of the Base. In the cases where 
those algorithms could perform better due to a characteristic of the Base the implementations 
should be provided by it.

As it is well known, there is always a balance between flexibility and performance. In 
developing the current library some performance penalties were accepted in exchange for a 
clearer code. This allows the occasional reader to understand faster what  the algorithm is 
performing, instead of going though thousands of cryptic  instructions. The programmer is 
relieved from the burden of implementing complex index contractions and other operations 
that can be accomplished in a human friendly way by this library.

3.1 TinyArrayBase class

This is a simple class with minimum functionality in favor of speed. It is intended to be 
used when the size of the Marrays is small, and should be used by default if no other base is 
provided. It’s  highly  optimized for speed and has a  very little  overhead on the functions 
called  by  the  Marray  class.  It  always  works  with  C-style  arrays,  not  being possible  to 
change this.

The internal storage of the data is a normal C-array with a mapping corresponding to the 
rank. A copy is always made when the operator= is called, with no possibilities of working 
with references. In this way each TinyArrayBase is the owner of its memory.
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This class provides the different operator() overloads in order to work with any of the 
possible Marray ranks.

3.2 ArrayBase class

This  class  was  designed with  functionality  in  mind.  It  offers  a  lot  of  features,  and 
possibilities  in  exchange  for  a  bigger  penalty  in  performance  than  the  case  of  the 
TinyArrayBase. This class is intended to be used when the dimensions of the Marray are 
big. Some of the most relevant features are:

1. Arbitrary dimensions ordering: the ordering of the dimensions of this class can be 
provided by the  user. It  allows  working with  C-style  arrays  (default),  FORTRAN-
style arrays, or any ordering provided by the user. This ordering is used to store the 
data  in memory. This permits implementing FORTRAN algorithms, directly without 
worries about the penalty for the dimensions ordering. Or using a custom storage order 
according  to  the  problem  at  hand.  The  memory  is  effectively  ordered  by  this 
parameter, to benefit from less cache misses, less memory reads, etc.

2. View/Storage model: None of these classes is the owner of its storage. Each instance 
has  a  pointer  to  a  StorageClass that  can  be  customized  to  fit  different  needs. 
GeneralStore is the common storage provided for this class. Each time an ArrayBase 
is instanced it creates a new GeneralStore and keeps a pointer to it. Each ArrayBase 
acts  like a view of the storage, it does not own it. The store manages the memory, 
allocation,  deallocation,  ordering,  etc.  And the  ArrayBase behaves  like a  filter:  it 
allows seeing the store completely, with a determined stride, etc. 

3. Copy behaviour: As said before, this class does not own its storage, so each time the 
equal operator is used, the view properties are copied, not the data itself. The storage 
remains unique, and is shared amongst all the ArrayBase -views- pointed to him. So 
modifying one, modifies all of them, because they share the data. This applies when 
working with the same data  Type. When assigning  ArrayBase of different Type, a 
new storage is created, and the data casted to this new Type.

4. Storage Lifetime:  The storage  works  with  a  reference counting scheme in a  very 
similar way to smart pointers. When the reference count falls to zero it de-allocates 
the memory.

As shown above, this class is very useful, when working with big Marrays, because no 
memory copies  are  made,  and  with  the  views  is  possible  to  work  with  parts  of  the  big 
Marray, as if they were smaller Marrays.

3.3 Performance penalties

As  stated  before  some performance  penalties  were  admitted  in  pos  of  a  better  code 
legibility  and programming flexibility  for the intended user. The presence of the inherited 
hierarchy  is  the  first  thing to  take  into  account;  to  minimize the  impact  of  it,  extensive 
inlining  was  used  in  the  most  performance  critic  methods.  An  example  of  this  is  the 
operator() which is the principal actor on the performance play. A lot of methods use the 
const signature also to counter this problem.

Another  major  performance  hit  resides  in  the  dynamic  dimensions.  This  makes 
impossible to use template metaprograms on all the loops along the dimensions for some 
kind of operations.

However, we must emphasize that the performance penalties can be considered a cheap 
trade-off if one consider the easy of use of the resulting programming syntax: the Ltensor 
user can write tensor operations in a simple, intuitive, concise form, as natural as writing 
tensor formulas by hand.
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3.4 Performance optimizations

On the other hand, some performance optimizations were made. As shown before, an 
extensive use of expression templates is made. This traduces in single loop evaluations for 
complex expressions.

The use of restricted pointers also provided a big performance boost. Special care was 
taken when using that kind of pointers.

Although  the  dimensions  of  the  Marrays are  fixed,  the  rank  is  not.  So  some  meta 
programming was used along the rank loops, to unroll them.

Perhaps  the  most  used  technique  in  this  library  is  specialization.  Almost  every 
templatized class has specializatons. This is due to two reasons. First,  a lot of processing 
time is  saved  if  some decisions  are  made  at  compile  time. For  example,  providing  one 
specialization for each rank of a  Marray, saves the need of checking at  running time the 
rank of the tensor, and allows the use of metaprogramming on each specialization. Second, 
and  probably  more  important,  is  the  fact  that  in  order  to  have  all  their  features  the 
expressions objects rely heavily on specialization. For example, if we have a contraction of 
two  indexes,  the compiler searchs  along all  the specializations of the overloaded method 
operator* and instantiates only the one that matches, so at runtime there is no need to check 
which  indexes  contracts  or  which  indices  are  free,  avoiding  a  run-time  logic  of  index 
contraction.  Of  course  this  means  implementing  all  the  possible  specializations  of 
encapsulations, contractions, index permutations, etc. This required an extense programming 
work but this work, once done, allows handling all the universe of possible contractions and 
algebraic operations.

An  example  is  given. If  we  consider  the  standard  matrix  vector  product  (in  indicial 
notation): 

 c i=A ij∗b j

with the LTensor library we can compute it by writing it in an identical format:

IndexG <’i’> i;
IndexG <’j’> j;

c(i)=A(i,j)*b(j);                                              (3)

The expression on the right  side of eq. (3) will  generate  a  contraction  BinaryObject 
containing pointers to A and b. This is not enough to define the contractions, so another 
parameter should define the  contraction itself.  This is  achieved with  the IndexG objects. 
Those objects  provide the template  chars that  permit the specialization of the contraction 
object. In this case the compiler will instantiate the method operator*() that contracts along 
index j.

3.5 Algorithms

The library  includes some of the  most  common algorithms used in numeric calculus. 
Most of them belong to rank 1 and 2 of Marray Objects. The most relevant are:

1. Norm zero
2. Norm infinite
3. Norm N
4. Quicksort
5. Inverse
6. Gaussian elimination
7. LU factorization
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8. Linear System Solver
9. Cholesky factorization
10. Determinant

3.6 STL compatibility

The  library  is  fully  compatible  with  the  STL iterators.  This  allows  the  use  of  STL 
algorithms on the Marray classes. The only thing to be taken into account is the order the 
iterator  uses to  visit  all  the positions. The ordering is fixed, and correspond to  a  C-style 
array.  Meaning the Marrays  are iterated in a row-wise manner. Providing the iterators  is 
responsibility  of  the  base  classes,  giving  them  the  possibility  to  perform optimizations 
depending on the structure each one has. 

3.7 Tensor Expressions

The tensor  expressions support  only  lower  indexes,  and are  fully  compliant  with  the 
Einsten summation convention. They support also the presence of scalars in the expressions.

The  expressions  support  arbitrary  contractions  of  any  form  up  to  rank  4.  These 
contractions can be done along all the elements of a given dimension, using IndexG indices, 
or can be done along specific indexes of a container, using IndexF indices. In both cases the 
validation of the expressions is done in an implicit way by specialization. This makes it easy 
to find wrong formulas, and typing errors. The validation does not only check the dummy 
indexes  but  also  validates  the  free  indexes  with  the  right  side  term,  resulting  in  a  full 
expression validation at compile time.

To accomplish the features described above it was necessary to implement one by one all 
the possible contractions and permutations for the expressions up to rank 4. Although it was 
a tedious task, it was a one-time job, and permits the strict validation described above with 
no overheads at runtime.

3.8 Serialization

The library  provides  mechanisms to  serialize  and de-serialize  from disk.  This  allows 
loading Marrays from space separated files, making it easier to share data amongst previous 
applications. This also allows exporting data for post processing or visualization. 

4 SYNTAX AND COMMON OPERATIONS

In this section a brief overview of the library syntax and features will be given. 

4.1Arrays operations

Marray <type,rank,base=default> a;

This is the default syntax when creating an Marray Object. The first and second parameters 
are obligatory indicating the type of the data and the rank of the Marray. The third parameter 
is  optional,  taking  the  class  TinyArrayBase  as  default.  Then,  with  the  following  type-
definition:

typedef Marray<double,1> DTensor1;
typedef Marray<double,2> Dtensor2;
typedef Marray<double,3> DTensor3;

we can define sets of tensor objects of rank 1, rank 2 (i.e. vectors and matrices) or rank 3. 
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For example,

DTensor1 a(6), b(6), c(4), d(4);
DTensor2 A(4,6), B(4,6);                (4)
DTensor3 E(3,3,3);

Below are shown additional examples of some common supported operations:

a=b;
a(0)=10.0;
A(2,3)=1.0;
A+=B;

Note that the Marray constructor receives the tensor dimensions as the first parameters, and 
these parameters can be (optionally) followed by a default initialization value.

4.2 Iterators

DTensor1::iterator it;
it=a.begin();
while(it!=a.end()){

//some operations
it++

}

The LTensor iterators are STL compatible, and provide an easy way to loop through all the 
elements of an Marray in a linear way. The implementations of each iterators is provided by 
the base class, to exploit the natural characteristic of the data. For example a sparse base, 
won’t be iterated in the same way as a dense ones would.

4.3 Tensor Expression

As said before two classes of indexes can be used as indexes of tensor expressions. The 
first one, named IndexG is a simple class with only one template parameter: a char, which 
uniquely  identifies  an  index in  a  tensor  expression.  For  example  three  different  IndexG 
objects can be declared as:

IndexG <’i’> iG;
IndexG <’j’> jG;       (5)
IndexG <’k’> kG;

It must be noticed that despite the name given to the index object, the char determines which 
index it represents. The IndexG class uses the templatized char similarly as it is used in the 
Index class of the FTensor library however one major difference is that  the IndexG class 
does not require any additional “dimensional” parameter as the Ftensor's class does. Note 
that in eq. (5) we have named the index objects ending with a “G” so as to clearly identify 
the type of index. IndexG objects mean that the whole dimension they index will be used in 
the expression. For example, with the LTensor library and the declarations given in Eqs. (4) 
and (5), we can compute simultaneously a matrix vector product and a vector addition:
                           c i=A ij∗b jd i                           (6)
in the same natural way:
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   c(iG)=A(iG,jG)*b(jG)+d(iG);                             (7)

    The compiler and the library will do the job for us and perform automatically the inner 
product,  looping  the  jG  index  along  the  tensor  dimension  of  b  and  the  second  tensor 
dimension of A, and looping the iG index along the dimension of vector c.

Note, that if we use a wrong index to perform the product, as in:

 c(iG)=A(iG,jG)*b(kG)+d(iG);

the compiler will throw us an error letting us know of our mistake.

We have created another index class,  named IndexF, to  have an additional  flexibility 
which  is  to  have  the  capacity  to  loop  over  a  specified  set  of  indices  along  a  tensor 
dimension. In other words, on the contrary to IndexG objects, with IndexF objects we can 
loop not only along the entire index dimension but along any subset of index values, which 
can be given or changed at runtime.  IndexF objects can be declared as follows:

IndexF <’i’> iF(init,end,stride);
IndexF <’j’> jF(Marray);
IndexF <’k’> kF(size);

The declaration of IndexF objects is a bit more complex than the one of IndexGs, because 
besides  the  char  representing  the  index,  we  can  set  an  integer  array  representing  the 
container positions this index will use when participating in an expression.

As an example of their use, note that if we define two indexF objects:

IndexF <’i’> iF(4);
IndexF <’j’> jF(0,6,2);

and the expression:

c(iF)=A(iF,jF)*b(jF);

we  will  be  able  to  perform a  reduced  matrix  vector  product,  where  the  inner  product, 
contracting along the jF index loops only along the even positions of the second dimensions 
of A, and the even positions of b. On the other hand, since the index iF has  been set  a 
dimension of 4, it will still loop along the whole dimension of c.  

As seen above the IndexF iF, acts as an IndexG looping through the whole dimension, 
this produces a little overhead because iF needs to hold an array indicating those positions. 
Ideally we would like to not to have to define this redundant index. To fix this, we improved 
further the features of the library  in order to  allow  the presence of both type of indexes 
(IndexF and IndexG) in the same Expression. So now it is possible to write:

c(iG)=A(iG,jF)*b(jF);
 
and no overhead is present, because as said before IndexG acts only as a container for the 
template parameter. 

The use of IndexF indexes introduces some performance penalties, but allows performing 
some operations that  couldn’t  be achieved without  having to  write  long portions of code 
every time the need arises. A practical example of the utility of IndexFs is when performing 
assembly operations in computational mechanics codes (Limache, A. and Idelsohn, S. 2007; 
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Limache A. 2008). Using these indexes, portions of elemental matrices can be easily inserted 
into global matrices. Or one can work directly over the global matrix, but with the indexes 
looping on the elemental matrix contained.

5 PERFORMANCE TESTS

Tests were made comparing the performance of the present library versus the hand coded 
version of the same algorithm. The base used for the tests is TinyArrayBase because is the 
one oriented to performance. All the times are measured in seconds.

The following contraction is used for the tests

 a(iG)=b(iG,jG)*c(jG)+d(iG);  (7a)

This test was run changing the size of the Arrays involved. Table I shows the results of 
the current test. The relative performance (hand coded time/LTensor time) is above 1 for all 
the  tests.  This  means  the  LTensor  implementation  performs  better  than  the  hand  coded 
version shown in Appendix 9.1. This improvement is mainly due to  the use of restricted 
pointers, that  speed up array indexing. The oscillation in the graph correspond to memory 
management issues. For very small Marrays the improvement is more noticeable because the 
overhead  of  the  indexing  operator  doesn’t  have  a  big  impact,  this  changes  as  the  size 
increases. But the performance superiority remains along all the tests. The behavior can be 
seen in Fig. 6 where it is shown that for big Marrays the performance tends to stabilize. On 
average the relative performance of the LTensor computation is 2,50 times better than the 
naive C-coded version.

Size Ltensor Hand Coded Performance
3 1,67E-06 2,09E-06 1,25
10 1,95E-06 4,19E-06 2,15
50 7,61E-06 3,40E-05 4,47
100 2,49E-05 9,01E-05 3,62
500 1,30E-03 2,00E-03 1,54
1000 4,40E-03 8,40E-03 1,91
3000 3,30E-02 7,00E-02 2,12
5000 6,00E-02 1,80E-01 3,00

Table 1: Relative Performance Table vs Hand Coded

   The tensor expression (7a) was also tested against a naive tensor implementation based on 
standard C++ operator overloading, this naive implementation is included in the Appendix 
9.2.  The  results  are  shown  in  Fig.  7.  From the  figure  it  can  be  seen  that  the  LTensor 
approach performs better than the C++ overloading approach (despite the overhead of the 
indexing operators, and the inherited hierarchy). One of the biggest performance penalties of 
the standard  C++ overloading approach is caused by the copy of temporals.  Each binary 
operators  generate  temporals,  that  are  copied  and  returned.  This  results  in  big  memory 
operations due to data copy, cache misses and pagination algorithms. The LTensor approach 
does not generate temporals, so the memory management problem does not appear in the 
operation.  The performance results are summarized in Table 2.

   Again a relative performance factor (overloading time/LTensor time) was calculated and is 
shown  in  Fig.  8.  There,  the  benefits  of  using  the  LTensor library  can  be  clearly  seen, 
specially for big size Marrays. It must be also said that the classical overloading approach 
does not allow arbitrary contractions, so we can only define very specific contractions and 
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can not go farther than implementing the inner matrix-vector product. Another tests were run 
to compare the operator= for both kinds of Marray Bases. As shown in Fig. 9 the operator 
equals (operator=) for TinyArrayBase takes more time than the ArrayBase one. The data is 
shown in Table III. As explained earlier, this is due to the fact that the TinyArrayBase class 
works by copying the data between objects and the ArrayBase class works as a view of the 
storage. 
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Figure 6: Relative performance vs hand coded

Operator 
overloading Relative performance

4,67E-06 2,80
9,70E-06 4,97
5,15E-05 6,77
1,38E-04 5,55
2,08E-03 1,60
9,29E-03 2,11
8,20E-01 24,85
4,99E+00 83,17

Table 2: Classic operation overloading apporach
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Figure 7: LTensor– Operator overloading comparison
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Figure 9: Operator equals (operator=) comparison

Size ArrayBase (s) TinyArrayBase (s)
1000 0,009457 0,01218
3000 0,0081 0,089
5000 0,024 0,21

Table 3: Operator equals (operator=) test

6 EXAMPLES

6.1 MulPhys

The  LTensor  library  has  been  successfully  employed  in  an  advanced  computational 
mechanics  code  named  MulPhys  (Limache  A.  2008).  As  we  know  the  Finite  Element 
Method (FEM) requires the computation of tetrahedron volumes as  part  of the numerical 
requirements, mathematically the volume of a tetrahedron with sides a, b and c, is given by:
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0.6

)( cba
vol

⋅×= (8)

where x denotes de cross vector product. Using indicial notation and the Levi-Civita tensor 
E, we can write the above expression as:

0.6/)( ikjijk cbaEvol = (9)

well, using the LTensor we can compute the volume exactly in the same concise way:

vol = (E(iG,jG,kG)*a(jG)*b(kG)*c(iG))/6.0; 

it works, it is simple and extremely efficient.

6.2 Linear Elasticity

Linear  elasticity  is  used extensively  in  structural  analysis and  engineering design.  Its 
constitutive equation is

klijklij C εσ = (10)

where ijσ  is the Cauchy stress tensor, ijklC  is the elasticity tensor and klε  the strain tensor. 
Using the LTensor library we can compute Eq. (10) as:

Sigma(iG,jG)=C(iG,jG,kG,lG)*E(kG,lG);

The  above  implementation  is  simple,  clear  and  doesn’t  require  temporal  variables  or 
initializations like the C-style coding of the same equation.

6.3 Arbitrary Contractions

The library is suitable for a lot of computational scenarios where arbitrary contractions 
are needed in order to perform specific operations. For example :

A(iG,jG,kG,lG)=B(iG,mG)*C(mG,jG)*D(kG,lG) + E(iG,jG,kG,lG)/2.0;

permits the manipulation of high order tensors with ease, even if those arise as a result of 
lower order tensor operations.

6.4 Matrix Assembly Operations

Given iF and jF, the indexes of a global tensor A where the assembly must be done and 
local indexes iG and jG of the local tensor a, the assembly operation can be achieved by 
simply doing:

A(iF,jF)=a(iG,jG); 

This operation uses IndexFs to iterate over arbitrary positions in the tensor A and IndexGs to 
iterate along the whole dimension of a. This shows the potential  of mixing both types of 
indexes in a practical situation. Objects iF and iG have to have the same template parameter 
to comply with the index convention. The same requirement must hold for the “j” indices: jG 
and jF.
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7 CONCLUSIONS

A new tensor library was presented. The library offers tensor indicial notation support 
with Einstein summation convention. It uses a concise, simple and natural syntax, letting the 
programmer write complex tensor formulas in the same way one would write them in a piece 
of  paper.  It  performs  compile-time  verification,  and  allows  arbitrary  contractions,  not 
restricting the user to the common cases. It also allows operations of matrix compositions, 
very used in scientific applications.

 The library  uses the template  expression technique to  provide single loop expression 
evaluation. It  provides an inherited hierarchy  allowing the user  to  customize the  Marray 
class  for  the  specific  needs  of  the  problem at  hand,  allowing  to  perform optimizations 
regarding the special  characteristic  of the problem. This is done by passing the operator 
equals and the index operator to  the base class.  Also iterators  are provided to  allow full 
customization.

A balance between optimization and flexibility  was  achieved. The performance when 
using the TinyArray class as the base class surpass a C-coded version. On the other hand, it 
has also a much better performance than the classic C++ overloading approach. 

The library is a nice solution to those who are tired of the long pieces of code of old C-
coding style or the slow down of C++ standard approach, specially in collaborative software 
development enviroments where better legibility is required. And of course specially when 
performance is an important factor. 

8 FUTURE WORK

The next steps regarding the present library would be to provide a bigger spectrum of 
base classes like sparse storage, or symmetric tensors. 

Parallel  processing  is  a  must  in  scientific  applications,  in  order  to  support  this, 
evaluations are being made to write an interface with the library PETSc.

9 APPENDIX

9.1 Naive C-style implementation

  double **db=new double*[size];
  double *da=new double[size];
  double *dc=new double[size];
  double *dd=new double[size];
   for(int i=0;i<size;i++){
      db[i]= new double[size];
   }

//here goes array initalization
//

   for(int i=0;i<size;i++){
  for(int j=0;j<size;j++){
   da[i]+=db[i][j]*dc[j]+dd[i];
       }

 da[i] += dd[i];
   }

9.2 Naive C++ overloading implementation

class Vector{
private:

double *data;
int size;
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public:
Vector(int size){

this->size=size;
data=new double[size];

}
double &operator()(int n1)
{

return data[n1];
}
double operator()(int n1)const
{

return data[n1];
}
void operator=(const Vector &a){

for(int i=0;i<size;i++)
data[i]=a(i);

}
Vector(const Vector &b){

this->size=b.size;
data=new double[size];
for(int i=0;i<size;i++)

data[i]=b(i);
}
Vector operator+(const Vector &a){

Vector ret(size);
for(int i=0;i<size;i++)

ret(i)=a(i)+operator()(i);
return ret;

}
};

class Array{
private:

double** data;
int size;

public:
Array(int size)
{

this->size=size;
data=new double*[size];
for(int i=0;i<size;i++)

data[i]=new double[size];
}
Array(Array &b){

this->size=b.size;
data=new double*[size];
for(int i=0;i<size;i++)

data[i]=new double[size];
for(int i=0;i<size;i++)

for(int j=0;j<size;j++)
data[i][j]=b(i,j);

}
double &operator()(int n1,int n2)
{

return data[n1][n2];
}
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  double operator()(int n1,int n2)const
{

return data[n1][n2];
}
void operator=(const Array &a){

for(int i=0;i<size;i++)
for(int j=0;j<size;j++)

data[i][j]=a(i,j);

}
Vector operator*(const Vector &a){

Vector ret(size);
for(int i=0;i<size;i++){

ret(i)=0.0;
for(int j=0;j<size;j++){

ret(i)+ operator()(i,j)*a(j);
}

}
return ret;

}
};
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