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ABSTRACT

Anisotropic damage modeling still poses a number of open challanges. One of the most important is how to
formulate the evolution laws in a way that is simple and makes physical sense. The theory tells us that loading
function and damage rule have to be defined in the space of conjugate forces to the primary damage variable.
Choosing the 2nd-order integrity tensor (or any of the usual related tensors) as such variabl e, the resulting conjugate
force lacks physical meaning and proposing evolution laws becomes adifficult task. A (2nd-order) pseudo-log rate
of damageis proposed which remediesthis problem and exhibits a number of additional advantages. A first simple
model is developed based on these ideas, which exhibits very promising features.

RESUMEN

La modelizacion del dafio anisotropo todavia presenta un buen nimero de cuestiones abiertas. Uno de las més
importantes es como formular las leyes de evoluci 6n de unaformasimpley que tenga sentido fisico. Lateorianos
dice que lafuncion de cargay laregla de flujo parala variable dafio deben definirse en el espacio de las fuerzas
termodinamicas conjugadas a la variable de dafo primaria. Eligiendo comotal €l tensor de integridad de segundo
orden (o cualquierade los tensores rel acionados usuales), a fuerza conjugada resultante no tiene un sentido f isico
claro, y proponer leyesde evol uci on se convierteen unatareadificil. En este articul o se define unatasade variaci 6n
cuasi-logaritmicade lavariable dafio, que remedia este problemay presentadiversasventgjas adicionales. A partir
de este concepto se desarrolla un primer model o constitutivo concreto que ofrece resultados muy prometedores.

INTRODUCTION

Anisotropic degradation and damage entail s considerably complexity, with anumber of aspectsnot completely solved
at present [1]. In previous papers, the author and coworkers contributed with the proposal of a unified theoretical
framework for elastic degradation and damage [2], with the analysis of spurious energy dissipation of stiffness
recovery schemes [3], and with the study of the constitutive localization properties of scalar damage models, based
on the spectral analysis of the so-called ‘ acoustic tensor’ [4]. Most of these results were summarized in the previous
MECOM conference[5].

The problem of formulating evolution laws for anisotropic damage in a simple, consistent and understandable way
has been undertaken in arecent publication [6], the main results of which are summarized in the following.
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THEORETICAL FRAMEWORK FOR ELASTIC DEGRADATION AND DAMAGE

A general theoretical framework to formulate elastic degradation and damagein small strains, in away that issimilar
to classical dasto-plasticity was proposed in recent years[2], and only the essential equations are summarized in this
section.

In the simplest setting of purely elastic degradation and damage, it is assumed that unloading always leads to the
origin with some secant stiffness/compliance, and rel oading follows the same path until the envelopeis reached again
and nonlinear behavior resumes (Fig. 1).

(oF

M do =E de®

/deeded
de

o/ E €

Fig. 1. Elastic-Degrading behavior and decomposition of the strain increments

Total values of stresses and strains at any time are related by the secant expressions
o=E:e€ ; e=C:o (1ab)

where E and C arethefourth-order stiffness and compliance tensors, assumed with major symmetry, which areinverse
to each other, i.e. E:C=C:E=13" (fourth-order symmetric indentity tensor, defined as 1" = (Il +1®1)/2
where | =second-order indentity tensor with Cartesian components |j = §i; Kronecker delta, and products A =b&c
and A =b®c correspond to the Cartesian component expressions Ak = bikCji and Ajjk =& bjk respectively).

It is also assumed that stiffness and compliance are functions of a damage variable D, which may be scalar, vectoria
or tensorial. The elastic energy per unit volume at any stage of the damage process, u, may be expressed as

u:%e:E(D):e:%a:C(D):o (2a,b)

For isothermal conditions, one may differentiate to obtain the equations of incremental energy balance, dissipation d,
and conjugate forces —Y:

U=0o:e—d |, d=(Y)*D |, -y Zlo®o]i— (3a,b,c,d)

where the symbol » meansfull contraction of all indices of the damage variable.

The conjugate forces —Y congtitute the space in which the loading surface F(—Y, p) = 0 and the ‘flow rule’ for
damage (or damage rule) M must be defined, in order to achieve a fully consistent elastic-damage formulation. In
this space, the damage evolution and the normal to the surface are defined as:

oF

D=iM , =——
I,

(4ab)

In thetheoretical framework proposed [2], these thermodynamic conceptsare perfectly compatiblewith plasticity-like
concepts and expressions in stress (or strain) space, which make the formulation more intuitive. A first step is to



New Developmentsin Elastic Degradation and Damage 5

consider the intermediate (fourth-order) space of forces —Y conjugateto the compliancerate C, inwhichwe rephrase
the dissipation, loading function F (-, p), and define fourth-order compliance rule M and normal to the surface N:

. 1 . . au 1 oC oF aC
d=—-0:Cio=(-Y):C ; V¥ =—== = (=Y)*x— : N= — | = -~
3 Cio=0Y) 5C = 2790 =g |, ~ N
oD _
(5ai)

These quantities may be finally related to the usual stress-space in which loading function is given as F (@, p), with
normal to the surface n, degradaing strains €? (see Fig. 1) and flow rule m:

_8F
90 |, ' (6a-d)
fd=im ; m=M:o

n

From these concepts, one may consider rate equationsidentical to the onestraditional in elasto-plasticity, and obtain
the well known expressions of the inelastic multiplier A and tangentia stiffness in which the only difference is the

secant stiffness E instead of theinitial one

. 1
A=—n:E:e 7
—niEe ™

. : 1
o=E":¢ ; Eta”:E—ﬁE:m@)n:E (8a,b)
and the hardening parameters in strain and stress space are defined in the usual way:

—  OF dF
H=—| =H+n:E:m H=_—
|, |,

(9ab)
Similar to plasticity, F and m are restricted in such a way that the denominator H = H 4+n: E : m remains always
positive. The model is called associated in the stress space (traditional definition) when m is proportional to n and
consequently the tangent stiffness exhibits major symmetry. If m is derived from a potential Q, associativity may be
aternatively stated as Q = F. Other definitions of associativity may be established at compliancelevel if M isparallel
to N, which implies the former, or in damage space if M is paralel to M, which implies al of them. The latter may
also be caled full associativity [2].

BASIC ISOTROPIC DAMAGE

Using the theoretical framework described in Sec. 2, it is possibleto formulate a variety of damage models depending
mainly on the nature and choice of damage variables D, and the dependency of stiffness or compliance on those
variables, E=E(D) or C=C(D). The simplest models are those in which the initia stiffness (and therefore also the
compliance) isisotropic, and its degraded counterpart also maintainsisotropy. In particular, the traditional “(1— D)”
scalar damage model is that one in which all the components of the stiffness tensor are reduced with the same
coefficient (1— D), where D is a damage variable varying from 0 to 1. In [2], a strain-based formulation of this
type was derived in the general framework presented, and it was shown that a number of models available in the
literature [7, 8, 9] wereincluded as particular cases. Here, the sameformulation isrewritten in stress space, with more
convenient choices of inelastic multiplier and damage variable which makes expressions look simpler and allows us
to introduce the concept of logarithmic scalar damage.

First, consider the general form of the isotropic stiffness and compliance tensors:

_ — 1 _
E=AIQI+G(IQI+IQI) C:E‘)|®I+%(I®I+l®l) (10a,b)
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where A and G are the Lamé constants, linked to the Young modulus E and Poisson ratio v by the classical relations

vE E
A=——— | G=
(1+v)(1—-2v) 2(1+v)

(11a,b)

Inthe“(1— D)” scalar damage model, the following well know expressions are assumed for the secant stiffness and
itsinverse compliance:
1 o

E=1-D)E° : C=_—"_
1-D

(12a,b)

where E® and C? aretheinitial stiffnessand compliancetensorsgiven by (10a,b) with initial valuesof elastic constants
A%, GOor E?, 1. ie

E°=A%1®l + GO(Ixl +I&l) c°=_—‘p|®|+1+—”0(| | +1Q1) (13a,b)
’ EO 2EO
Differentiating (12b) yields _
. D 0
= 14
C 1Dy C (14)
A new logarithmic scalar damage variable L is defined as the primary damage variable D
1 —L
D:scalar:L:Inﬁ ; D=1-¢€ (15a,b,c)

While the conventional damage variable D varies between 0 and 1, the logarithmic damage L varies between 0 and
oo. Havingintroduced L, we can rewrite (12) as

E=eltE° ; C=eC° (16a,b)
This expression of C may be differentiated to obtain an alternative form to (14):
C=Lec’=LcC (17a,b)

The partial derivative 9C/dD may beimmediately calculated, and L itself may be used as the inelastic multiplier of
the formulation:

aC aC . D

oD oL 1-D
This leads to the identification of the “m” terms of the general theory, which take the convenient simple form of the
current value of compliance and strain:

(18a,b,c,d)

M=scaar=1 ; M=C ; m=C:o=c¢€ (19a-d)

The dissipation equation leads to the force —Y=scalar=—Y, conjugate to the logarithmic damage L, which turns out
to be equal to the current (secant) elastic energy:

1 . . 1
d:Ea:C:aLz(—y)L ; —y:za:C:o:u (20a,b,c,d)

In order to achieve an associated formulation, the loading surface is written in terms of the conjugate force —) = u
and the damage state L (equivaent to D), in the format

F=u—-r(L)=0 (21)
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This actually represents a general form of F(u, L) since, from any other expression F’(u, L) =0, one can aways
isolate u=r (L) and rewrite as above (in particular, this definition includes other functions usually found in the
literature such asthose written in terms of the strain- or stress-based undamaged energies i°=€:E%:€/2=u/(1-D),
or il=0:C%0/2=(1-D)u).

From F, the various gradients of the loading function at constant damage may be obtained:
(=) a(=Y) do

Notethat the three gradients A/, N and n are equal to the corresponding rules M, M and m in the theory, which means
associativity at al levels. In general, associativity depends on the particular choice of F such that its gradients are
paralel to the damagerule. In the case of scalar damage, however, because both damage rule and gradient of F are
scalars, it is sufficient that V' exists and it will automatically be parallel to M. Therefore, the only condition for full
associativity isthat F be expressed in terms of the conjugate force, i.e. in this case, of u (amore detailed discussion
on the various levels of associativity in damage models and related considerations may be found in [2]).

N = scalar = C:o=¢ (22a,b,c)

The hardening/softening modulus H = —3 F /9 at constant stress, is aso obtained from (21) as

or
H=——-u 23
oL (23)
Finally, with m, n and H, the expression for the tangent stiffnessis obtained:
1 — or
Etan=e_|—Eo__ ; H=— u 24a,b
v oR0o oL + (24a,b)

As described, the model has only the hardening/softening functionr (L) (or, equivalently, r (D)) to be defined. This
function may be identified from a single stress-strain curve from experiments, for instance from a uniaxial test. Once
it has been chosen, however, all other features of the model are automatically fixed.

If further degrees of freedom are needed in the model in order to fit additional experimenta data without abandoning
the domain of isotropic degradation, the model would have to be modified. In order to focus on the main objective
of evolution laws based on the pseudo-log damage rate, this will not be pursued in this paper. However, a simple
extension along thisline has already been advanced in [10] and is developed in more detail and inserted in the general
context of an ‘extended’ anisotropic degradation in [11].

ANISOTROPIC SECANT STIFFNESS USING SECOND ORDER DAMAGE TENSORS
Damage variables

Disregarding vectors due to theoretical and practical shortcomings[12, 13], a second-order symmetric tensor seems
to be the simplest way to represent anisotropic damage with reasonable generality. Also, similar to strain or stress,
the second-order symmetric damage tensor can be decomposed spectrally and represented graphically in aconvenient
way. All those advantages were recognized by several authors who proposed either the direct generaization of D to
a second-order damage tensor D which varies between 0 and | as damage progresses [14, 15, 16], or the use of an
integrity tensor ¢ =1 —D which has exactly the oppaosite variation [17, 18] (notethat, for consistency with the general
theory developed in [2, 19], we use notation with overbar for variablesin strain space and without overbar for their
counterpartsin stress space). These two tensors share principal axes and their principal values vary between 0 and 1,
and arerelated according to D) =1—¢yj.

Actualy, one can think of a number of second-order tensorsto characterize damage, all with the same principal axes
and simple relations between their principal values; the choice of which oneto useismainly a matter of convenience.
Additionally to the integrity tensor ¢, here we introduce its square root w (which also varies from | to 0) and their
inverses¢ and w (which vary from | to co). These tensors and their principal values satisfy the following relations:

d=W-W , ¢=W-W , ¢ d=¢- =1 , W-w=w-W=I (25a,b,c,d)
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L 1 1
¢ i :w2 s (b i :UJ2 s ¢ = s Wiy=—— 26a,b,C,d
i) =W i) =W 0= 0= o ( )

In the case of isotropic degradation, all these tensors reduce to the volumetric form:
p=¢! ., wW=wl , é=¢l ,  w=uwl (27ab.c,d)

Dueto the energy equivalence approach which will be introduced next, equivalence of these variablesto the scalar D
used in the previous section will involve a square root

p=wl=-=-"—=41-D (28a,b,c,d)

Thestructure of expressions(27) suggest a product-type decomposition alsoin the general case of anisotropic damage:
$=0y . W=wVv , ¢=¢¢¥ , W=wv (29.b,c.d)

wherethe scalars ¢, ¢, w and w satisfy previous relations (28a-c), and also have the meaning of the 1/3 power of the
determinant of their tensor counterparts

o= etp)® | w=@detW® |, ¢=(det¢p)’® , w = (detw)/? (30a,b,c,d)

Tensors ¢ and 1/7 are isochoric (with unit determinant) and inverse to each other, and so are their square root tensors
vand v: _ _ _
¥v=v-v , ¥=v-v , ¥y-¥y=¢¥-¢¥y=1 , v.v=v.v=| (31a,b,c,d)

Notethat, in all these product-type decompositions of the damagetensors, the “ product-volumetric” part (determinant
to power 1/3) may be interpreted as representing the isotropic part of the damage, while the isochoric part (with unit
determinant) would represent its anisotropic part. This separation of effects will be important in subsequent sections.

Effective stress and strain, energy equivalence

While in isotropic degradation the effect of the scalar damage variables on the stiffness or compliance may be easily
established (12), in the anisotropic case with second-order damage tensors the task becomes considerably more
complicated, and it is convenient to introduce first some additional concepts. Degradation may be understood as the
average effect of distributed microcracks. Effective stress o and effective strain € are then defined as the stress
and strain to which the material between microcracks is subjected. In this context, the relation between effective
stress and effective strain describes the behavior of the undamaged material skeleton, which in this case is assumed
to belinear elastic, i.e.

o =E%: e e =C0: 0" (32a,b)
Ontheother hand, damagevariablesmust rel atethe effective quantitiesto their nominal or apparent counterparts, which
are the ones measured externally and must satisfy equilibrium and compatibility at structural level. In the literature,
the relation between nominal and effective quantities has been established mainly in three ways. strain equivalence,
stress equivalence and energy equivalence. In strain equivalence[20], effective and nominal strains are assumed equal
and stresses differ, while stress equivalenceis the opposite. These assumptionsmay be interpreted microscopically in
terms of parallel or series arrangements of elementswhich fail progressively during the degradation process. In spite
of strain equivalence being the most widely used, these two approaches exhibit the significant theoretical shortcoming
of producing non-symmetrical secant stiffness and compliance tensors, which introduces loss of energy conservation
in the unloading-reloading regime.

In contrast, energy equivalence produces symmetric secant stiffness and compliance tensors. It is assumed [15] that
the elastic energy stored in terms of effective quantities with undamaged stiffness and in terms of nominal quantities
with secant stiffness must be the same (this actually requires the undamaged behavior to be linear elastic; seeamore
general derivation based on the Principle of Virtual Work [21]). Asaresult, neither effective strain nor effective stress



New Developmentsin Elastic Degradation and Damage 9

coincide with their nominal counterparts. Rather, assuming that the relations are linear, they must be given by the
same fourth-order “ damage-effect” tensor &, or itsinversee (i.e. a@:a=a:a=I13") inthefollowing reciprocal form:

o=a:c" , e =a:0 e=a' , eM=a' e (33a,b,c,d)
where superscript (.) T stands for transposed in the major sense, (i.e. in Cartesian componentSOziTj K =Okdij)-
Combining equations (33) with (32), one recovers the secant relations (1a,b) where

E=a:E':a' C=a':C’:a (34a,b)

Symmetrized nominal-effective relations and resulting secant stiffness/compliance

Trying to establish relation (33a) in terms of a second-order damage tensor as a direct generalization of the one-
dimensional relation o = ¢o®" where ¢ isan effective areareduction, onehase =¢ - o, where symmetry cannot be
ensured for o even if o and ¢ are symmetric. This suggests that some form of symmetrization should be applied.
Both “sum-type” and “ product-type”’ symmetrizations have been considered in the literature [15], which lead to two
different forms of the damage-effect tensor @. Among the two, the product-type seemsto be the most convenient due
to theoretical and practical advantages, the main one being that both stiffness-based and compliance-based versions
of the theory turn out to be completely equivalent, which does not happen with the sum-type[6].

This form of symmetrization leads to the following relations between nominal and effective quantities (where the
symmetry of w and its inverse has been taken into account)

o =wow , e€=wew, o=wow , e=wew (35a,b,c,d)

which corresponds to the damage-effect tensors
-1 _ _ _—_ 1 —
a= > (WQW+WRW) ; a= > (WQW-+WRW) (363,b)

In a6x 6 matrix representation and selecting the reference system in the principal axes of damage, tensor e exhibitsa
diagonal form with diagonal components w jwj, (remember that zﬁﬁ) = ¢)), which is a scheme found often in the
literature on anisotropic damage [15, 22, 23, 24]:

_ q;( " -

1P)

R|
Il

be _ _ @37)
WOWe

wouwe
L W3 W

Replacing expressions (35) into (32), one obtains the following equations (better expressed in Cartesian component
form):

Eijk = wipwjqWkr u_)Isqurs i Cijk = WipwjqWkr wlsCSqrs (38a,b)
Further replacing the isotropic elastic stiffness and compliance tensors and making the appropriate products and
substitutions, one finally obtains

0 0
A28+ C (G201 888 . co_ 2 14v
E=A¢2¢+GC (#R¢+92¢): C=-560¢+ 5

(Po+029) (39a,b)

which obviously can be equally rewritten in terms of any other pair of elastic constants, obtaining in any case
expressions analogous to the isotropic ones (10), in which all second-order unit tensors | (or Kronecker deltas s in
Cartesian components) have been replaced by ¢ (stiffness) or ¢ (compliance). Note that the expression for E (39a)
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actually corresponds to the model proposed by Vaanis (1990), although in that case it was derived directly from a
specific form of the elastic potential, rather than using effective stress and effective strain concepts.

Itisalso useful to represent the secant compliance C obtained, in a6x 6 matrix form, selecting asthereference system
the principal axes of damage. This matrix may be compared to the traditional compliance matrix for orthotropic
eadticity:

_ 1 —V12 —V13 —_

BARL R . EE
P PIE papse el El
—v —v 21 —Va1 —vz2 1
C= ¢l¢3€ ¢ﬂ53€ ¢3 E ¢1¢21+_v , COI’th= Eq E> Es n (40a'b)
E G
pap s
14 = 1
L ¢1¢3f— L G_Bl_
obtaining the following equival ences:
E1=@7E . E,=#3E. Es=¢2E. Gu=dibro-—— . Ga=tobso—— . Ga=dah
T S st T 2(1+v) 2(1+v) TR 2(14w)
v12=ﬂv, v13=ﬂv, V21=@v, v23=@v, v31=@v, Vg2 = —ov
¢2 ¢3 03] ®3 03] ¢2

(41a)

In these relations, the 9 independent orthotropic elastic constants (the 12 in previous equations are subject to the
three symmetry constraints vip/ Ex =vy1/E1, €tc.), are generated from 5 independent parameters. E, v plus the three
principal values of damage ¢;. Therefore, this secant stiffness corresponds only to a restricted form of orthotropy,
which will lead to what we call basic formulation of anisotropic damage. For the particular case of isotropic damage,
the ‘basic’ formulation collapses into the “1— D” model, which is also known to be a restricted form of isotropic
damage in which only E degrades while v remains constant.

Nevertheless, in spite of itslimited character, the‘ basic’ formulation of anisotropic damage seemsthe most appropriate
framework to introduce the concepts of pseudo-log rate of damage and related evolution laws, asdonein thefollowing
sections. A more general respresentation of anisotropy requires to consider additional independent damage variables
or parameters. A first step along this lineis the *extended’ anisotropic formulation proposed recently [11], in which
the number of independent parameters is increased to 6, encompassing new types of degradation such as purely
deviatoric or von-Mises damage.

PSEUDO-LOG RATE OF DAMAGE AND CONJUGATE FORCE

Next now is to select what damage variable will play the role of D in the general theory of Sect. 2, and to calculate
the corresponding conjugate force —Y. As the first step in this process, C given in (39b) is differentiated, which is
better expressed in Cartesian components:

: 0Ciju - aCiju~ —°
Cij = ——pq = —0[(5ip5jq+5iq51p)¢k|+¢ij(5kp5|q+5kq5|p)]+
ddpq d¢pq 2E 42ab
Lo (42a,b)
+ F[(Si pOkqg+3iqdkp)@j1 + @ik (8jpdiq +3jgdip) + (8ipdiq +3igdip) Pjk + il (3j pdkg +51q5kp)]
Replacing now this expression into (5a), the dissipation rate d is obtained as:
. —0 1400 :
dz[ﬁ o.P) o+ =0 a-¢-a]:¢ (43)

If the inverse integrity tensor ¢ itself is taken as the primary damage variable, the term between brackets may be
immediately identified as the corresponding conjugate force. This force, analogous to what was obtained in [9] in
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terms of stiffness and strains, has no clear physical meaning, which makesit difficult to propose and interpret |oading
functions and damage rules. From (43), however, one can redlize that & : ¢ =1tr (ae”) , which motivates the search for
an expression of the conjugate force in terms of effective quantities exclusively. Thisis possible and conveniently
achieved by changing the damage variable involved in the dissipation equation (43), from the rate of the inverse
integrity, ¢, to the rate of a pseudo-logarithmic damage tensor, L, defined as:

L=—2w-¢-w=2w-¢p-w or ¢=§W~L~W , ¢=—=-w-L-w (44a,b,c)

NI

If the principal axes of damage remain constant, the new tensor coincides with the logarithm of the square inverse
integrity tensor, i.e. L =In¢? (logarithm of a tensor defined as a tensor function, i.e. with same principal axes and
logarithm of the principal values). Otherwise, this equivalenceis not valid for L, although it isfor its volumetric part
L =tr(L)/3. Thelack of ageneral relation between total values of L and ¢ does not actually represent a practical
difficulty because the pseudo-log damage is only used in rate form due to its properties of exhibiting a convenient
conjugate force. Once the damage rule in terms of L is established, the rate ¢ may be always evaluated with (44b)
and the integration process needed in the numerical implementation of the model can be always carried out directly
in terms of ¢, which isthe variable that enters directly the expressions of secant compliance or stiffness.

If (44b) is replaced into (43), and the two factors w go into the brackets, we obtain

. -0 149 .
d= [E—‘;(tr oo™ + —JEFE; o -aeff} 'L (45)

Theterm between brackets may be indentified with the new conjugate force, which, using linear elastic relations (32)
and (13), may be rewritten in the simple form:

1
—¥ = 0% (46)

Because o¥" and € remain coaxia, —Y aso shares the same principal axes. The principal values are —Y () =
off _eff

o€l /2, and thefirst invariant tr (—Y) =o' : €' /2=u (current elastic energy).

Another property which is very important with regard to the formulation of evolution laws, is that the product-type
decomposition of ¢ becomes a sum-type decomposition for L [6]. Due to that, the volumetric part of the damage
rule only generates increments of isotropic damage, while the deviatoric part is solely responsible for anisotropic
degradation. Thisproperty makesit possibleto establish restrictions on the “ damagerule” for aphysically admissible
evolution of ¢ (see next section).

LOADING FUNCTION AND DAMAGE RULE

Theloading function F is defined in terms of the conjugate forces —Y and of the previous history. Here we consider
the following type of expression:
F = f(=Y) — r(history) (47)

Thesimplest choicefor f isinterms of theinvariants of —Y. Thisactually does not contradict the anisotropic nature
of the model because this conjugate force tensor involves effective stress and effective strain, and if these are replaced
using (35a,b), the square root integrity tensor comes into the picture resulting in an anisotropic loading function in
terms of nominal stressor strain. Thus, it makes senseto consider the space of principal values of the conjugateforce
=Y, =V, —Y@3. Inthat space, one may represent concepts such as p-axis, deviatoric planes, loading surface
F =0 and damagerule, analogousto what is customary in the principal stress spacein the context of plasticity theory
(Fig. 2).

The choice of pseudo-log damage rate and the space defined by its conjugate force bring about anumber of interesting
advantages. As mentioned before, it turns out that the volumetric part of the pseudo-log flow rule, represented in the
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—Ya),—Y2,—Y 3 Space by its component parallel to the p-axis, causes only increments of isotropic degradation.
On the other hand, the deviatoric part of the pseudo-log damage rule (i.e. its component on the deviatoric plane)
causes only increments of anisotropic degradation. In thisway, we have avery simple and understandabl e separation
of effectsthat may be very useful for the devel opment of specific models. For instance, it istrivia to verify that the
traditional “(1— D)” associated scalar damage model is recovered with aloading surface parallel to the -plane.

m-plane

1
V=5 osflestt

Fig. 2. Space of principal values of the conjugate force —Y 1, —Y2, —)3

The condition that the dissipation (45) must be always positive, leads to the conditions that the loading surface must
be convex in the —Y space, and must include its origin, analogous to similar arguments classical in elasto-plasticity
[25, 26]. Additional constraints to the pseudo-log damage rule may be derived from its own definition as the rate of
adamage measure. The inverseintegrity ¢ has been defined as a tensor which evolves between | and co as damage
progresses. If s; denotes the Cartesian components of a generic unit vector (s;s = 1), the projection s-¢-s may be
interpreted as a geometric measure of the damage on a plane with normal oriented with that direction (i.e. inverse of
a stress-carrying area fraction). Due to the irreversible nature of damage (no healing is considered in this study), it
seems reasonabl e to assume that the damage on any given plane should always increase or remain constant, but never
decrease. This meansthat, for any orientation s, we must haves- ¢ - s> 0, i.e. the integrity rate ¢ must be positive
semi-definite (all its eigenvalues be positive or zero). By replacing (44b) in the previous equation, one obtains:

%g.[_.g=%sf.M.s'zo . d=w-s (48)

Becausethe squareroot integrity tensor w isnon-singular, s’ may also takeany arbitrary orientation. Since, additionally,
the inelastic multiplier A must be non-negative, this means that the pseudo-log damage rule M must also be positive
semi-definite, i.e. that its principal values must satisfy M 1) > 0, M) > 0 and M3 > 0. In terms of a geometric
representation in Fig. 2, this implies that the vector representing the damage rule should be part of the positive-
positive-positive octant, which is a severe restriction if compared with traditional flow rules in stress space. For
instance, associated models with surfaces similar to von Mises or Drucker-Prager (in which the normal may have
negative component on one of the axes) are not allowed here. On the other hand, a surface similar to Rankine in the
—-Ya),—Y2,—Y 3 spacewould sit in the limit of the stated restriction, with only one positive principal value of M at
atime, while the other two are zero. Thismodel, that we will call ‘ pseudo-Rankine', actually exhibits very appealing
properties and is developed in detail and illustrated with some application examplesin the next section.
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EXAMPLE MODEL: GENERALIZED PSEUDO-RANKINE

For the first, simple, associated, anisotropic damage model developed in this framework, F is defined according
to (47), using for f an agebraic expression taken from the literature [27], and for r an exponential decay function of
the volumetric component of the logarithmic damage tensor, L:

% 0,2 30.2
f=((20)"" + (D) +(20)™) . =25 en(- ZE%eSt L) (49ab,c)

The surface F = 0 takes different shapesin —Y 1), =Y (2), —Y(3) space depending on parameter b. For b=0, itisa
7 -plane and the model collapsesinto isotropic damage. For b— oo, the surface approaches a Rankine-type criterion
and the model exhibits maximum anisotropic character. The cross-section of such a surface with the —Y 1),—Y(2
plane, is represented in Fig. 3 for different values of b.
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Fig. 3. Two-dimensional cross-section of the loading surface, with coordinate plane —Y 1, —Y», for various values of b.

The coefficients of the exponential resistance function (49b) are simple expressions of the tensile strength o P and
the fracture energy per unit volume g; (area enclosed under the uniaxial stress-strain diagram). To obtain these
expressions, first a generic exponential functionr = rgexp(—KkL) is assumed and then rg and k are identified from
the analytical solution of the pure tension case (which, remarkably, is available for any value of b > 0). The uniaxial
stress solution exhibits a postpeak power-law decay with exponent —(g+ +rg)/(gs —ro) [11].

To verify its capabilities under complex loading, the model has been implemented and used to solve Willam's test
[28], which is becoming atypical benchmark for anisotropic cracking and damage formulations. Thistest consists of
two load stepsin plane stress. First, uniaxial loading is applied until the peak. Second, strain increments are applied
to al in-plane degrees of freedom in the proportion [exy, €yy, exy] =[1, 1.5, 1]. This representsincrements of tensile
strain in all directions, accompanied by a rotation of the principa axes which slows down progressively with afinal
asymptotic value of 52.02°. Fixed parameter valuesare E®=10" MPa, 1°=0.2, opex = 10* kPaand g¢ = 15 kPa(i.e.
threetimesthe elastic energy at peak). The analysisis repeated for various values of parameter b. Some of the salient
results for the extreme cases of b =0 (isotropic damage) and b =40 (very close to pure pseudo-Rankine, maximum
anisotropy), are shown in Fig. 4.
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Fig. 4. Results of Willam’s test. Evolution of: a) stress components for isotropic damage (b=0); b) same for highly
anisotropic damage (b=40); c) angles of the first principal directions of prescribed strain, stress, damage and effective
stress with x axis, for b=40; and d) damage components for b=40.

Evolution of stress components varies considerably from isotropic damage in Fig. 4a, to b= 40 (highly anisotropic)
in Fig. 4b. Differencesinclude asecond peak of o (1), aplateau followed by an abrupt drop in oxx, and asigninversion
of oyy. InFig. 4.c. the angles formed by the first principal direction of prescribed strain and calculated nominal
stress, effective stress and damage, are represented. The main principa direction of damage dlightly underrotates

the prescribed strain, while effective stress/strain, and especially nominal stress, largely overrotate it.

Damage
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componentsfor b=40 (Fig. 4d) also evolve quite differently from the isotropic case (dotted lin€), as onewould expect
for a highly anisotropic response . Additional results of these calculations may be found in [6].

CONCLUDING REMARKS

The theoretical framework for elastic degradation and damage proposed by the author some years ago has been
revisited and developed further for specific types of damage variables. For isotropic degradacion, a convenient
logarithmic damage variable has been introduced that |eads to very simple expressions. For anisotropic damage, the
format of a ‘basic formulation’ has been cast into the framework proposed. The new concept of pseudo-log rate of
damage has been introduced, which exhibits convenient properties, leads to a simple and elegant format of conjugate
forces and allows a physical interpretation of damage rules. Implementation, even in a tentative smple form, has
offered meaningful results for a complex case such as Willam’s test. All this configures a very promising scene for
further devel opments and practical applications of the new formulation proposed.
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