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Abstract. We present a method to enumerate and codify the solutions of type synthesis of
linkage mechanisms with rotoidal and prismatic joints. The essence of mechanism synthesis is
to find the mechanism for a given motion. Type Synthesis is the first stage of conceptual design
of mechanisms, where the number, type and connectivity of links and joints are determined.
It is followed by the Dimensional Synthesis stage, where the link lengths and pivot positions
are computed to fulfill a given kinematic task. The latter and the subsequent stages of detailing
design are very costly. Therefore, the aim is to propose all “non-isomorphic topologies” without
repetitions satisfying structural requirements.

We use an enumeration of one-degree of freedom topologies developed by Tsai to form an
Atlas of kinematic chains. We have developed a method based on the construction of an “initial
graph” taking into account prescribed parts (such as fixations, bodies to move, joints, and their
interconnections) and the kinematic constraints imposed on them. Then, we use this graph as a
pattern to search inside the atlas. This search also involves an isomorphism detection between
subgraphs occurrences inside a kinematic chain of the atlas. We develop a classification of
the occurrences by the Degree Code of the edge-induced subgraph produced by the pattern
edges. After selection of a non-isomorphic topology, there follows a step of specialization where
joint types are assigned. We also developed a method to enumerate all possibilities of joint
assignments in a non-isomorphic way for a maximum number of prismatic joints given by the
user.

The method is illustrated with examples for typical aeronautical test problems. The program
was written in C++ language under the OOFELIE environment.
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1 INTRODUCTION

A kinematic chain is a chain with mobility, without any fixed link. In the bibliography it is
frequently referred to as Basic Kinematic Chain (BKC). When one or more links of a BKC are
fixed, it becomes either a mechanism if at least two links retain mobility, or a structure if it does
not have mobility. A mechanism is a mechanical device that has the purpose of transferring
motion and/or force from a source to an output body.

Type synthesis consists in selecting the type of mechanism and the type and number of its
component parts: it could be linkage, gear, cam, belt, etc. or a combination thereof. In this
work we are limited to planar mechanisms of the linkage type. A linkage consists of links (or
bars), usually considered rigid, which are connected by joints such as pins (or revolutes) or
prismatics, to form open or closed chains. Linkages can be designed to perform complex tasks,
such as nonlinear motion and force transmission1.

Since the early eighties, there has been an increasing interest for the integration of tech-
niques for computer-aided synthesis of linkages into CAD-CAE simulation tools2, particularly
addressed to the analysis and optimization of mechanisms. However, the problem of synthe-
sizing a mechanism for a given kinematic objective has been less treated in the literature. The
essence of this problem is to find the mechanism for a given motion or task. In other words, it
deals with the systematic design of mechanisms for a required performance (Figure 1).

Given Motion

- Path Following
- Rigid Body Guidance
- Function Generation

Linkages?,
Cams?, belts?,
Gears?, etc.

Mechanism?

Linkage Synthesis
i) Type synthesis:

ii) Dimensional synthesis
iii) Optimal synthesis

i-1) Requirements
i-2) Number Synthesis
i-3) Specialization

Figure 1: Methodology scope (in dashed)
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There are three customary tasks for kinematic synthesis: path following (PF), rigid-body
guidance (RBG), and function generation (FG). In the case of path following, the purpose of the
synthesis is to determine the dimensions of the elements so that one or more points of the mech-
anism move through a series of preset positions. In that of rigid-body guidance, the positions
and orientations of one or more elements are prescribed (see example in Figure 2). Function
generation intends to coordinate motion between input and output links of the mechanism.

Mechanism synthesis methods are usually decomposed into two phases: (i) Type Synthesis,
where the number, type and connectivity of links and joints are determined3–5, and (ii) Dimen-
sional synthesis, where the proper dimensions of parts are computed1, 6–8. In the linkages case,
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the dimensional synthesis consists in computing the links lengths and pivots positions. This task
is also related to that of optimization of the mechanism, aspect which has been dealt with by
various authors9–11. The dimensional synthesis phase and all the subsequent stages of detailing
design are very costly, so it is essential to have good topology alternatives as output of the type
synthesis stage in order to avoid repeated simulations and also not to leave some alternatives
without being explored.
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Algorithmic solutions to type synthesis problems were proposed since the mid-sixties. Graph
Theory1 has been used for analysis and enumeration of rigid linkages by Freudenstein and
Dobrjanskyj, Crossley, Manolescu3; and more recently Tsai5 who developed the atlas of linkages
that we adopt. The graph G(E, V ) of a kinematic chain is obtained by representing each link
by a vertex vi and each kinematic pair by an edge ei connecting the corresponding vertices. By
convention, the ground is the vertex v0 labeled as zero.

The number of solutions obtained from the Type Synthesis phase could be finite but numer-
ous; depending on the problem, we may have even hundreds or thousands of solutions. The
choice of a suitable mechanism for the desired purpose may be done by “visual inspection”
on an atlas of linkages but Graph Theory may be conveniently applied to do this search au-
tomatically. In the past, the search in atlases was often carried out based on the intuition of
experienced designers, but such a procedure may easily lead to neglecting possible solutions.

The automatic tool developed under the OOFELIE14, 15 environment is a unified and system-
atic approach to an “oriented-task type synthesis of linkages with lower pairs” that puts at the
user’s disposal a list of all non-isomorphic mechanism alternatives potentially suited to develop
a required task. The solutions are sorted and codified in an increasing complexity order. The al-
gorithms are also generalizable to more complex cam-linkage and geared-linkage mechanisms
with higher pairs. They also serve as an introduction to the field of enumeration of flexible
linkages.

1Some background from Graph Theory can be found in the books of Harary12 or West13.
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The paper is organized as follows: the process of Type Synthesis is reviewed in Section 2.
The graph representation of kinematic problems is shown in Section 3. The enumeration of
kinematic chains is reviewed in Section 4. The proposed Number Synthesis algorithm is de-
veloped in Section 5. The proposed algorithms for prismatic joints assignment is developed in
Section 6. The topics are developed with detailed examples.

2 TYPE SYNTHESIS PROCESS

Olson3, Erdman and Sandor10, Tsai5, and Yan and Hwang4, gave guidelines for a type synthesis
strategy. The process that we adopt consists in:

I Problem requirements: From the required design specifications, the designer selects the
structural characteristics such as : prescribed parts defined by fixations, bodies to move,
joints, and their interconnections, and the kinematic constraints imposed on them. Then,
the user sets the required number of degrees of freedom of the mechanism, the allowed
joint types and the maximum number of joints desired for each type. The prescribed parts
and kinematic constraints are defined using a CAD interface. From the interpretation of
this drawing a so called initial graph is automatically constructed to define the problem,
as we explain later.

II Number Synthesis: The second step is to enumerate the atlas of the kinematic chains
with the required numbers of links and joints. Methods to obtain an atlas of non-degenerate
and non-isomorphic planar kinematic chains with simple joints are available from works
of W. Hwang and Y. Hwang16, Hsieh17, and Tsai5. We use them making a subgraph search
and codifying the occurrences of the initial graph. We dispose the atlas as a list of integers
codifying each BKC by its Degree Code (DC). They are sorted by increasing complexity
order. The identification of an objective link constraints and reduces in cardinality the
enumeration of solutions. Depending on the task, it must be at a given distance from the
ground.

III Specialization: The third step is to specialize each kinematic chain by assigning the type
of links and joints (Yan and Hwang4). The user’s constraints limit the number of permu-
tations needed to obtain all possible configurations of mechanisms in a non-isomorphic
way. The desired number of joints of each joint type is used as an input constraint. The
types of joints pertaining to the initial graph are respected and not changed.

3 GRAPH REPRESENTATION OF KINEMATIC PROBLEMS

Starting from functional requirements, the designer selects the structural characteristics to draw
the existing parts like a skeleton diagram. Many dimensions of this diagram are unknown (to be
synthesized), but some of them can be imposed. On the imposed parts the user gives the motion
constraints to define the task. To initiate the Number Synthesis stage, the drawing is converted
into an abstract structural representation of prescribed parts that we call “initial graph” (Sub-
section 3.2). This graph makes it possible to systematically explore potential linkages -using
combinatorial theory- inside an atlas of kinematic chains.
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3.1 Mechanism class representation

A mechanism is represented internally in a multiple-set of dataM = {N , F , E}, consisting
of nodes, fixations and elements with attributes like positions, types of element, connectivities,
etc. This representation is entered to the program interactively from a CAD interface which is
common to other finite element analysis programs. The user may also interact with the program
in a special language developed for communication.
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In addition, the user should specify requirements for the synthesis task. We may distinguish
three cases:

Path Following. To define a trajectory, we give a set of node displacements

D = {NID, t, (dx, dy); ...; },

where ID is the node identifier, t is the number of passing points in the sequence of
precise positions, and displacements are expressed in relative coordinates from initial
node position. For instance, if two displacements are desired on node N4, we declare
three triplets D = {N4, 0, (0, 0); N4, 1, d1; N4, 2, d2} (Figure 4).

Rigid-Body Guidance. Here, displacements and also orientations are defined for an isolated
node. We declare the displacements D = {N5, 0, (0, 0); N5, 1, d1; N5, 2, d2} on node N5,
and also rotations with the triplets L = {E1, 0, 0; E1, 1, α1; E1, 2, α2} for rigid-body E1

(Figure 5).

Function Generation. Now, two (or more) sequences of displacements or orientations are
specified for two (or more) grounded rigid-bodies. For instance, a law β = f(α) is
given for two bodies hinged to ground in Figure 6. We have defined the sets L =
{E1, 0, 0; E1, 1, α1; E1, 2, α2; E1, 3, α3} andL = {E2, 0, 0; E2, 1, β1; E2, 2, β2; E2, 3, β3}.
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Motorized prismatic joints can also be present in a mechanism, and in this case input dis-
placements may be given for them. For instance, in Figure 3, the initial and last positions are
prescribed for the prismatic joint E3 in the form J = {E3, 0, d0; E3, 3, d3}. The intermediate
inputs are unknown and are computed by the dimensional synthesis program. This problem
is a double function generation, and data is completed by imposing angular displacements at
link E1: L = {E1, 0, 0; E1, 1, β1; E1, 2, β2; E1, 3, β3} and at link E2: L = {E2, 0, 0; E2, 1, α1;
E2, 2, α2 E2, 3, α3}.

3.2 Initial graph

The initial graph represents the initial parts. The initial graph cannot have more than two con-
nected components. If more components appear, the problem is subdivided into successive
synthesis tasks. For instance, a wing flap/tab coordination problem can be divided into a “flap
guidance” problem and a subsequent “tab guidance” problem18.

Tasks can be distinguished by the number of graph components in the initial graph associated
with the problem (see, e.g. Figures 3 to 6). For Path Following (PF) and Rigid-Body Guidance
(RBG) tasks, the initial graph has two graph components. One component includes the ground
and the other component has always one isolated vertex which is taken as coupler link. This
isolated vertex will have at least one physical node with prescribed movements. The prescribed
movements could be a set of translations D for PF , or sets of translations D and rotations L
for RBG. Since the name “coupler or floating link” comes from the studies of the traditional
four-bar mechanism, we will rename it to “objective vertex”.

For a Function Generation (FG) task a link with imposed joint movements J is considered
as “driver link”, so that part of the problem is to detect how many choices of output links can
be selected. On the other hand, for PF and RBG problems the input link (driver) cannot be
prescribed and the resulting options for input links could change the behavior of the mechanism
conducting the driven links through different kinematic circuits, and therefore different work-
spaces. In case the timing is not prescribed, the motorization set of movements J must be
computed in later dimensional synthesis stages.

In this way, the Input/Output (I/O) relationship desired for the synthesized mechanism is
implicitly entered by the user when he specifies the setsD, J , and L. The problem of synthesis
of mechanisms is to find a mechanism capable of developing a prescribed I/O relationship
minimizing the error between the desired and the generated movements2.

Starting from the initial mechanism definition, Mini, we build the associated initial graph
Gini following these simple rules:

Vertices: Free bodies with imposed movements will be isolated vertices of the initial graph.
These may result in an objective vertex that appear, for instance, in the PF problem (Fig-
ure 4) or in the RBG problem (Figure 5).

2The most primitive level of conceptual design synthesize mechanisms from the nature of the I/O movements
selecting all combination of mechanisms, not only restricted to the linkage type. At respect, there are available
methodologies developed by Moon and Kota19, Chiou and Kota20, and also Wang and Yan21.
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The remaining bodies, connected through joints, will be connected vertices of the graph.
Conventionally, the ground link will be the vertex zero. Depending on the number of
grounded bodies, this vertex may be binary, ternary, etc.

Edges: All joints will be edges of the initial graph connecting the previous defined vertices.
All joints are assumed to be binary. Isolated joints are not allowed, so they should be at
least connected to one vertex.

4 ENUMERATION OF KINEMATIC CHAINS

There are two main categories within the Graph Theory strategies for enumeration of KC’s:

1. Those that enumerate the feasible topologies using the Grüebler equation, taking into
account the number of degrees of freedoms that each joint/element constraints. The use
of “contracted graphs” decreases dramatically the complexity for isomorphism testing
because KCs with equal contracted graphs share many characteristics like the number
of links (thus the adjacency matrices have the same order), number of joints, number
of loops and the degrees of non-binary vertices. Hwang16 gave a computational way to
deal with twelve links BKCs. Hsieh17 developed enumerations using dual graph and dual
contracted graphs. Recently, Tsai5 provided atlases of bar-linkages, planetary gear trains,
and robotic mechanisms.

2. The enumeration of topologies by addition of “Assur groups” to the basic four-bars mech-
anism preserving the mobility criterion (Equation 4 in the next subsection). An individual
Assur group is an open chain which satisfies 3n− 2j = 0, where n is the number of rigid
members of the chain and j is the number of joints.

From any of these resulting enumerations considering only revolute pairs we can then apply
an equivalence criteria (Franke) to form mechanisms with more complicated pairs, e.g. higher-
pairs. For instance, this can be seen when replacing a revolute-dyad by a cam or a gear pair, or
even a slider or an hydraulic cylinder22. Using Graph Theory, all mechanisms can be generalized
from an enumeration of revolute-mechanisms. A methodology for generalization issues was
developed by Wang and Yan21.

4.1 Basic formulas

Let F be the number of degrees of freedom of the desired mechanism, λ the number of degrees
of freedom of the space in which the mechanism is intended to function (using λ = 3 for
planar/spherical motion and λ = 6 for spatial), and ci the degrees of constraint on relative
motion imposed by joint i. Mechanism structures can be enumerated satisfying the Grüebler
equation:

F = λ(n− 1)−
j∑

i=1

ci (1)
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where n is the number of links, and j the number of joints. The constraints imposed by a joint
and the degree of relative motion fi permitted by the joint i are related by:

ci = λ− fi (2)

So, the substitution of (2) into (1) leads to the Grübler or Kutzbach criterion:

F = λ(n− j − 1) +

j∑
i=1

fi (3)

Since rotoidal and prismatic joints permit only one d.o.f., the equation for a planar (λ = 3)
mechanism with j joints is:

F = 3(n− j − 1) +

j∑
i=1

1 = 3(n− j − 1) + j = 3(n− 1)− 2j (4)

The number of independent loops L could be computed from graph theory, as:

L = j − n + 1 (5)

Conversely, combining (5) and (4) yields

F = λ (n− j − 1)︸ ︷︷ ︸
−L

+

j∑
i=1

fi ⇒
j∑

i=1

fi = F + λL (6)

also known as the loop mobility criterion, useful for determining the number of joint degrees of
freedom needed for a KC to possess a given number of degrees of freedom.

A simple running over the link and joint numbers n and j from 1 to 30 satisfying F = 1 in
the Equation 4, gives the results shown in Table 1 where NaM means “not a mechanism” and
NE means “not enumerated”.

Methods given by Hwang16, Hsieh17 or Tsai5 applying the first mentioned strategy allow
us to find the first nineteen BKC’s from the 7111 that they found. For one-dof mechanisms
they established that there are one kinematic chain with one loop (the well known four-bar
mechanism); two KCs with six bars (6,7), known as Watt and Stephenson chains; sixteen KCs
with eight bars (8,10); 230 KCs with ten bars (10,13); 6862 KCs with twelve bars (12,16).

These KCs were found using graph theory where the feasible graphs have the following
characteristics: (i) the minimal vertex degree is 2 (d(vi) ≥ 2); (ii) all graphs have no articulation
points or bridges; (iii) partially locked chains/subchains, and non planar graphs were excluded.
Actually, the practical interest goes from 1 up to 5 loops mechanisms. In the fifth column of
Table 1 the pictures of each graph with its corresponding Level and Degree Code are shown. As
it will be explained next the Degree Code allows to obtain the graph.
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n j L BKC’s Kinematic Graph (Level) Degree Code
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(3)218777697  (4)218762464  (5)159510720  (6)235284801  (7)218765889  (8)218306240   (9)159508800   (10)218777676

(11)218765512  (12)251860104  (13)194069522  (14)193062914  (15)63740928  (16)64754689  (17)127500306  (18)251891848

10 13 4 230 -
12 16 5 6862 -
14 19 6 NE -
16 22 7 NE -
18 25 8 NE -
20 28 9 NE -

Table 1: Pairs (n, j) of the number of links and joints for linkages with one degree of freedom, and the information
relative to the number of independent loops L, and the codified found solutions.

4.2 Tools for Topology analysis

4.2.1 Degree code

In order to represent graphs and to detect isomorphism of graphs, we used the so-called Degree
Code developed by Tang and Liu23. It is built from the adjacency matrix of the graph, which is
defined next.

Adjacency matrix A(G): n-by-n matrix in which entry aij is the number of edges in
G with endpoints {vi, vj} and aii = 0. Note that permutations of labels change the
adjacency matrix A(G), in other words, it is label order dependent.

MAXcode: Maximum integer that results from converting to decimal the binary obtained
by concatenating the upper triangular elements of the adjacency matrix row by row, ex-
cluding diagonal elements, among all possible vertices label orders. For n-vertices, n!
permutations are needed. Graphs sharing the same MAXcode are isomorphic.
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Degree code (DC): It is computed following the same procedure that the MAXcode,
but permutations are taken by subgroups of vertices with the same degree, so that the
required number of permutations is reduced.

The degree code is unique (two graphs with the same DC are isomorphic: DC(G1) =
DC(G2) ⇔ G1

∼= G2) and decodable (given the DC, we may build the graph). Then, as it is
shown in Table 1, the entire atlas of one degree-of-freedom mechanisms may be very efficiently
stored as a sorted list of integers. For instance, a simple four bar kinematic chain labeled as we
see in the first row of Table 1 can be characterized by the integer 51:

A1 =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 , DC(A1) = ([110][01][1])2 = 1× 20 + 1× 21 + 1× 24 + 1× 25

= 1 + 2 + 16 + 32 = (51)10.

Tang and Liu also presented a method to take into account colored edges. In our case each
color represents a joint type and the type is represented by a number: 1 if the joint is rotoidal
and 2 for prismatic. Calling b the number of joint types plus one, and taking it as the base for
the numerical system, the Degree Code in base three (b = 2 + 1) of the following matrix

A2 =


0 2 2 0
2 0 0 1
2 0 0 1
0 1 1 0

 , is DC3(A2) = ([220][01][1])3 = 1× 30 + 1× 31 + 2× 34 + 2× 35

= 1 + 3 + 162 + 486 = (571)10.

In order to consider colored diagonal elements, we extend the idea of Tang and Liu to define
a Diagonally Extended Degree Code DCd

b in base b. For example, let A3 be a matrix which
represent a topology with different types of links and joints (explained later in Subsection 6.1);
its codification may be computed as follows:

A3 =


2 0 1 1
0 1 1 2
1 1 0 0
1 2 0 0

 , DCd
3 (A3) = ([2011][112][00][1])3 = 1× 30 + 2× 33 + 1× 34+

+ 1× 35 + 1× 36 + 1× 37 + 2× 39 = (21503)10.

Note that the needed base b is the maximum integer appearing in any entry of A3 plus one
even if they are representing links (diagonal) or joints (outer diagonal entries). See Appen-
dixes B and C for programming details.
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4.2.2 Classes of similar vertices

A permutation is said to be automorphic if it maps the adjacency matrix of a labelled kine-
matic chain onto itself (Figure 7). The automorphic permutations of a kinematic chain form a
group, the so called group of automorphisms. Two vertices vi, vj are similar if there exists a
permutation p of the group of automorphisms which transforms vi into vj .
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Figure 7: Automorphic permutations of the Watt kinematic chain (the identity permutation is not drawn).

Yan4 proposed an algorithm based on the analysis of the group of automorphisms to detect
the classes of similar vertices. In this work, we use a method to find these classes based on the
Diagonally Extended Degree Code DCd

b in base 2. Given a topology taken from the atlas, the
procedure is to assign one non-null element on the diagonal of its adjacency matrix, aii = 1,
and compute the DCd

2 . Then, vertices of the same class are those which have the same codes
(Figure 8).

For instance, a four-bars kinematic chain has only one class of vertices. If we put a 1 on
the diagonal, precisely on the position a00, the diagonally extended degree code is 906, so the
vertex v0 has class 906.

A0 =


‘1’ 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 , DCd
2 (A0) = ([1110][001][01][0])2

= 1× 21 + 1× 23 + 1× 27 + 1× 28 + 1× 29

= 2 + 8 + 128 + 256 + 512 = (906)10.

Due to the symmetries of the four-bars KC, the same class is obtained for the other positions
aii, i = 1, 2, 3.

A Watt six-bars KC has two classes, the 1714498, and 1969288 (Figure 8). A Stephenson
six-bars KC has three classes: 1520642, 1707456, and 18414743.

Once a vertex is chosen to be the ground, a KC is converted into a mechanism. By changing
the vertex selected to be the ground we get different mechanisms for the same KC, an effect
which is called Linkage Inversion. Classes of similar vertices allow us to identify all non-
isomorphic vertex assignments.
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Figure 8: Watt topology and its classes of similar vertices.

For instance, choosing as ground a vertex of class 1714498 in a Watt KC results a Watt I
mechanism. Instead, if a vertex of class 1969288 is chosen, it results a Watt II mechanism.
Another example could be a Stephenson KC. Choosing vertices of class 1520642, 1841474,
and 1707456, results in the Stephenson I, II, and III mechanisms respectively.

4.2.3 Distance from the Objective Vertex

The objective vertex corresponding to the coupler point, i.e. the vertex containing the node
which develops the prescribed task, is chosen counting a defined distance from the ground.
This distance is defined as the minimal number of vertices going through a path beginning from
the objective vertex to the ground.

For FG problems this constraint is not computed because there is not objective vertex. For
PF and RBG tasks, the minimum distance from the objective vertex to the ground should be 2
while the maximum is either fixed by the user or taken to be equal to the number of passing
points specified in the task minus one. For instance, if three passing points are specified for a
PF task, the vertex is chosen at a distance of two from the ground. Of course, depending on the
topology, there can be more than one options for the objective vertex that verify this requirement
(although some of them can be isomorphic).

The subgraph search proposed in the next section assigns automatically the objective vertex.

4.2.4 Edge-Induced Subgraph

An Edge-Induced Subgraph of the graph G is obtained by deleting a subset of edges Eini from
the set of edges E pertaining to G(E, V ). It can be simply obtained deleting edges (ones) from
the adjacency matrix of G. The Degree Code of the resulting graph S = G − Eini is used to
classify the topology of the parts added to an initial graph to complete a KC.
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5 SUBGRAPH SEARCHING

The initial graph represents the initial situation. In order to get a mechanism that matches this
initial situation, the initial graph should be a subgraph of any valid mechanism of the atlas of
mechanisms. Then, the first step of computation consists in looking for the simplest mechanism
in the atlas for which the initial graph is a subgraph.

Gini ⊆ GA (7)

with GA a graph from the atlas.
The search begins in the lowest level of complexity for the number of degrees of freedom

required for the mechanism. In this way, we try to minimize the number of links in the solution.
By default, the number of degrees of freedom is one.

Let L = {l0, l1, ..., lini−1} be the labels of the initial graph Gini, and V the function which
applies the set L to the set of unlabeled vertices V = {v0, v1, ..., vini−1}, so that V(vi) = li.

The algorithm for selection of a suitable mechanism is the following:

S0. Initialize search level A = −1.

S1. Increase level index A and take a graph GA from the atlas, with nA vertices. If nini ≤ nA,
continue to S2; else, repeat S1.

S2. For each permutation Gp
A of GA, take a subgraph HA of the permuted graph Gp

A. The
vertices of HA are composed by the fist nini vertices of the permuted list of vertices of
Gp

A.
p(VA) = p({v0, v1, ..., vnA

}) = {vp
0, v

p
1, ..., v

p
ini−1︸ ︷︷ ︸

V (HA)

, ..., vp
nA
}

Label HA using V . There are
(

nA

nini

)
nini! permutations p to be explored following the

lexicographic order of vertex labels. If all the nini-permutations have been tested in the
explored level, return to S1.

S3. If HA is isomorphic to Gini, HA
∼= Gini, then Gini ⊆ Gp

A. Check if connections of
the graph using the labelled vertices are the same in HA and Gini. If it is true, label the
remaining vertices of Gp

A with labels starting from max(li) + 1, i = 0, 1, ..., nini; set
Ga ← Gp

A and exit. Else, return to S2 and choose a new subgraph HA in lexicographic
order.

At the end, mechanism Ma with graph Ga will be the simplest admissible topology. The
process may be repeated resulting in a list of mechanisms with admissible topologies,Ma,Mb,
Mc, etc. These mechanisms inherit synthesis data definitions (D, J , L) fromMini, useful to
compute the missing data (i.e. vertices representing new links have unknown node positions) at
later dimensional synthesis stages.

In this way, we performed the number synthesis process, that is, we determined the topology
(degrees of freedom, number of links, number of joints and their interconnections) of a suitable
mechanism that could answer the requirements.
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In order to distinguish among topologies Ga, Gb, Gc, etc., we develop a vectorial codification.
Each new generated topology is assigned a new vector, which is compared entry-by-entry with
those already stored.

Let us define the edge-induced subgraph S as the graph obtained by deleting from graph
GA the subset of edges pertaining to subgraph Gini. Isomorphic occurrences may be detected
by requiring not only that Gini ⊆ Gp

A, but also the DC of S, the distance constraints, and the
classes of its vertices, be different from previous answers. The complete vector for identification
and comparison between the yet stored topologies in S3 consist then of the following four fields:

[A, DC(S), d, C]

where,

A: Integer representing the Level in the atlas (position of the stored Degree Codes of BKCs),

DC(S): Degree code of the edge-induced subgraph S,

d: Distances from the objective vertex vobj to the remaining vertices of the initial graph in
Gp

A given by d = (d(vobj, v0), d(vobj, v1), d(vobj, v2), ..., d(vobj, vnini−1)). Only the dis-
tance from the objective vertex to the ground is constrained by user’s limits dmin ≤
d(vobj, v0) ≤ dmax. The remaining are used for classification ends and could take any
value.

C: Vector of classes C(vi) of each vertex of the initial graph inside the selected graph Gp
A

C = (C(v0), C(v1), C(v2), ..., C(vnini−1)).

Their meaning is illustrated next with practical examples.

Example 1 Double Function Generation

The problem shown in Figure 3-left schematizes the coordination between two flaps of a turbine
engine and the horizontal movement of an hydraulic cylinder. There were 191 solutions found
in the atlas using the present method. The first seven solutions are shown in Figure 9. For
clarity, an schematic sketch is drawn below each solution.

Note that the distance vector d was not computed because there is not objective vertex. From
solutions 0, 1, and 2, we see that the vertices labeled with 12 (primary flap), 15 (secondary flap),
and 18 (cylinder), have all possible “class vertex” combinations at the different topologies. On
the other hand, the ground only takes the class 2 (Watt-II) because its degree is prescribed to
d(v0) ≥ 3. The same observation is valid for the solutions 3, 4, and 5 where only Stephenson-III
mechanisms are obtained. 2
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Figure 9: First seven non-isomorphic occurrences of an initial graph (pattern) inside the atlas.

Example 2 Path Following

For the problem shown in Figure 4, there are 480 alternatives inside the atlas of 19 BKCs for an
allowed distance from the objective vertex to ground, constrained to take the values 2 or 3. The
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Figure 10: First 20 non-isomorphic occurrences of an initial graph for 4, 6 and the first two 8-bars options.
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first 20 solutions are shown in Figure 10 and their respective codes are shown in Figure 11.
For instance, the four-bars solution has A = 0, DC(S) = 50, d = (2, 1), C = (1, 1, 1). We

can also see that the method carries on the linkage inversion in an implicit way. In this example,
solutions 2, 4, 6, 7 and 8 are Watt-I mechanisms; solutions 1, 3, and 5 are Watt-II mecha-
nisms; solutions 9, 10 and 12 are Stephenson-I mechanisms; 11 , 16 and 17 are Stephenson-II
mechanisms; and 13, 14 and 15 are Stephenson-III mechanisms.

v0 v1 v2d( 1 0v ,v )d( 1 2v ,v )

Alternative Mechanism A DC(S)

0 4-bars 0 50 2 1 1 1 1

1 6-bars 1 24851 2 1 1 1 2

2 6-bars 1 28818 2 1 2 1 1

3 6-bars 1 28818 2 3 1 2 2

4 6-bars 1 28818 3 2 2 1 2

5 6-bars 1 28818 2 1 1 2 2

6 6-bars 1 26976 2 1 2 2 1

7 6-bars 1 26976 2 3 2 2 2

8 6-bars 1 26976 3 2 2 2 2

d C 9 6-bars 2 25876 2 1 1 2 1

10 6-bars 2 28818 2 2 1 3 1

11 6-bars 2 28818 2 2 3 1 1

12 6-bars 2 25876 2 2 1 2 3

13 6-bars 2 25876 2 2 2 1 3

14 6-bars 2 25876 2 1 2 1 2

15 6-bars 2 25876 2 1 2 1 3

16 6-bars 2 28818 2 1 3 1 2

17 6-bars 2 15168 2 2 3 3 2

18 8-bars 3 235282563 2 1 1 1 1

19 8-bars 3 235276426 2 1 1 1 1

Figure 11: First 20 solutions for a path generation with prescribed timing problem.

More examples were solved but results are not shown for space restrictions. The RBG problem
of Figures 2 and 5 corresponds to the guiding of the slat of an airplane wing having 223 solutions
with a prescribed distance from 2 to 3. The problem shown in Figure 6 is for synthesizing a
landing gear retraction mechanism and has 231 alternatives in the atlas. Type and dimensional
synthesis for both problems can be found in a previous work of the authors24.

Remark 1 The number of permutations grows dominated by the factorial of the number of
vertices in the initial graph. A search in the atlas of one four-bars KC, 2 six-bars KCs and 8
eigth-bars KCs, involves(

4

nini

)
nini! + 2

(
6

nini

)
nini! + 8

(
8

nini

)
nini! =

[(
4

nini

)
+ 2

(
6

nini

)
+ 8

(
8

nini

)]
nini!

permutations. For the Examples 1 and 2, where nini = 3, it is [492]3! = 2952. Next, for the
Example 3 where nini = 2, there were [260]2! = 520 permutations explored. 2

It should be mentioned that up to this point, we did not specify any particular type of joint.
For example, either revolute or prismatic joints may be used in most joints for the graphs dis-
played in Figures 9 and 10. This aspect is solved next, in the specialization process for assigning
joint types.
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6 JOINT ASSIGNMENT: SPECIALIZATION

Three previous works gave foundations to the computer enumeration and assignment of link
and joint types in the type synthesis of mechanisms:

• Algorithm based on permutation groups:
Yan and Hwang4 developed a method based on combinatorial theory for enumerating
non-isomorphic specialized mechanisms precisely, starting from a specified kinematic
chain. They developed an algorithm for finding the “permutation groups of a kinematic
chain” (the link permutation group in conjunction with the joint permutation group) from
its labeled link adjacency matrix. Based on these permutation groups they generated all
non-isomorphic specialized mechanisms by assigning various types to the links and joints
of the kinematic chain.

• Algorithm based on the Characteristic Polynomial:
Murphy, Midha and Howell25 developed a method for compliant mechanisms limited to
binary pairs using the pseudo-rigid-body concept and defining the Compliant Segment
and Compliant Connection vectors for enumeration. They also defined a Compliant Ma-
trix (CM) where the diagonal entries represent the links/segments and outer diagonal
entries represent the type of joints/edges. The polynomial expression used to find the
eigenvalues of each CM, called characteristic polynomial CP (CM) = |xI − CM |, is
used to detect isomorphic mechanisms based on the theorem that states “The adjacency
matrices of two isomorphic kinematic chains possess the same characteristic polynomial
(CP)”3.

• Algorithm based in combinatorial analysis: This approach was proposed by Freuden-
stein and Maki28, and then extensively used by Tsai for joint assignment of kinematic
chains, parallel platforms, geared automotive transmissions, robotic wrist mechanisms.

Our proposal is a combination of them, adding the “initial graph concept” to take account
of the user defined constraints and also limit the combinatorial explosion. For instance, once
Gini is found as subgraph of Gp

a, we do not assign new types to joints that are connecting
vertices inside of the isomorphic graph of Gini in Gp

a, respecting the joint types defined by the
user as prescribed parts. For this purpose, we first classify the joints in two groups: (i) those
prescribed by the user, which are of fixed joints group, and (ii) those given by specialization
using combinatorial analysis, which are added from a set of allowable types given by the user
and positioned in the graph using some heuristic rules to be explained.

For adding prismatic joints, we can take into account singularities that can appear due to pris-
matic joint behavior and the number and orientation of prismatic joints over a link/circuit. Some

3Yan and Hall26, 27 have deeply studied the use of the CP for mechanisms. By counter examples Yan and also
Tsai found that this theorem is a necessary but not sufficient condition for two KCs be isomorphic, so that the
conversely is not true and two non-isomorphic KCs could share the same CP. Nevertheless, the CP is still in use
for isomorphism testing purposes for KCs with less than 10 links.
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topologies can be discarded while the enumeration takes place. This avoids future simulations
over “a priory identifiable” unfeasible topology. Figure 12 shows a four-bars mechanism which
all links have lost rotational DOFs because of the P-joints arrangement. In the case a one link
(the coupler) has two P-joints with parallel directions, it has an undetermined position under a
rotational motorization either on link 2 (see I2) or 3. The remaining are immovable links. The
case b, with three P-joints, has not mobility if a rotational grounded joint is motorized (see I3
in b-1 ). Finally, in the case c only translational movements are obtained for any election of the
motorized P-joint. Again the positions of links are undetermined.

3

2

1

I1

undetermined

position

I2

Immovable

links

a) RPPR
disassembly

b-1) PPPR

3

2

1

I3

b-2)

I2
3

2

1

immovable

I1

3

2

1

undetermined

position

c) PPPP

I1

Figure 12: Uncompatible configurations over various four-bar mechanisms.

Remark 2 We have worked with one DOF mechanisms, so only one joint can be chosen as
motorized. Note that if a P-joint pertaining to the coupler link is motorized, the result could be
that obtained by a single controlled link (e.g. I1 in case a, I1 in case b-2). 2

To avoid singularities, Sardain used a rule developed by Freudenstein and Maki9 for P-joints
assignment:

F&M: The maximum number of prismatic joints should be equal to one per link, except at the
ground and the effector level.

Nieto22 listed three restrictions:

N1: No link of a chain can contain only P pairs which directions are parallel.

N2: Binary links of a chain with only P pairs cannot be connected directly.

N3: No closed circuit of a chain can have less than two R pairs.

These rules are heuristic, and not fully compatible. In fact, rule F&M is more restrictive
than N1, N2, and N3. Since the N1 rule can be computed only after the dimensional synthesis
stage, in our algorithm we use the rules N2, and N3 for P-joints assignments.

In this way, we state a specialization problem with restrictions due to user prescriptions and
to the particular nature of joints. The algorithm starts considering that all links are constrained
by R-joints. Then, it tries to add a given number of P-joints nP to explore if new and better
alternatives are generated.
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6.1 Synthesized joints: added joints group

For a given topology, when we make the specialization of the added joints group, there appears
again the problem of isomorphism detection but now due to joint types. A systematic strategy
for identification, enumeration and retrieval of alternatives is needed.

We define a colored adjacency matrix with the complete information of the topology. Fol-
lowing Murphy25, we put link characteristics on the diagonal entries and the joint characteristics
on the outer diagonal ones, but consider the entries in a different way.

The colored adjacency matrix is filled as follows: Aii = 1 if the vertex i pertain to the initial
graph (including the ground), Aii = 2 if the vertex i is the objective vertex and, Aii = 0 if i is
a type synthesized vertex. The joint types are represented by the symmetric entries, Aij = 1
for rotoidal joint type, Aij = 2 for prismatic joint type, and Aij = 0 if no connection appears.
Summarizing, we define:

Aii =


1 if vi ∈ Gini,

2 if vi = vobj,

0 otherwise,
Aij =


1 Rotoidal joint,
2 Prismatic joint,
0 no connection.

Let Ea be the set of the added joints group Ea = E(Gp
A)− E(Gini), and be na the number

of synthesized joints (na = |E(Gp
A)| − |E(Gini)|).

To limit the search, the user can define a prescribed number of P-joints nP to add in Ea.
The number of combinations for adding exactly nP P-joints is

(
na

nP

)
. For classification, all nP -

combinations of P-joints in the set Ea are assigned. For a given combination i, the degree code
in base 3 DCd

3 (Ai) is computed. The solution is retained only if the degree code is different
from all those already stored.

Once the enumeration is finished, the code of the colored topology DCd
3 can also be used for

retrieving a solution. See Appendix B.

Example 3 Joint assignment for a RBG task

Consider the problem of adding P-joints to a mechanism suited to develop the rigid body guid-
ance task shown in Figure 5. From the Number Synthesis stage, the simplest feasible topology
is a four-bars mechanism. In Figure 13 the solutions for adding from one to four P-joints are
shown. This is not completely useful, because it could have kinematic singularities due to the
joint nature. Applying the Nieto rules the last four alternatives are eliminated.

In this problem the fixed group is empty |E(Gini)| = ∅, because there are not prescribed
joints.

By adding one P-joint, we get the two first configurations shown in Figure 13 with codes
stored in base three 48172, and 54706. In spite of their topological similarity, their physical
meaning is different. See the sketches below each graph.

For the assignment of two P-joints we have
(
4
2

)
= 6 possible combinations. There appears

four non-isomorphic solutions, their respective codes are: 48175, 54733, 54709, and 56893.
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Figure 13: Example of non isomorphic P-joints assignments on synthesized joints.

7 CONCLUSIONS

Tsai based all his systematic enumeration methodologies on the Feudenstein and Maki concept
of “separation” of kinematic structure (to generate alternatives) from function (to evaluate the
generated alternatives). He also used to remark “The more functional requirements that are
translated into structural characteristics and incorporated in the generator, the less work is
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needed from the evaluator. However, this may make the generator too complex to develop.
Generally, if a functional requirement can be written in a mathematical form, it should be
included in the generator”.

In this work we have experienced his words since we have “integrated” more structural char-
acteristics using the initial graph concept, developing a more complex generator. This dimin-
ishes considerably the time computation in all subsequent stages of design. For the next di-
mensional synthesis stage the information of the known nodes and the type-synthesized graph
structure could be used to apply either a general absolute/natural coordinate formulation or
the complex number formulation based on the decomposition of the topology into open chains
(Sandor1, Cardona18, Pucheta and Cardona24).

The main contribution of this work is to offer a systematic procedure to obtain topologi-
cal alternatives for a given kinematic problem. New algorithms based on Graph theory and
combinatorial analysis were developed to search and codify the solutions in a non isomorphic
way.

Other remarkable characteristics are:

• The use of an enumerated atlas assures that all candidate mechanisms satisfy the required
degree of freedom and does not contain rigid subchains.

• The number of solutions is finite and the combinatorial explosion is manageable.

• The designed Diagonally Extended Degree Code allows coding and decoding of solutions
in an efficient and straightforward way.

Murphy et al.25 and also Howell25, 29 prove that rigid-body enumeration is an essential start-
ing for type synthesis of compliant mechanisms.

The algorithms are useful for dealing with more types of links and joints in the mechanism
and even more complex tasks. However, like we seen for prismatic joints, adequate rules to
reject those kinematically invalid solutions must be properly designed.
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A PERMUTATIONS

A permutation of n distinct elements x1, . . . , xn is an ordering of the n elements x1, . . . , xn.
By the Multiplication Principle, there are

n(n− 1)(n− 2) · · · 2 · 1 = n!

permutations of n elements.
A r-permutation of n (distinct) elements x1, . . . , xn is an ordering of an r-element subset of

{x1, . . . , xn}. The number of r-permutations of a set of n distinct elements is denoted P (n, r),
where

P (n, r) = n(n− 1)(n− 2) · · · (n− r − 1) =
n!

(n− r)!
, r ≤ n.

A selection of n distinct elements x1, . . . , xn without regard to order is called a combination.
A r-combination of a given set X = {x1, . . . , xn} is an unordered selection of r-elements of X .
The number of r-combinations of a set of n distinct elements is denoted C(n, r) or

(
n
r

)
, where

C(n, r) =
P (n, r)

r!
=

n!

(n− r)!r!
, r ≤ n.

In permutations and combinations used in this work repeated elements are not allowed. For
instance, we generate all r-permutations of an n-element set to explore subgraphs inside a
graph. Sets with unordered and repeated elements concern to Generalized Permutations and
Combinations Theory and will be used in future for more than one type of links and joints.

B RETRIEVING MECHANISMS FROM INTEGER CODES

Given a DCd
b , and the base b of a KC we can retrieving the a stored mechanism. For instance,

for R and P joints we need a base three, so b = 3.
Let DCd

3 a degree code stored in base 3, for the n×n adjacency matrix A of a graph G(E, V )
with n vertices and e edges.

The matrix A has a number of m significative entries (including the diagonal). To find it we
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made

3m = DCd
3 ; log10(3

m) = log10(DCd
3 ); m =

⌈
log10(DCd

3 )

log10(3)

⌉
In general,

m =

⌈
log10(DCd

b )

log10(b)

⌉
To find the size n of A, we know that

n× n− n

2
+ n = m;

n2 + n

2
= m

this leads to solving the quadratic expression

n2 + n− 2m = 0

so, n is

n1,2 = −1

2
± 1

2

√
8m + 1

and rounded the higher solution to the nearest integer we have

n =

⌈
−1

2
+

√
8m + 1

2

⌉
.

Knowing DCd
b (code) and b (nb_colors) we can also identify the number of edges en the

types of each edge using an algorithm for computing the digits in b-base of the DCb in 10-base.
To give an idea, the algorithm in C++ code is

int d,u,i,j,coef,e=0;
float base = (float)nb_colors+1;
int m = ceil(log10((float)code)/log10(base));
int n = ceil((-1.0+sqrt(8.0*m+1))/2.0);
Graph A(n); // adjacency matrix
d = n; // diagonal index
u = m-n; // upper diagonal index
std::vector <int> links (d);
std::vector <int> joints (u);
e=0;
for (i=n-1;i>=0;i--)

for (j=n-1;j>=i;j--) {
coef =fmod(code,base);
if (i==j) links[--d] = coef;
else{

joints[--u] = coef;
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if (coef){
A.Connect(i,j);
e++;

}
}
code -= coef;
code /= base;

};

where Graph is a class of graphs and the member function Connect sets simultaneously
a 1 in the (i,j) and (j,i) entries. The number of vertices/links is n, the number of
edges/joints is e. We get the adjacency matrix in A, the links types in links, and the joint
types in the e non-null entries of joints. Thus, the mechanism is completely characterized.
To save memory, the adjacency matrix is stored as a set of m− n bits, the link type as a vector
of n integers, and then the joint types as a vector of e integers.

C ALTERNATIVE DEGREE CODE

An integer is represented by 32 bits and the maximum “unsigned integer” is 232 = 4294967295.
The limit for two colors is:

232 = 3m

m =

⌊
32 log10(2)

log10(3)

⌋
= 20.

With the previously presented DCd
3 we violate this limit at using six-bars topologies

n = 6→ m = 21

.
To save this inconvenient, the degree code could also be modified to be stored as a list of

integers representing each row of the upper sub matrix of the adjacency matrix including the
diagonal elements. We denote it Diagonally Extended Degree Code DCdr

b by Rows (in base b).

A1 =


2 0 1 1

1 1 2
0 0

0

 , DCdr
3 (A1) = DCdr

3




2 1 1 0
0 0 2

0 1
1


 =


(2110)3

(002)3

(01)3

(1)3

 =


66
2
1
1


10

The capacity for represent colored adjacency matrices is improved. We are covering three
colored matrices up to 20 × 20 and therefore mechanisms of 20 links (or matrices of 16 × 16
with codes in base 4 thinking in a nearly future extension to flexible mechanisms). On the other
hand, the number of comparisons needed for isomorphism testing is augmented, and also, the
required memory to store a code grows n−1 times. The number of comparisons can be reduced
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exiting at the first different occurrence between two integers in the same position. For instance,
if we have another colored adjacency matrix

A2 =


0 2 0 1

2 1 0
0 1

1

 , DCdr
3 (A2) = DCdr

3




2 2 1 0
0 0 1

0 1
1


 =


(2210)3

(001)3

(01)3

(1)3

 =


75
1
1
1


10

beginning by the first row of their codes, we can easily see, for this case, that we need only one
comparison (66 < 75) for isomorphism testing

DCrd(A1) =


66
2
1
1

 < DCrd(A2) =


75
1
1
1

 ,

so the two matrices represent two non-isomorphic mechanisms.

NOMENCLATURE

BKC: Basic Kinematic Chain

KC: Kinematic Chain

F : degree of freedom of a mechanism

n: number of links in a mechanism

j: number of joints in a mechanism, assuming that all the joints are binary

P : prismatic joint, also called sliding pair

R: revolute joint, also called turning pair, a hinge or a pin joint

fi: degrees of freedom associated with joint i

L: number of independent loops in a mechanism

λ: freedom of the space in which a mechanism is intended to function

N : set of nodes taken from CAD interface

F : set of fixations on nodes taken from CAD interface

E: set of elements (rigid bodies, hinges, prismatic joints, etc.) taken from CAD description

D: set of displacements prescribed on nodes of parts

L: set of orientations prescribed on nodes or elements of parts

J : set of translational or rotoidal motorizations prescribed on P or R joints

M: mechanism class composed by {N , F , E}, G, D, L, and J .

G(E, V ): graph of a kinematic chain composed by a set of edges E, a set of vertices V , and a
adjacency matrix A describing their interconnections.
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A: adjacency matrix

ei: edge of a graph G

vi: vertex of a graph G

d(vi): degree of the vertex i, or number of vertices connected to the vertex i

d(vi, vj): distance between vertex i and vertex j

C(vi): vertex class

p: permutation vector

DC(Ai): Degree Code of the adjacency matrix i

DCd
b (Ai): Diagonally Extended Degree Code of the adjacency matrix i in base b.

DCdr
b (Ai): Diagonally Extended Degree Code of the adjacency matrix i in base b computed by

rows.
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