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Abstract.  Electrophoretic methods are separation techniques based on the mobility of ions under the 
action  of  an  external  electric  field.  These  techniques,  which  are  widely  used  in  chemical  and 
biochemical  analysis,  have been miniaturized in  the  last  years  and now represent  one of the  most 
important applications of the lab-on-a-chip technology. In this work, a generalized numerical model of 
electrophoresis on microfluidic devices is presented. The model is based on the set of equations that 
governs  electrical  phenomena  (Poisson  equation),  fluid  dynamics  (Navier-Stokes  equations),  mass 
transport (Nerst-Planck equation) and chemical reactions. The model is said to be generalized because it 
covers  different  techniques  such  as  capillary  eletrophoresis  and isoelectric  focusing,  and allows  to 
simulate  processes  involving  multiple  analytes  and  complex  electrolytes  buffers.  Moreover,  the 
relationship between the buffer characteristics (ionic strength, pH) and physicochemical properties of 
channel walls is taken into consideration. The numerical simulation is carried out by using PETSC-FEM 
(Portable,  Extensible  Toolkit  for  Scientific  Computation  -  Finite  Elements  Method),  in  a  Python 
environment developed at CIMEC using high performance parallel computing and solving techniques 
based on domain decomposition methods. Finally, examples of interest involving electrophoresis on 
chips are considered as study cases. 
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1 INTRODUCTION

Electrophoretic methods are separation techniques based on the mobility of ions under the 
action of an external electric field. These techniques, which are widely used in chemical and 
biochemical analysis, have been miniaturized in the last years and now represent one of the 
most important applications of the microscale total analysis systems (µTAS) technology (Manz 
et al., 1990). The benefits of µTAS are a reduction of consumption of samples and reagents, 
shorter  analysis  times,  greater  sensitivity,  portability  and  disposability (Reyes,  2002). 
Microscopic channels are defined by using materials and fabrication methods that were adopted 
from the developed microelectronics industry (Koch et al., 2000). Computational and analytical 
simulation of on-chip processes serve to reduce the time from concept to chip (Erickson, 2005). 
However, there are difficulties due to the several orders of magnitude of the relevant length 
scales involved: the electric double layer (EDL) thickness (in nm), microchannels width (in 
µm), and microchannels length (in mm). At the same time, the most challenging and interesting 
aspect of computational simulation of microfluidic chips is  the multiphysics nature,  which 
combines fluidics, mass transport, thermal, mechanics, electronics and reaction kinetics. 

The earliest mathematical models for electrophoresis were developed by Saville et al. (1986) 
and Palusinski et al. (1986). These one dimensional models are valid for monovalent analytes in 
a  stagnant electrolyte solution (without electroosmotic flow).  Some of the  first  numerical 
simulations of fluid flow and species transport   for  microfluidic chips were addressed to 
electrokinetic focusing and sample dispensing techniques (Patankar et al.,1998; Ermakov et al., 
1998; 2000),and they employed an algorithm based on finite volume method in a structured 
grid. Bianchi et al. (2000) performed 2D finite element simulations artificially increasing the 
EDL thickness.  Arnaud et  al.  (2002)  developed a  finite  element  simulation  of  isoelectric 
focusing  for  ten  species,  without  considering migration  nor  convection.  Chatterjee  (2003) 
developed a  3D finite  volume model  to  study several  applications in  microfluidics.  More 
recently, Kler et al. (2006) developed a 3D FEM model to describe the transport of non-charged 
species  by  electroosmotic  flow (EOF),  and  Barz  et  al.  (2007)  developed  a  fully-coupled 
modeling for electrokinetic flow in microfluidic devices employing 2D finite elements.

In this paper, a generalized numerical model for electrophoretic processes in microfluidic 
chips is presented. The model is based on the set of coupled equations that governs flow field, 
electric field, mass transport and chemical reactions. The relationship between the buffer pH 
and the electric potential of channel walls is taken into consideration (numerical simulations 
with this kind of coupling were not reported before). The numerical simulation is carried out by 
using high performance parallel computing (Kler et al.,  2007; Dalcín et al., 2008) and solving 
techniques based on domain decomposition methods. 

2 MODELLING

In this section a mathematical model to simulate 3D and time-dependent electrophoretic 
phenomena in microdevices is presented. The model can also work in 1D and 2D domains, or 
stationary mode. In what follows, first the fuid mechanics and the basis of electroosmotic flow 
is  discussed,  then the mass transport  balance for all  species considered and the  chemistry 
involved is presented.

2.1 Flow field 

In the framework of continuum fluid mechanics, fluid velocity (u)  and pressure (p)  are 
governed by the following set of coupled equations (Saville et al., 1986; Probstein, 1989; Li, 
2004):
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∂

∂ t
∇⋅u=0                                                         (1)


∂ u
∂ t

u⋅∇ u=−∇ p∇
2 ug−e ∇                                   (2)

Equation  (1)  expresses  the  conservation  of  mass  for  fluids.  Equation  (2)  (Navier-Stokes 
equation) expresses the conservation of momentum for Newtonian fluids of viscosity  µ and 
density  ρ, subjected to gravitational field of acceleration g and electric potential  . The last 
term  on  the  RHS  of  equation  (2)  represents  the  contribution  of  electrical  forces  to  the 
momentum balance,  where e=e∑ j

z j c j is  the  electric  charge  density  of  the  electrolyte 
solution, obtained as the summation over all type-j ions, with ionic valence zj and concentration 
cj,  e is  the  elementary  charge.   In  the  fluid  bulk,  charge  density  tends  to  zero,  thus  an 
approximation to reduce the effects of  electric forces nearby the channel wall can  be used, this 
is called thin double layer approximation.  

2.2 Thin EDL approximation

The thickness of the EDL is quantified through  Debye length  (Probstein, 1989; Hunter, 
1992),

=
e2

 k BT
∑j=0

N
z i c i

b

−

1
2                                                               (3)

where c j
b  is  the  bulk concentration of ions,   is  the  electric  permittivity,  kB is  Boltzmann 

constant and  T is  the  absolute  temperature.  For  the  ionic concentrations normally used in 
practice, λ ≈ 1-10 nm, while cross-sectional channel dimensions are 10-100 µm. Consequently, 

0≈eρ  in most of the flow domain, except in the close vicinity of charged interfaces. When an 
external electric field ∇a is applied tangent to the interface, the electric forces acting on 
excess ions in the EDL drag the surrounding liquid, and thus EOF develops. For thin EDL in 
relation to the channel width (h), the effect is confined to a certain plane parallel to the channel 
wall, also designated shear plane, where the surface potential is the electrokinetic potential (ζ). 
Under these conditions, the electro-osmotically driven flow can be regarded as the result of an 
electrically-induced ‘slip velocity’, the magnitude of which is (Probstein, 1989; Hunter, 1992):

uEO=−



∇a                                                       (4)

Due to the fact that e=0 ,a can be calculated from Laplace's equation:

∇2a=0                                                              (5)

Further, the last term on the RHS of equation (2) vanishes, and the EOF is considered by using 
uEO as a boundary value at channel walls. This approximation is valid for large values of h/λ, 
which is usually the case in micro-scale channels at moderate ionic concentrations.
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2.3 Electrokinetic potential as a function of the electrolyte composition

The electrokinetic potential at the solid-fluid interface depends on the charge generation 
mechanism of the surface. In principle, it may be thought that solid walls expose toward the 
fluid a certain number of specific sites (nS) able to release or take H+ ions, with a dissociation 
constant  KS.  In  equilibrium  with  an  aqueous  electrolyte  solution,  the  surface  becomes 
electrically charged. For the case of interfaces containing weak acid groups, such as silanol in 
fused silica capillaries and carboxyl in synthetic polymer materials, the following relationship is 
appropriate (Berli et al., 2003):

8 kB T cb1 /2 sinh 
ze

2kB T
=

−e ns

110 pKS−pH e−e/kB T                             (6)

Therefore, if the parameters that characterize the interface are known (nS, KS), the ζ-potential 
can be readily predicted for different values of pH and ion concentrations c(b). Then the electro-
osmotic velocity is directly coupled to the electrolyte composition. Empirical formulas were 
also reported in order to simplify calculations (Kirby et al., 2004).

2.4  Electric potential

Equation (5) is the simplest way to obtain the electric potential field in the flow domain. 
Nevertheless, this equation does not take into account possible variations of the electric field 
due to ion distributions. In order to consider (local) non-zero charge density due to buffer 
constituents or sample concentrations in the fluid, the equation (7) is introduced.

∇⋅i=0                                                                      (7)

where i is the electric current density. Specifically, the current density is given by the sum of 
different fluxes of charged species:

i=F∑j=1

N
z j j j                                                               (8)

where jj is the molar flux of the j-specie, established by the Nerst – Plank equation:

j j=− j z j F c j ∇ – D j∇ c jc ju                                             (9)

In  equation  (9)   j and  Dj are  the  ion  mobility  and  diffusivity  respectively.  Finally  by 
combining equations (7), (8), and (9) equation (10) is obtained.

∇ .−F2∑ j=1

N
z j

2
 j c j∇−F∑ j=1

N
z j D j∇ c jF∑j=1

N
u z j c j=0                 (10)

which enable  us to  solve the  electric  potential.  It  should be  noted here  that  is  the  total 
potential,  which is  regarded as the superposition of the applied potential  a  and the one 
generated by local variation of concentrations species.

2.5  Mass transport and chemistry

The mass transport of weakly concentrated sample ions and buffer electrolyte constituents 
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can be  modeled by a  linear  superposition of migrative,  convective and diffusive transport 
mechanisms and a reactive term. In a non-stationary mode, for the j-type specie, this is:

∂c j

∂ t
∇⋅−z j j∇⋅c ju⋅c j−D j∇ c j−r j=0                                    (11)

Following the chemistry problem is described and an expression for rj  is defined. Different 
components, weak electrolyte analytes and buffer components (acids, bases and ampholytes), 
strong analytes,  and  the  hydrogen  ion   particularly  have  to  be  considered.  In  electrolyte 
chemistry  the  processes  of association and dissociation are  much faster  than  the  transport 
electrokinetic  processes,  hence,  it  appears  to  be  a  good approximation to  adopt  chemical 
equilibrium constants to model the reactions present in our problem. In this sense, the strong 
electrolytes  are  considered  as  completely  dissociated,  this  equilibrium  relations  were  not 
included in the mathematical model. 

Acids

The dissociation reaction is,

AH⇔
k k

k ij

A-H+                                                          (12)

then the equilibrium state is caracterized by,

k ij

k k

=
[AH ]

[A -][H+]
=ka

−1=10pka                                               (13)

where the square brackets represents molar concentration of the specie:

[AH ]=cAH                                                             (14)

and
pK a=−log10 Ka                                                         (15)

Then the expression of rj is obtained for the disociated acid,

r
[A -

]
=−k ij [A

-
] [H+

]kk [AH ]                                                        (16)

for the non-disociated acid,

r[AH ]=k ij[ A-
][H+

]−kk [ AH ]                                                          (17)
and for hydrogen ion,

r
[H +

]
=−k ij [A -] [H+ ]kk [AH ]                                                        (18)

Bases
The dissociation reaction is,
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BH+⇔
k k

k ij

BH+                                                            (19)

then the equilibrium state is caracterized by,

k ij

k k

=
[BH+ ]

[B ][H+ ]
=k b

−1
=10pk b                                                (20)

Then  the expression of rj is obtained  for the disociated base,

r
[BH+

]
=k ij [B ][H+ ]−kk [BH+ ]                                                         (21)

for the non-disociated base,
r [B]=−[B][H+

]kk [BH+
]                                                           (22)

and for hydrogen ion,
r
[H +

]
=−k ij [B ][H+

]kk [BH+
]                                                       (23)

Ampholythes
Two reactions are considered:

PH⇔
k k

k ij

P-H+                                                           (24)

PH2
+⇔

kn

k lm

PHH+

                                                        (25)

Then, combining the previous sets of equations equation (26) is obtained.

r
[P -

]
=−k ij [P

- ][H+]kk [PH ]                                                 (26)

r[PH ]=kij [P-
][H+

]−k k [PH ]−k lm[PH ][H+
]kn [PH 2

+
]                           (27)

r
[PH 2

 +
]
=k lm[PH ][H+

]−k n[PH 2
+
]                                               (28)

r
[H +

]
=−k ij [P

-
] [H+

]kk [PH ]−klm [PH ][H+
]k n[PH 2

+
]                         (29)

3 SIMULATION METHODOLOGY

In order to solve the entire problem four equations need to be considered: equation (10) to 
obtain electric potential, equations (1) and (2) to obtain velocity and pressure fields, and finally 
equation (11) to obtain concentration fields.
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3.1 Charge conservation equation

Equation (10) was  solved  in  a  stationary  mode,  then  it  is  not  necessary  to  set  initial 
conditions nor time stepping settings

Boundary conditions
 Boundary conditions for the electric potential are defined in two kinds of regions, walls Γw 

and in/out regions Γi/o
i  (superscript  i indicates that there is more than one region of this kind) 

where the electric potential is applied. In Γw boundary conditions are natural, 

∂

∂ n
=0                                                                 (30) 

where n is the outer normal to the surface  Γw.
In Γi/o

i  Drichlet conditions were imposed, 

 =i                                                                  (31)

Solver and preconditioner
To solve this equation conjugate gradient was employed as iterative solver, and an algebraic 

multigrid preconditioner from PETSc libraries called Boomer AMG. 

3.2 Navier – Stokes Equation 

Navier – Stokes equation was solved in an incompressible, stationary mode :

∇⋅u=0                                                                (32)

u⋅∇ u=−∇ p∇
2ug                                               (33)

then is not necessary to set initial conditions nor time stepping settings.

Boundary conditions
In this case a boundary division into two kind of regions is proposed: walls Γw and in/out 

regions Γi/o
i. 

In Γw:
u⋅n=0                                                                 (34)

∂P
∂n

=0                                                                 (35)

u=
−


∇a                                                          (36)

where n is the outer normal to the surface  Γw.
In Γi/o

i: 
P=Pi                                                                 (37)

∂u
∂n

=0                                                                (38)
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Solver and Preconditioner
To solve this equation an additive Schwartz preconditioner was used , based on domain 

decomposition method. Two layers of overlapping between subdomains, with maximum size of 
2000 elements was employed, and flexible GMRes with restart 300 as iterative solver, in each 
subdomain, with LU preconditioner. 

3.3 Transport equation

Mass transport  problem was solved using equation 11. 

Initial and Boundary conditions
As in the previous equations two kinds of regions are considered: the reservoir regions ΓR

i, 
and rest of boundary surface Γw. 

Then, in  ΓR
i
 , Drichlet conditions were imposed for concentration:

if t≥0⇒ c j=c0                                                              (39)

and, in  Γw, natural conditions are imposed:

∂c j

∂n
=0                                                                                                                (40)

Solver and Preconditioner
To solve this equation (11) an additive Schwartz preconditioner was used , based on domain 

decomposition method. Two layers of overlapping between subdomains, with maximum size of 
2000 elements was employed, and flexible GMRes with restart 300 as iterative solver, in each 
subdomain, with LU preconditioner. To improve non linear convergence the Einsenstad-Walker 
algorithm version 3 (Einsenstad et al., 1996) was used.

Time stepping 
In order to develop temporal discretization general scheme was used:

t s=t n−1 t n                                                                         (41)

with θ= 0.55. 

3.4 Hardware

Simulations were carried out using a Beowulf cluster named “Aquiles” at CIMEC (UNL-
CONICET), Argentina. “Aquiles”  consists in 82 nodes without hard disks, processors Intel 
Pentium 4 Prescott 3.0GHz 2Mb cache, RAM 2GB DDR 400MHz, LAN cards  3Com 2000ct 
Gigabit, interconnected by two switches  3Com SuperStack 3 3870 48-ports Gigabit Ethernet.

4 ILLUSTRATION EXAMPLE 

In this section, the capability of the model to solve a capillary zone electrophoresis (CZE) in 
a single capillary is shown. Different levels of approximation in solving electric potential and 
chemistry are studied.
First potential with Laplace's equation (equation (5)), and without considering any chemical 
reaction was solved. Then equation (10) was used in order to solve potential without reactions, 
and finally the complete model was considered, taking into account chemical reactions and 
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local potential distortions due to the presense of charged species.

4.1 Problem description

The separation process of two analytes, Benzoic Acid and Chlorobenzoic acid, migrating in 
a buffer of sodium acetate was investigated. A portion of an square (100 μm x 100 μm) section 
capillary was considered . In order to reduce the domain geometry, an electroosmotic velocity 
opposed to the migration direction was proposed, in order to preserve the analytes at the center 
of the channel.

4.2 Physics constants and species properties

In order to solve the problem the physics constants reported in Table 1 were employed.

Symbol Value Units Description

T 300 ºK Absolute temperature.

  7.08 e-10  C2 N−1m−2 Water absolute permittivity 

F 96485.34 C mol-1 Faraday constant

kB 1.38 e-23 M2 kg s-2 K-1 Boltzmann constant

 1000 Kg m-3 Water density

 0.001 N m-2 s-1 Water dynamic viscosity

Table 1: Physics constants.

Diffusion coefficients and mobilities used for each specie are given in Table 2.

Specie Valence
zi

 Diffusion coefficient 
Di  (10-9 m2s-1)

Mobility 
i (10-8 m2V-1 s-1)        

Na+ +1 1.34 5.19

AcO- -1 1.08 4.23

Bz- -1 0.86 3.36

BzCl- -1 0.88 3.42

H+ +1 2.66 10.30

AcOH - 1.08 -

BzH - 0.86 -

BzClH - 0.88 -

Table 2: Species valences, diffusion coefficients and mobilities.

Acidic dissociation constants for buffer and analytes are given in Table 3.
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Acid pKa Ka (mol m-3)

AcOH 4.76 0.0174

HBz 4.21 0.0616

HBzCl 2.94 1.1481

Table 3: Acidic dissociation constants for buffer and analytes.

4.3 Initial and boundary conditions 

For analytes, as initial conditions, identical normal distributions at the center of the channel, 
were considered as shown for Bz-  in Figure 1. Natural conditions were imposed for all species 
at the inlets and outlets of the channel. Potential applied was 80 V between channels ends, an 
equivalent electrokinetic potential ζ = 0.035 V was considered.

For buffer components initial constant compositions in whole domain were considered . For 
the sodium acetate 50 mol m-3  was proposed and, for H+ 0.0631 mol m-3 (pH=4.2).

4.4 Results

Figure  2  shows  the  concentration  fields  for  Acetic  acid,  obtained  with  different 
approximations  in  the  model.  Local  variations  of  electric  field  (represented  correctly  by 
equation 10) produce variations on local concentrations of buffer constituents, which explains 
system eigenpeaks in CZE (Lopez-Avila et al., 2003).

Figure 1: Initial concentration distributions for analytes in mol/m3. 
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At pH=4.2, half of the total concentration of Benzoic acid is in the acidic form and the other 
half is in the basic form. In contrast, Chlorobenzoic acid is mostly in its basic form. Therefore at 
pH=4.2, the migration velocity for Chlorobenzoic acid is larger than the one for Benzoic acid, 
and consequently the separation efficiency increases. Without including reactions, the analytes 
are considered as strong electrolytes, this is, they are completely dissociated. This situation 
occurs at high pH, and is illustrated by Figures 3 to 6, which show concentrations fields for 
analytes at different pH and running times. Both analytes are in the same cappilary, they are 
plotted separately for the sake of clarity.

Figure 2: Concentration fields for Acetic acid at t=0.2 s. (a) Solved with equation 5; (b) Solved with equation  
10; (c) Both solutions in an 1D plot. 

Figure 3: Concentration fields for Bz- and BzCl- at pH=7, for t=0.125 s.
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5 CONCLUSIONS 

The formulation of a generalized numerical model for electrophoretic process was presented, 
which results suitable for simulation of microfluidcs chips.

A set of equations that governs electrical phenomena, fluids dynamics, mass transport and 

Figure 4: Concentration fields for Bz- and BzCl- at pH=4.2, for t=0.125 s.

Figure 5: Concentration fields for Bz- and BzCl- at pH=7, for t=0.25 s.

Figure 6: Concentration fields for Bz- and BzCl- at pH=4.2, for t=0.25 s.
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chemical reactions was solved, covering different techniques such as CZE. The model allows to 
simulate  processes  involving  multiple  analytes  and  complex  electrolytes  buffers.  The 
importance  of  chemical  reactions  in  this  simulations  was  shown.  An  example  of  interest 
involving electrophoresis on chips was considered as study case. 

Numerical simulations were carried out by using high performance parallel computing and 
solving techniques based on domain decomposition methods. This allows the model be an 
important tool to design and develop electrophoretic microchips. 
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