
MECOM99

Mendoza

6-10 de septiembre de 1999
A QUASI-COULOMB MODEL FOR FRICTIONAL CONTACT INTERFACES

C. Garc��a Garino

Instituto Tecnol�ogico Universitario, UNC

Parque General San Mart��n, 5500, Mendoza, Argentina

e{mail: cgarcia@pascal.uncu.edu.ar

J.-P. Ponthot and R. Boman

L.T.A.S. { Milieux Continus & Thermomcanique

Universit de Lige, B-4000 Lige, Belgium

e{mail: jp.ponthot@ulg.ac.be r.boman@ulg.ac.be

J. Oliver

E T. S. de Ingenieros de Caminos Canales y Puertos

Gran Capit�an s/n, E-08034, Barcelona, Spain

ABSTRACT

Frictional contact interfaces have to be modeled in practice when industrial problems such as metal forming operations,

crashworthiness, and so on, have to be simulated. Usually a Coulomb model is used in order to describe the constitutive

law for the frictional case. Following a standard plasticity approach to Coulomb law a non-symmetric tangent operator

is found, and so a non-symmetric solver has to be used in order to take full advantage of consistent operators. With

respect to symmetric ones, these non-symmetric operators lead to prohibitive computational times. However, in practice

di�erent schemes have been proposed in order to recover the symmetric operator, and consequently, use a symmetric

solver. In this work an alternative approach based on an idea due to Garc��a Garino and Oliver33 is de�ned in order

to avoid to deal with non-symmetric solvers and thus save a large amount of computational time, which renders the

computational simulation more attractive to industry. Applications to metal forming simulations and crashworthiness

analysis are envisaged.

INTRODUCTION

The Finite Element Method3,33 can be considered as a valuable tool in order to simulate large industrial applications.

In the last few years very important progress has been reported in the simulation of non linear problems involving

plasticity and large strains, as can be seen in the proceedings of Computational platicity conferences.18{22

In many cases the simulation of manufacturing processes like metal forming9,22,26 requires to take into account besides

non linear constitutive models complex boundary conditions like frictional contact interfaces.2,8,31 Another important

�eld of research when this kind of interfaces are required is Crashworthiness.

The contact problem involves the interface of two deformable bodies or a deformable body against a rigid tool (uni-

lateral contact). In both cases one the body is prevented from penetrating the other, consequently the possible con-

�guration and displacement �elds are constrained in the admissible values to be reached.

From the mathematical point of view the mechanical problem stated in the previous paragraph can be considered like

an optimization problem and several methods can be found in the literature: Penalty method,13{15,24 Lagrange Mul-

tipliers4,5 and Perturbed Lagrange Formulations28 from which the two others method can be derived and Augmented

Lagrangian formulation.27,30

The frictional behaviour is ususally taken into account in Computational Mechanics by mean of elastoplasticity anal-

ogy,10 and in the last years Wriggers and coauthors29,31 have derived very e�cient numerical tools extended the

Radial Return algorithm to this context. A review of the subject can be found, among others, in Agelet1 and Zhong.32
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The frictional contact problem can be stated enhancing the variational unconstrained problem in order to include the

contact and friction contributions. The Finite Element Method lets to write the corresponding discretized problem

adding to the Sti�ness MatrixK and residual forcesR the contact contributionsKc andRc respectively and friction

is taken into account by mean of Ff and Rf respectively. The standard treatment of frictional problem is ususally

modelled using a Coulomb model that leads to a non-symmetric Sti�nes matrix, consequently non-symmetric solvers

have to be used in the numerical simulation.

However, recovering a symmetric operator is possible. In that sake, Garcia-Garino and Oliver11,12 proposed an algo-

rithm, called Quasi-Coulomb model, able to integrate the frictional equations in time and that leads to a symmetric

tangent operator. Laursen and Simo16,27 have proposed anothers ideas in order to get a symmetric operator for the

contact frictional problem based on Coulomb law.

The capabilities of this new algorithm are analysed in this paper by solving several large deformation problems

pertaining to metal forming simulation and crashworthiness analysis. A penalty formulation and two di�erente large

strain elastoplastic numerical models developed by the authors are used.11,23

Anyway, in order to simulate realistic industrial forming simulations, a bulk model is not su�cient and a frictional

algorithm has to be implemented. The role of this algorithm is to manage the contact and frictional forces that appear

due to material-tools interactions. Details of such an algorithm, which is equivalent for both hyper and hypo-elastic

approaches can be found in8,9,21

The contact algorithms are generally based on a standard plasticity approach2 but with a non-associated 
ow rule.

If one uses an implicit algorithm in order to integrate the motion equations in time, the resulting tangent operator is

non-symmetric, due to the non-associated 
ow rule. This leads to prohibitive computational times.

FRICTIONAL CONTACT INTERFACE

Governing equations

In many practical problems the boundary conditions have to include the case of frictional contact problems such as

the interface solid-tools. In this case the unconstrained �nite strain quasi-static elastoplastic problem written in terms

of the internal forces resulting from the straining of the material (i.e. the so-called stress-divergence term), denoted

by G(u) as a function of the nodal displacements u and the external load pattern F results in (see e.g. Zienkiewicz,

Bathe3,33 for details):

G(u)� F = 0 (1)

Equation (1) is then enhanced by means of contact and frictional nodal forces respectively denoted by RC , andRF to

account for contact interactions (see Zhong32 and the references therein for details). The constrained problem results:

G(u) +RC(u) +RF (u)� F = 0 (2)

In case of a dynamic problem, inertia forces have to be taken into account. In such a case, the semi-discretized equation

to be integrated reads, see Bathe,3 Belytschko7 for details:

M �u+G(u) +RC(u) +RF (u)� F = 0 (3)

whereM is the mass matrix and �u is the vector of nodal accelerations.

Because of combined geometrical, material and contact non linearities, the systems of equations (2) and (3) are highly

non linear in u. The methods of solution of these systems are standard (Bathe,3 Belytschko7) and, in numerous cases

Newton-Raphson's method has proved to be advantageous.
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Frictionless contact problem

Attention is now focused on the plannar and axisymmetric case of a straight rigid tool boundary x2
T
�x1

T (where

T stands for tool), for simplicity. The extension to three dimensional problems is straightforward and all the following

formula are valid in 2D, as well as 3D situations.

The constraint equations resulting from contact interactions are based on nodal imposition of the constraint for every

slave node pertaining to the boundary of the �nite element mesh. In this context, and with reference to �gure 1, the

gap or penetration is approximated by the �nite element method nodally. Here, the gap g, associated with a typical

slave node xs is given by:

g = (xs � x1
T ) : N (4)

whereN denotes the unit outward normal to the tool segment. Similarly T denotes the unit tangent to this segment,

see �gure 1. In 3D situations, T de�nes the local tangent plane to the contact point.

If g is larger than zero, there is no contact between the considered slave node and the segment and, consequently

RC = 0 and RF = 0. However, if g � 0, there exists a contact interaction that has to be accounted for, as described

hereafter.

Figure 1: Geometry of the contact problem

The nodal forces RC arising from contact are computed using the penalty method.13{15,24 In local axis the normal

contact force tN results in:

t
n
= �cg if g � 0 (5)

t
n
= 0 if g < 0 (6)

where �c stands for normal penalty coe�cient. This resulting force is written in global coordinates as:

RC = t
N
N (7)
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In the case of rigid 
at tools there are no changes in the geometry of the tool from one iteration to another and

the contact contribution to the sti�ness matrix of the problem, i.e. the derivative of RC with respect to �u, the

incremental nodal displacement, reads:

KC =
@RC

@�u
= �c NN

T

if g � 0 (8)

Frictional contact problem

In this problem two cases can be distinguished: in early stages of the process, where a full stick condition between the

solid and the tool is veri�ed, a tangential force that opposes to the relative slip appears. Once a treshold value in the

modulus of the force is reached, a slip condition is veri�ed. This behaviour can be modelled by means of the classical

Coulomb law:

tF = �sign( _u)ktF kT (9)

and

ktF k � � jt
N
j (10)

where ktF k < �jt
N
j in case of sticking contact and ktF k = �jt

N
j in case of sliding contact. In order to perform a

numerical integration of the frictional behaviour, we proceed as follows. Starting from a known con�guration at time

t, one is faced with determining a new equilibrated con�guration at time t + �t. As far as the frictional treatment

is concerned, Coulomb's law can be regularized by introducing a penalty factor �
F
. In this way, the problem can

be treated similarly to an elastoplastic one, see Curnier.10 The tangential slip s is thus decomposed into its elastic

(reversible) and plastic (irreversible) components

s = se + sp (11)

so that, by analogy with elasto-plasticity, the constitutive equation for the frictional component can be written, in the

tangential plane of contact

tF = �
F

= �
F
:(s� sp):se (12)

Further, following Wriggers et al.,29,31 an elastic predictor is evaluated by supposing that the entire incremental

slip, resulting from the �nite element computation, is totally reversible (elastic). This results in an elastic (sticking)

predictor t+�t
tF

TR for the frictional force given by

t+�t
tF

TR = t
tF + �

F
�seTR (13)

This elastic predictor is then compared with the Coulomb criterion (10). If kt+�t
tF

TR

k � �j
t+�t

t
N
j, the state of

contact was clearly an elastic one and nothing more is undertaken. On the contrary, if kt+�t
tF

TR

k > �
t+�t

jt
N
j, i.e.

Coulomb criterion is violated, the state of contact is sliding and a correction has to be evaluated to restore consistency

with the Coulomb criterion. This is done by integrating the following 
ow rule for the frictional components:

s
p = �T (14)

So that the �nal frictional force will be given by:

t+�t
tF = �

F
(se � � T ) = t+�t

tF
TR

� �
F
� T (15)

Assuming T = tF
TR

ktF
TR

k
, an hypothesis consistent with the radial return scheme of elastoplasticity, the norm of (15)

can be shown to be:
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k
t+�t

tF k = ktF
TR

k � �
F
� (16)

The unknown � is computed by inserting (16) into the Coulomb criterion (10), i.e.

k
t+�t

tF
TR

k � �
F
�� � j

t+�t
t
N
j = 0 (17)

If the friction coe�cient � is constant the latest equation has a closed form solution and the classical expression of

the Coulomb law is recovered:

k
t+�t

tFk = � j
t+�t

t
N
j (18)

Writing the nodal forces RF = signt
F
ktF k T , where signtF is a function that accounts for the sign of tangencial

forces. The frictional contribution to nodal forces and sti�ness matrix results:29

KF =

�
�
F
T T

T if ktF k < � jt
N
j

�� �
C
T N

T if ktF k = � jt
N
j

(1)

In the second case, i.e. in the case of sliding contact, KF is obviously non-symmetric.

To avoid the use of non symmetrical solvers, which are computationnally much more expensive than symmetrical ones,

the standard procedure is modi�ed and the modulus of the normal reaction is no longer updated at each equilibrium

iteration. This modulus remains constant all over the load step and equals to the latest converged value. Then the

equation (20) describes a Quasi-Coulomb friction law11,12 of the type:

k
t+�t

tFk = � j
t
t
N
j (20)

and the discretized Coulomb law (17) can be approximated by:

k
t+�t

t
TR

F
k � �

F
�� � j

t
t
N
j = 0 (21)

In practice this simpli�cative assumption is equivalent to approximate in a stepwise way the yield function given by

the equation (10), as can be seen in 2:

Figure 2: Original (solid line) and modi�ed (dotted line) yield criteria

It is important to mention that the 
ow rule is not changed and the problem becomes associated, consequently a

symmetric sti�ness matrix is obtained. Morover if the three following conditions are full�lled:
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� i) Elastic-perfectly plastic problem (� constant)

� ii) Linear geometry (rigid tools)

� iii)A Quasi-Coulomb law is used.

the frictional matrix KF since in this case:

KF =
@RF

@�u
=

@�

@�u
t
t
N
T + �

@
t
t
N

@�u
T + �

t
t
N

@T

@�u
= 0 (22)

because all the variables are �xed.

NUMERICAL SIMULATION

In order to investigate the e�ects of the symmetrisation process on the accuracy of the results, three benchmarks have

been tested. They are presented below. Of course, in case of frictionless problems, this symmetrisation process has no

in
uence since the Hessian is already symmetric.

Stretching of an axisymmetric sheet with an hemispherical punch

The �rst example studied is a benchmark problem proposed by Lee, Wagoner and Nakamichi17 from OSU (Ohio State

University). The problem is a sheet forming simulation and consists of the stretching of an axisymmetrical sheet with

an hemispherical punch whose geometry is given in �g. 3. The material is supposed to behave like a J2 elastic-plastic

material with non linear isotropic hardening. The material parameters are given in table 1. This kind of material

exhibits a very large hardening rate in the neighbourhood of the initial yield stress.

Young Modulus E = 69004 Mpa

Poisson ratio � = 0:3

Yield Stress �v = 589 (0:0001 + ��p)
0:216

Mpa

The �nite element mesh used is a rather coarse �nite element mesh as imposed by the benchmark designers. It is

shown in �g. 4 and consists of 2 layers of 14 elements each. The elements are bilinear and use a constant pressure

to avoid locking. Boundary conditions are also shown in �g. 4. Contact conditions are imposed through a penalty

formulation with the following parameters: �
C

= 105N=mm and �
F

= 104N=mm. Three friction coe�cients have

been considered in the present study, i.e � = 0:0; � = 0:15 and � = 0:30. Many results and comparisons with

other authors regarding this problem can be found in.11,23 However, we will concentrate here on the Quasi Coulomb

algorithm.

The comparison of the total force applied by the punch as a function of punch displacement is given in �g. 5 for

� = 0:30 (upper curves) and � = 0:15 (lower curves) for both classical non-symmetric operator and the symmetric

Quasi-Coulomb algorithm presented here. This �gure shows an excellent agreement between both algorithms. This

agreement in turn proofs the higher e�ciency of the Quasi-Coulomb algorithm since it only requires a symmetric

solver which is much cheaper to use than a non-symmetric one.

However, using a symmetric operator where the actual tangent operator is non symmetric can a�ect the rate of

convergence of the Newton-Raphson algorithm. As shown in table 2, using a symmetric operator only a�ects moderately

this rate of convergence.

� = 0:0 � = 0:15 � = 0:30

Operator Steps Iter Steps Iter Steps Iter

Symmetric 101 301 65 173 67 194

Non-symmetric 101 301 58 158 66 189
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Figure 3: Sheet forming problem: geometry
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Figure 4: OSU Sheet forming problem: Initial mesh
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Figure 5: Axisymmetric OSU benchmark: Applied punch force as a function of punch displacement. Top:

� = 0:30, bottom � = 0:15.
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The agreement for Coulomb and Quasi-Coulomb models is not only excellent for the forces (see �gure 5), but also as far

as local values, like the e�ective plastic strain are concerned (see �gures 6 and 7). On these �gures, the results obtained

by the classical Coulomb and the Quasi-Coulomb models are compared. Results obtained by Agelet de Saracibar1 are

also plotted.
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Figure 6: Axisymmetric OSU benchmark. Comparison of plastic strain pro�le, as a function of initial radius,

for punch displacements of 10, 20, 30 and 40 mm. � = 0:15.
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Figure 7: Axisymmetric OSU benchmark. Comparison of plastic strain pro�le, as a function of initial radius,

for punch displacements of 10, 20, 30 and 40 mm. � = 0:30.

Shock absorber device

This second example deals with the numerical modelling of a shock absorber device. It is based on the turning inside-

out of a thin walled ductile metal tube. This is generally called an "invertube" device. In this case (�g. 8.), a plain tube

is confronted with a hard die to produce the inversion. This inversion, in turn, produces very large plastic strains which

form an e�cient energy absorbing mechanism during impact. In this way, the kinetic energy of the impacting bodies

is dissipated through plastic deformation, in a controlled fashion at an acceptable rate. The yield limit of the material

keeps the transmitted force below an acceptable upperbound. Hence, the deceleration is slower and less harmful for

the people inside the car.
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Numerical modelling of the collapse of such energy dissipating structures requires not only to take into account the

plastic behaviour of the tube material, as well as inertial forces, but also to consider very large strains and large

amplitude rigid body motions that develop and also, in this case, the accurate prediction of frictional forces. Thus a

great number of advanced code capabilities are tested by running this kind of problems.

Similar problems were investigated by Beltran and Goicolea,6 by Garcia-Garino11 with an explicit scheme and by

Ponthot & Hogge25 who compared the performances of explicit and implicit algorithms for impact problems. However,

all the previous references dealt with frictionless contact. In the present paper, implicit schemes, as described in25

have been used to integrate the equations of motion in time. The initial geometry of the system is given in �g. 8.

Figure 8: Axisymmetric shock absorber device. All dimensions are in mm. The shaded area is considered to

be rigid

The material consists of an aluminium tube of 50.8 mm outside diameter times 63.5 mm length times 1.63 mm wall

thickness. The material is supposed to behave like a J2 elastic-plastic material with linear isotropic hardening. The

material parameters are given in table 3.

Young Modulus E = 67000 Mpa

Poisson ratio � = 0:33

Density � = 2700 kg

m3

Yield Stress �v = 15 + 44:7 ��p Mpa

The tube has been modelled using 300 quadrilateral elements (3 x 100) with 4 Gauss points and constant pressure to

avoid locking. It is driven against a 3.97 mm radius die made of mild steel at a velocity of 44 m/s (144 Km/h). Thus

a 50 mm prescribed vertical displacement over a time period of 0.00125 seconds is imposed on the upper nodes of the

tube.
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The history of the deformation is given in �gures 9, 10 and 11 for � = 0, � = 0:15 and � = 0:30 cases respectively,

and a comparison of the �nal con�gurations for the three di�erent friction coe�cients is given in �g. 12. For this

simulation, the following penalty parameters have been used: �
C

= 107N=mm & �F = 106N=mm.

Figure 9: Deformed con�gurations (frictionless case) for t=0.00, t=0.25, t=0.50, t=0.75, t=1.00 and t=1.25

milliseconds.

Figure 10: Deformed con�gurations � = 0:15 for t=0.00, t=0.25, t=0.50, t=0.75, t=1.00 and t=1.25 mil-

liseconds.

In �gure 13 are displayed the time/load curves obtained for the three coe�cients of friction and, in each case, for the

classical non-symmetric Coulomb operator as well as the presented symmetric Quasi-Coulomb model. As can be seen
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Figure 11: Deformed con�gurations � = 0:30 for t=0.00, t=0.25, t=0.50, t=0.75, t=1.00 and t=1.25 mil-

liseconds.

�����

������

������

Figure 12: Comparison of the �nal con�gurations as a function of the friction coe�cient.
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on this �gure, the proposed algorithm does not a�ect the results in any signi�cant way though it retains the advantage

of a symmetric solver.
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Figure 13: Applied load as a function of time. Upper curves: � = 0:30; middle curves: � = 0:15, and lower

curves: � = 0:00

CONCLUSIONS

A very simple constitutive frictional model which is able to deal with both general large strain plasticity problems,

as well as specialized ones such as sheet metal forming problems and crashworthiness has been presented and tested.

This model is very easy to code in any non linear general purpose �nite element, or �nite di�erence, code.

In many situations, the proposed quasi-Coulomb algorithm presented here allows to use a much cheaper, symmetric

solver rather than an expensive non-symmetric solver. Thus, large amounts of computational time can be saved, which

is very important for industrial applications. The algorithm has been applied successfully to a sheet forming operation

and to a dynamic shock absorber device simulation.
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