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Abstract. An algorithm which combines an automatic adaptive mesh strategy and explicit multi-time 

steps integration technique on three-dimensional unstructured meshes is presented. These techniques 

are applied employing Euler equations. The flow is simulated using the Finite Element Method with 

an explicit one-step Taylor-Galerkin scheme and linear tetrahedral elements. The numerical solution 

behaviour is analyzed using error indicators to map regions where some physical phenomena, having 

high gradients, take place and then the adaptive process is applied to these regions. The capability and 

efficiency of the time-spatial adaptive procedures are compared with experimental data and with those 

obtained when a unique global time step is used. 
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1 INTRODUCTION 

Over the past forty years, there has been an intense research activity in the area of 

computational fluid dynamics (CFD). A large proportion of this activity has been driven by 

the aerospace industry, with its requirements for highly accurate solutions at minimum 

computational cost. Recent developments in numerical methods and their applications permit 

to solve complex and realistic geometries and configurations for compressible flows. The 

demand to solve finely detailed models has challenged many researchers to come up with new 

and efficient tools. The spatial and time adaptive methods have been demonstrated as useful 

means to obtain efficient solutions of the Euler and Navier-Stokes equations. 

An adaptive mesh strategy has the potential to give numerically accurate and 

computationally efficient solutions, because the mesh is only locally refined at places where it 

is necessary. The methods of mesh adaptation can be separated into three general categories: r, 

h and p. In adaptive meshes using the r technique, the numbers of nodes in the computational 

domains remains fixed and are simply redistributed, so that regions with some specified 

characteristics are better resolved. In h-refinement or mesh enrichment, nodes are added to 

regions of relatively large solution error by dividing locally the elements which make up the 

mesh or by embedding finer meshes in these regions. In adaptive meshes using the p adaption 

method, the degree of the basis function is locally adjusted to match the variation in problem 

solution. Although the above methods were initially designed to be applied in a separate 

manner, the combination of such strategies may lead to very effective schemes. Most of these 

subjects are well summarized in Löhner (2001), where many references are given. In this work 

an h-refinement technique is adopted. 

Time integration, for instance, can be performed in one of the two classical approaches, 

explicit or implicit techniques. Implicit methods are computationally more expensive in terms 

of computer memory, but they have less stringent stability bounds with respect to explicit 

schemes. Explicit methods are relatively simple to code and implement, and they are easily 

cast in a form suitable for efficient parallelization but they are limited to a very small time 

step, which is based on the smallest element size in the mesh, due to the Courant-Friedricks-

Lewy (CFL) stability condition. If the time step is consequently significantly reduced, run 

times are greatly increased due only to this small element in the entire domain. In many cases 

it is necessary to use a very small global time step due to the need to accurately capture 

phenomena exhibiting high gradients of one or more variables. 

To improve the performance of explicit schemes a time adaptive technique with sub-cycles 

may be used. Standard explicit schemes use a globally minimum time step for stability reason. 

This implies that many of the elements, such as elements having large volumes, are being 

advanced at a fraction of the maximum time step permitted locally by stability considerations. 

Several mixed time integration methods have been implemented and they are based in 

previous work in the field of structural dynamics (see Hughes and Liu, 1978; Belytschko et 

al.,  1979; Belytschko and Gilbertsen, 1992; Belytschko and Lu, 1993). These methods are 

efficient because they are used in the entire mesh but with different time steps in different 

parts of the mesh, adapted to the local physics or local numerical restrictions. 

Within the field of CFD and in the context of the Finite Element Method (FEM) an early 

work was developed by Löhner et al. (1984). In this work, the reduction in processing time 

was about 2 and 4 times for an inviscid two-dimensional problem with an explicit-explicit 

methods (sometimes referred as a multi-time stepping technique using sub-cycles). Chang et 

al. (1993) proposed an implicit-explicit method for viscous and inviscid two-dimensional 

problems; the time adaptive algorithm was between 1.1 and 7.1 times faster than the algorithm 
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which uses an unique global time step. In the implicit-explicit methods, the implicit and 

explicit integration methods are combined in the different parts of the mesh to obtain an 

optimal time-integration scheme. Maurits et al. (1998) studied the stability and accuracy for 

the one-dimensional convection-diffusion equation using the multi-time stepping method. 

Based on the time adaptive method proposed by Belytschko and Gilbertsen (1992), 

Teixeira and Awruch (2001) implemented this technique for inviscid compressible problem 

for tetrahedral elements. The algorithm has the possibility to control the time step using the 

same criteria (or indicators of flow characteristics) employed by Argyris et al. (1990). The 

time step in the elements is reduced when the indicators identify possibilities of numerical 

instability or a significative loss of accuracy of the solution. 

In the context of the Finite Volume Method, some major contribution were developed by 

Hokker et al. (1992), van der Ven et al. (1997) and Wackers and Koren (2003), among others 

In this paper, the application of the unstructured mesh refinement with the multi-time steps 

technique to analyze the flow about an inviscid transonic clipped delta wing is presented. Two 

cases are shown to illustrate the capability of the sub-cycling technique and results are 

compared with experimental results available in the literature. Although the work presented 

here is based on an inviscid flow with tetrahedral elements, the time adaptive method was also 

developed for viscous flows and hexahedral elements. 

2 THE GOVERNING EQUATIONS 

Let sdn
Ω R⊂ and (0,T) be the spatial and temporal domains, respectively, where nsd = 3 is 

the number of space dimensions, and let Γ denote the boundary of Ω. The spatial and temporal 

coordinates are denoted by x and t. We consider the Euler equations governing unsteady 

compressible flows with no source terms, written here in their dimensionless form as 

 0i
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where U, is the unknown vector of the conservation variables, and Fi, the convective flux 
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with i, j = 1,2,3. Here vi is the velocity component in the direction of the coordinate xi, ρ is the 

specific mass, p is the thermodynamic pressure, e is the total specific energy and δij is the 

Kronecker delta function. For a compressible fluid flow, the following non-dimensional scales 

are used 
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where a superscript ∼ , indicates a dimensional quantity, a subscript ∞  represents a reference 

free stream value, a is a speed of sound and L is a reference length. 
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Assuming that air behaves as a calorically perfect gas, the pressure, which is calculated by 

the equation of state, and internal energy i are given by the following equations 

 ( )1p iγ ρ= − ,     
1

2
v i i

i c T e v v= = −  (4) 

where T is the temperature and the specific heat ratio 
p v

c cγ =  is assumed to be constant and 

equal to 1.4. The corresponding quasi-linear form of equations (1) is 

 0
i

i
t x

∂ ∂
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∂ ∂

U U
A ,     with    i
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∂

F
A
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where iA  is the convection Jacobian defined as i i= ∂ ∂A F U (Hughes and Tezduyar, 1984). 

Initial and boundary conditions must be added to equation (5) in order to define uniquely the 

problem. 

3 A TAYLOR-GALERKIN FORMULATION 

The numerical scheme is obtained expanding in Taylor series the governing equation and 

applying after the space discretization process, using the Finite Element Method (FEM) in the 

context of the classical Bubnov-Galerkin scheme. This approach could be interpreted as the 

finite element version of the Lax-Wendroff scheme, used in finite differences. An explicit 

one-step scheme is employed for solving the compressible inviscid flow problems. In the 

finite element method the flow field is subdivided into a set of non-overlapping elements 

which cover the whole domain without gaps. 

This time integration provides second-order accuracy in time. The formulation exclusively 

employs tetrahedral finite elements which provide second-order spatial accuracy. Linear 

unstructured finite elements were chosen because they can be easily generated for complex 

geometries and exactly integrated without numerical quadrature. 

The one-step Taylor-Galerkin scheme presented here is similar to that presented by Donea 

(1984). Expanding the conservation variables U at 1n
t t

+=  in Taylor series including the first 

and second derivatives, the following expression is obtained 
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with 1 1n n n+ +∆ = −U U U , n and n+1 indicates t and t+∆t, respectively. More details can be 

found in Bono (2008). Substituting equation (1) and its second derivative into equation (6), 

and neglecting high-order terms, it is obtained 
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where I is an iteration counter, 1 1n n n

i i i

+ +∆ = −F F F  and iA  is the convection Jacobian defined 

as i i= ∂ ∂A F U  (Hughes and Tezduyar, 1984). In expression (7), the variables at time level 

n+1 are involved in the left and right sides of the equation; therefore, it is necessary to use an 

G. BONO, A.M. AWRUCH, T.L. POPIOLEK3154

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



iterative scheme. 

Applying the classical Bubnov-Galerkin weighted residual method in the context of the 

FEM to equation (7), the spatial discretization is obtained. The computational domain was 

divided into a finite number of linear tetrahedral elements (unstructured mesh). The consistent 

mass matrix, M, is substituted by the lumped mass matrix, ML, and then these equations are 

solved with an explicit scheme. The explicit matrix form of equations (7) becomes (Bono, 

2008)  
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where the element matrices can be written as follows 
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with N being the shape functions, ,i ix= ∂ ∂N N  and nk is the cosine of the angle formed by 

the outward normal axis to the boundary eΓ . 

The proposed schemes are conditionally stable, and the local stability condition for element 

E is given by 

 
( )

1
2

E
E

i i

L
t CS

a v v
∆ =

+
 (10) 

where LE is a characteristic dimension of the element, a is the sound speed and CS is a safety 

coefficient (in this work, CS = 0.1 is adopted). 

At transonic and supersonic speeds, an additional numerical damping is necessary to 

capture shocks and to smooth local oscillations in the vicinity of shocks. An artificial viscosity 

model, as proposed by Argyris et al. (1990), due to its simplicity and efficiency in terms of 

CPU time, is adopted here. An artificial viscosity is added explicitly to the non-smoothed 

solution as follows 

 1 1 1Dn n

s L

+ + −= +U U M  (11) 

where LM  is the assembled lumped mass matrix, 1n

s

+
U  and 1n+

U  are the smoothed and non-

smoothed solutions at t t+ ∆ , respectively. The vector D is given by 

 [ ]
ele

D = CFL CAF n

ele L eleele
S −∑ M M U  (12) 

where ele is an index referred to a specific element, CFL Et t= ∆ ∆  is the local Courant-

Friedrichs-Lewy number, CAF is an artificial damping coefficient given by the user, Sele is a 

pressure sensor at element level obtained as an average of nodal values Si. Values of Si are 
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components of the following assembled global vector 

 
( )

i

ele

=
L ele i

L ele i

S
−

 − 
∑

M M p

M M p
 (13) 

where p is the pressure vector of a specific element, the symbol ⋅  indicates that absolute 

values of the corresponding terms must be taken and, finally, M is the consistent mass matrix 

at element level. 

The constant CAF must be specified with care in order to avoid interferences of artificial 

and physical viscosities. In this work CAF 1.0=  is adopted.  

4 SPATIAL ADAPTIVE METHOD  

The unstructured mesh adaptation has the potential to give numerically accurate and 

computationally efficient solutions, because the mesh is only locally refined at the places of 

interest. An adaptive mesh strategy basically is characterized by error indicators, an adaptive 

criterion and a refinement scheme. 

Errors indicators are used to identify the characteristics and behaviour of the numerical 

solutions in order to determine regions of the computational domain where a refinement 

process is necessary, looking for an accurate solution. In this work, these error indicators take 

into account regions with velocity gradients, pressure gradients and specific mass gradients. 

The criterion for mesh adaptation is based in the normal distribution of the error indicators 

and their mean values and standard deviation. The adaptive process was performed using the 

h-refinement method. Elements refined are divided in eight new elements; this type of 

refinement is defined as a regular refinement, and it is represented by 1:8. To close the 

refinement scheme and to avoid hanging nodes, it is necessary to perform irregular 

refinements in neighbour elements, represented by 1:2, 1:3 or 1:4. Elements having less than 

four edges divided by new nodes, created as a consequence of the adaptation scheme applied 

to their neighbour elements, are submitted to irregular refinements. However, if an element 

has four or more edges divided by new nodes, it is submitted to a regular refinement. In order 

to improve the geometric quality of the elements in the finite element mesh and to smooth the 

transition among elements of different size a smoothing technique with node re-allocations 

could be included. Details of the error indicators, mesh adaptation and the refinement process 

can be found in Popiolek and Awruch (2006). 

This adaptive scheme has been validated with respect to analytical and experimental results 

for several regimes of incompressible and compressible flows (Popiolek and Awruch, 2006; 

Bono, Popiolek and Awruch, 2007; Bono, 2008).  

5 THE MULTI-TIME STEPS TECHNIQUE USING SUB-CYCLES 

A time adaptive technique is employed with unstructured mesh flow solvers, in a similar 

form to the spatial adaptive unstructured mesh refinement, to solve more efficiently the 

physics of the flow in time. The time adaptive method (which could be called also multi-time 

steps with sub-cycles) is implemented considering the critical time step for each element in 

the domain. To facilitate the integration, elements are divided into groups according to their 

time step. Element groups can be integrated with different time steps, and they are subject to 

the following restrictions: 

- all group of time steps must be integer multiples of each other, allowing elements to be 

stored in groups according to their critical time steps and no by their physical 
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proximity; 

- if any node is connected to elements of different groups, the time step of these element 

groups must be integer multiples of the time step belonging to the group having the 

smallest time interval. 

To initiate the time adaptive method, time step node groups (∆tN) and time step element 

groups (∆tG) are determined at the beginning of the solution. The control time step (master 

time increment) is taking as being equal to the largest time step in the elements groups and is 

used to determine when a cycle has been completed. In the control time step all variables are 

in the same time of the physical problem, therefore the time adaptive procedure implemented 

here should be employed for unsteady problems. 

The sub-cycle method can be summarized in the following steps: 

1 – The procedure is initiated by determining the critical time step for each element i (∆tEi) 

with equation (10) and the corresponding minimum value ∆tEmin is found. To each element is 

then assigned an integer multiple value nEi, which corresponds to the relation 

 
min

int
E i

E i

E

t
n

t

 ∆
=   ∆ 

     with i = 1,...,nele (14) 

where nele is the total number of elements. 

2 – After the local time steps have been determined for each element, the elements are 

collected into groups based on their local time step. After the time step ∆tN for each node N 

are computed, considering the smallest time step corresponding to all elements e connected to 

node N, the node time step is determined by 

 ( )minminN E e E
e

t n t∆ = ∆  (15) 

In this work, the procedure is similar to that proposed by Löhner et al. (1985) and also 

employed by Teixeira and Awruch (2001). Elements in each group g march in time at a 

constant time step equal to 
( )1

min2
g

Et t
−

∆ = ∆ . The procedure is performed by placing all 

elements i, with min min2E i Et t t∆ ≤ ∆ < ∆  into group 1 and assigning to these elements the time 

step E mint∆ , all elements with min min2 4E i Et t t∆ ≤ ∆ < ∆  into group 2 and assigning to these 

elements the time step 2 E mint∆ , and so on. 

3 – Finally, the time step for each element ∆tG are re-evaluated considering that a specific 

element has the smallest time step of all the time steps corresponding to nodes belonging to 

this element. 

The time adaptive method implemented here has three clocks: the first clock is assigned to 

the current time (time), the second is assigned to the node group (tN) and the third clock is 

assigned to the element group (tG). These clocks, when compared to the current time, indicate 

when a node or group of elements is ready to be updated. At the beginning of each sub-cycle, 

the nodal and element group clocks are advanced for those nodes and element groups which 

were updated in the previous sub-cycle. All nodes and element groups are updated in the first 

sub-cycle. 

Once the nodal and element group clocks have been updated, the integration procedure 

continues. Each element group whose clock is behind the current time Gt time≤≤≤≤  will be 

updated. After all elements groups have been updated, the nodal loop is executed. Each node 

group whose clock is behind the current time Nt time≤≤≤≤  will be updated. 
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This updating procedure can be visualized easily with a simplified example. Consider a 

mesh which has five one-dimensional elements in three groups (g = 1, 2 and 3) with the 

following initial time step 1∆t, 2∆t, 2∆t, 4∆t  and 4∆t. Applying stages 1, 2 and 3, previously 

described,  the following node and element groups are obtained (see Figure 1a): Nt∆ ====  {1, 1, 

2, 2, 4, 4} and Gt∆ ====  {1, 1, 2, 2, 4}, respectively. It should be noted that the time step of the 

cycle is tc = 4∆t. 

To show this technique, consider the graphical representation in Figure 1b. The nodes are 

represented by solid diamonds. Time is represented by the vertical axis. The nodal time is 

represented by black circles and white circles represent the time where linear interpolation 

was used to obtain the nodal variables at the correct time level. 

In the first integration step 1 , the current time is t and the nodes and elements in each 

group are updated with their corresponding time step. For example, nodes 1 and 2 in group 1 

(∆t) are updated to time t + ∆t; the nodes 3 and 4 in group 2 (2∆t) are updated to time t + 2∆t 

and the nodes 5 and 6 in group 3 (4∆t) are updated to time t + 4∆t. Meantime, elements 1 and 

2 in group 1 are updated to time t + ∆t, elements 3 and 4 in group 2 are updated to time t + 2∆t 

and the element 5 in group 3 are updated to time t + 4∆t. It should be noted that nodes 5 and 6 

as well as the element 5 needs only one updating to complete the whole cycle because they are 

integrated with the maximum time step. In the integration step two 2 , the current time is 

t+∆t, therefore only nodal and element groups with time step ∆t can be updated. Then nodes 1 

and 2 as well as elements 1 and 2 in group 1 are updated to time t+2∆t. To update the element 

2 interpolated values of the variables of node 3 at time level t+∆t is required. In the third 

integration sub-cycle 3 , the current time is t+2∆t, nodes 1 to 4 and elements 1 to 4 are 

updated. As before, to update elements 2 and 4 in groups 1 and 2 interpolated values of the 

variables of node 3 and 5 are needed. Finally, time adaption is completed with the fourth and 

last sub-cycle. In the fourth sub-cycle 4 , only nodes and elements in group 1 are updated. 

Updating of different node and element groups is schematically illustrated in Figure 2. In 

this example, when the current time is tc = t the group 1 to 3 are updated. In the next time step, 

the current time is tc = t+∆t, hence only the group 1 is updated and so on until the cycle is 

finished. It should be noted that the current time tc = t+4∆t corresponds to the beginning of a 

new cycle. 

The maximum theoretical gain in processing time (speed-up) using sub-cycles can be 

calculated by the expression developed by Belytschko and Gilbertsen (1992)  

 

1

100

nsc

NSCsc

k

k

t NSC
speed up

t
PESC

=

− = =

∑
 (16) 

where t
nsc

 and t
sc

 are the time required to solve a problem with a global time step (without sub-

cycles) and using multi-time steps (with sub-cycles), respectively. The number de sub-cycles 

is NSC and the percentage of elements updated in the sub-cycle k is PESC. In this simplified 

example, fourth sub-cycles are required (NSC = 4) and the percentages of elements for groups 

(g = 1, 2 and 3) are 40%, 40% and 20%, respectively. Therefore, the maximum theoretical 

gain in processing time is 1.54.  
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(a) 

 

First step                                            Second step 

 

Third step                                            Fourth step 

(b) 

Figure 1: Graphical representation of the sub-cycle method with three groups of elements. (a) The different steps 

are presented toghether; (b) Each step is shown separately. 
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Figure 2: Advancing the node and element groups in the sub-cycle procedure for the one-dimensional problem 

6 NUMERICAL RESULTS  

In this section, some results for three-dimensional geometries in steady flows are presented. 

Comparisons are made with experimental data to determine the accuracy, the capability and 

the performance of the time and space adaptation methodologies. 

6.1 Clipped Delta Wing 

The evaluation of the efficiency and performance of an adaptive refinement method and a 

sub-cycle technique is a complicated task due to the numerous aspects that must be 

considered. In what follows we try to address at least some of them with the help of a classical 

problem in CFD, such as the clipped delta wing in transonic flow, that we have used in the 

early stages of development of our code for validation purposes. This wing has been studied 

experimentally by Bennett and Walker (1999). The wing is characterized by an aspect ratio 

equal to 1.242, a swept leading edge with 50.4 deg, a unswept trailing edge, and a taper ratio 

which is take as 0.1423. The airfoil is thus a symmetrical circular arc section with t/c = 0.06. 

The two static test cases to study the clipped delta wing (CDW) are given by: 

1) Case No. 9E15: inviscid flow at a free stream Mach number equal to 0.901 and an 

angle of attack equal to 4.24 deg; 

2) Case No. 9E11: inviscid flow at a free stream Mach number equal to 1.12 and an angle 

of attack equal to 0.99 deg. 

The simulation for the first and second cases were performed using the same initial mesh 

(M1=M2) consisting of 76523 linear tetrahedral elements and 15322 nodes. In Table 1 are the 

identification for each example, the number of nodes (nno), the number of elements (nele), the 

number of nodes on the wing (nnoCS), the maximum edge length (Lmax), the minimum edge 

length (Lmin) and the minimum time step (∆t). 

The adaptive mesh technique is employed in both cases with the following errors 

indicators: velocity gradients, pressure gradients and specific mass gradients. For more details 

see Bono (2008). The first and second refinements were identified as R1 and R2, respectively. 

To demonstrate improvements due to the adaptive mesh procedure, Figure 3 shows 

contours of the specific mass on the upper and lower surfaces of the wing corresponding to the 

initial and final mesh discretizations for the case 9E15 (Mach number = 0.901, angle of attack 

= 4.24 deg). Note that the upper shock is barely visible in the results obtained with the initial 

coarse mesh. As expected, considerable improvement in the resolution of the shocks can be 

observed when an adaptive mesh is employed. 

 

G. BONO, A.M. AWRUCH, T.L. POPIOLEK3160

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Cases mesh nno nele nnoCS Lmax Lmin ∆t 

M1 15322 76523 3979 4.51 1.59x10
-3

 8.10
-5

 

M1R1 51269 273689 7782 3.48 7.98x10
-4

 4.10
-5

 
 9

E
1

5
  

M1R2 110725 613017 9701 3.48 3.99x10
-4

 2.10
-5

 

M2 15322 76523 3979 4.51 1.59x10
-3

 8.10
-5

 

9
E

1
1

  

M2R1 35331 188781 4792 3.48 1.59x10
-3

 5.10
-5

 

Table 1: Numerical parameters for the clipped delta wing simulation. 

(a)  

(b)  

                                       Upper surface                                 Lower surface 

Figure 3: Distribution of the specific mass computed with the initial (a) and final (b) meshes for case 9E15 

 

In Figure 4, the surface pressure distributions obtained with the initial and final mesh are 

compared with experimental data obtained by Bennett and Walker (1999) for the case 9E15. 

In general, the surface pressure distributions obtained with the final mesh M1R2 (two 

refinement levels) compare very well to those obtained from experimental data. From these 

figures it is clear that initial and final meshes have difficulties to predict the leading edge 

pressure correctly. Mesh refinement near the leading edge is the unique alternative to obtain 

better results. 

Figure 5 shows the Mach number distributions and the sonic surfaces (M = 1.0) obtained 

with the initial and final meshes. It can be observed that the sonic surface obtained with the 

final mesh is larger than that obtained with mesh M1.  
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Figure 4: Comparisons of steady pressure distributions using initial and final meshes for case 9E15 

 (a)  (b) 

Figure 5: Mach number distributions and sonic surfaces for the initial (a) and final (b) meshes for case 9E15 

 

Figure 6 shows the specific mass distributions on the upper and lower surfaces of the wing 

corresponding to the initial and final meshes for the case 9E11 (Mach number = 1.12, angle of 

attack = 0.99 deg). The leading edge and trailing edge shock waves were efficiently resolved 

with a mesh refinement. 

In Figure 7, the surface pressure distributions obtained with the initial and final meshes are 

compared with the experimental data obtained by Bennett and Walker (1999) for the case 

9E11. The numerical results are in fairly good agreement with the experimental pressure data. 
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(a)  

(b)  

Figure 6: Distribution of the specific mass computed with the initial (a) and final (b) meshes for case 9E11 

 

Figure 7: Comparisons of steady pressure distributions using initial and final meshes for case 9E11 
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To demonstrate the advantages when adaptive spatial and time procedures are combined, 

Figure 8 shows the pressure coefficient distributions on the upper surface of the clipped delta 

wing corresponding to the final mesh for the cases 9E15 (mesh M1R2) and 9E11 (M2R1). 

The results obtained with the time sub-cycles technique was identified as sc. 

The surface pressure coefficients obtained without the adaptive time procedure compare 

very well to those obtained including this technique, except for the small discrepancies that 

are evident near the leading edge in both cases and the trailing edge region in the case 9E11. 

These oscillations only occur in regions of the mesh where there is an abrupt transition from 

fine to coarse elements. 

 

Figure 8: Pressure coefficient distribution on the meshes M1R2 and M2R1 for test cases 9E15 and 9E11 

In Table 2, the percentage of elements belonging to each element group, the maximum 

theoretical speed-up (S-Utheo) and maximum real speed-up (S-U) are presented for the clipped 

delta wing problem. These results show that the sub-cycles technique in meshes M1R1 and 

M1R2 are approximately 1.68 and 2.39 times faster than cases where a unique global time 

step was adopted. For mesh M2R1 the value of the theoretical computational saving is 1.30. 

The two main reasons for differences between theoretical and real speed-up have been 

identified. The first reason is that the operations to control groups of nodes and elements 

increase the processing time. The second reason is that the performance decreases because 

there are loops executed only for groups which must be updated at a given instant, introducing 

indirect addressing. 

The time steps distributions over the clipped delta wing on the final meshes for the cases 

9E15 and 9E11 are shown in Figure 9. It should be noted that the minimum time step (1∆t and 

2∆t) are localized in the leading and trailing edges. The medium time step (4∆t to 16∆t) are 

located around the wing and the maximum time step (32∆t to 128∆t) are located relatively far 

from the wing. 
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Group M1R1 M1R2 M2R1 

1 ∆t 0.318 0.146 5.098 

2 ∆t 11.659 2.585 36.343 

4 ∆t 48.948 23.426 25.367 

8 ∆t 17.919 30.401 18.133 

16 ∆t 10.031 17.344 5.418 

32 ∆t 3.866 11.590 1.442 

64 ∆t 1.027 4.224 2.591 

128 ∆t  6.231 10.283 5.607 

S-Utheo 4.66 7.88 3.09 

S-U 1.68 2.39 1.30 

Table 2: Percentage of elements belonging to each element group. 

 (a)   

(b)   

Figure 9: Time steps distributions on the meshes M1R2 (a) and M2R1 (b) for test cases 9E15 and 9E11 

 

Finally, in Figure 10 the pressure coefficient distributions obtained with the time adaptive 

technique are compared with the distributions obtained without sub-cycles. Both cases agree 

well. However, in the tip of the wing, small discrepancies are evident when results obtained 

with sub-cycles are compared with those obtained without sub-cycles.  
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Figure 10: Pressure coefficient distribution on the meshes M1R2 with and without sub-cycles for test cases 9E15 

7 CONCLUSIONS 

The aim of this work is to provide an study of an algorithm which combines an automatic 

adaptive strategy and explicit multi-time steps integration technique in the solution of 

unstructured finite element problems. The time-spatial adaptation method is tested here with 

the steady three-dimensional Euler equations in transonic flow over a clipped delta wing.  

Results in the previous section show that a time adaptive method, when combined with a 

mesh adaptive technique can be used for practical applications and that it is substantially 

faster than comparable methods without sub-cycles. Based on the results obtained here, it may 

be concluded that an automatic adaptive technique have produced important improvements. 

Multi-time steps using sub-cycles is a fast and efficient procedure and it is easy to implement. 

The algorithm is stable and its efficiency is expressed in terms of the speed-up which varies 

from 1.3 to 2.39 with respect to simulations with time step uniform. 

The time-spatial adaptive methods implemented herein was shown to produce solutions 

comparable in accuracy to others without sub-cycles, but the computational efficiency was 

lower than expected. The main reason for the relative computational “inefficiency” has been 

identified; the elements in the regions of high gradients of some flow characteristic must be 

refined in order to obtain adequated spatial resolution of the flow features. This leads to a 

large number of small elements and results in an increase of the total number of elements 

having the minimum time step (1∆t to 4∆t), which inhibits the performance of the time 

adaptive procedure since it reverts to the use of a unique global time step. More work needs to 

be done to improve the speed-up studying further code optimization, and future parallelization 

of the code. Summarizing, the main contribution of the work is the formulation of a time-

spatial adaptive procedure, which is integrated with an explicit one-step Taylor-Galerkin 

scheme to simulate inviscid compressible flows. 
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