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A transient shear stress model for the solution of water-hammer problems for laminar and
turbulent flows in pipes is presented. The model is based on an expansion of the radial
profile of the axial velocity in exponential and polynomial functions, and the solution of
the resulting set of equations by the method of characteristics. The present model can be
included with only minor modifications into any existing code based on the
characteristics method.

The new model is tested against both experimental results and mathematical models and
numerical simulations of other anthors, showing good agreement.

The usual way of solving a water-hammer problem is to represent the unsteady viscous stress on the
pipe wall with a model similar to that used for steady flow. That is, it is assumed that the shear stress
at the wall is proportional only to the local mean velocity; this is the so-called quasi-steady model.

However, due to the very presence of pressure waves traveling along the pipe, the instantaneous
velocity profiles found during the transient are far from those of the steady state. The discrepancies
turn to be more important next to the pipe wall, where the Richardson's effect [6] is present. Due to
this, the quasi-steady model does a poor job in modeling the shear stress at the wall.

To overcome this difficulty, more complex models have been proposed in the past, e.g. those of Zielke
[7] and Vardy and Hwang [5]. Both models, like the one we are proposing in the present work, rely on
the method of characteristics for solving the resulting set of equations. The model of Zielke is based
on the solution of a ID problem in which the wall shear stress in transient laminar pipe flow is related
to the instantaneous mean velocity and to weighted past velocity changes; therefore, this method
requires that the history of all the previously calculated nodal velocities be kept in storage. On the
other hand, Vardy and Hwang propose a quasi two-dimensional model by discretizing the domain in a
set of concentric cylindrical annuli, and solving a water-hammer problem for each of them.

It the following, a new model for calculating the shear stress at the wall for transient laminar and
turbulent pipe flow is proposed. This is an extension of the model for laminar flows proposed by the
present authors in [I] and [2]. It is based on an expansion of the radial profile of the axial velocities
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into polynomial and exponential functions, and the solution of the resulting set of equations by the
method of characteristics.

Motivation

In references [3] and [4], Prado and Marchegiani solve a transient laminar problem which is close to a
water-hammer problem in a pipe. They consider an infinite pipe, and impose a given time-dependent
pressure gradient along the pipe axis that resembles the pressure histories obtained by Zielke in [5].
They proceed by discretizing the Navier-Stokes equations in r and t via Finite Differences in a given
section of the pipe, and present snapshots of the velocity profiles during the transient.

The shape of these profiles led the present authors to the idea that they may be represented by a
polynomial expansion in r with reasonable accuracy. This is the key idea behind the laminar method
presented in [1][2]. In this context, the traditional quasi-steady method is an expansion of the velocity
profile in a polynomial of degree 2, and thus may be regarded as a special case of the new method (the
reader is encouraged to look in [1] and [2] for the details).

In this paper, the method is extended to turbulent flows. In our numerical experiences, expanding the
velocity profiles only into polynomials have proven not to be adequate for this type of flows. This is
mainly due to the fact that the high degree polynomials needed to represent the extremely high
gradients observed near the wall for high Reynolds numbers led to axial velocity profiles with strong
oscillations in the radial direction (a known undesirable feature of polynomial expansions). As is
shown in the rest of the paper, an answer to this problem seems to be the addition of an exponential
term to the expansion.

Variables, parameters and Don-dimensionalization

Once non-dimensionalized, the problem depends on the following four non-dimensional parameters:
the initial Mach number, Mao = V;; la, the initial Reynolds number, Reo=pV;;2R1Jl., the initial Froude

number, Fro= V;;/(gRl/1, and the non-dimensional pipe length, i= /1 R, where 1 is the pipe length,

V;; is the initial average velocity, R is the pipe radius, p and J.l are the density and viscosity of the
fluid, a is the speed of sound in the pipe, and g is the gravity.

The non-dimensionalization of radial and axial positions, rand z, times, t, velocities, v, pressures, p,
stresses, 1', and viscosities, J.l, follow:

~r ~z~ t ~V ~ P ~ or ~ J1
r=-; z=-; t=--; v=-=-; p=--=-; 1'=--=-; J1=--

R / II a Vo paVo paVo paR

For clarity, the symbol 1\ is dropped in the rest of the paper, and all variables and parameters are
assumed to be non-dimensional.

Water-hammer governing equations

In the following, "mean" refers to time dependent magnitudes in which turbulence has been averaged
out (by ensemble or time averaging) and "average" refers to spatial averages of mean magnitudes in
the cross-sectional area, A.

Under the assumptions: a) horizontal rigid pipe of constant radius, b) purely axial flow, c) constant
mean pressure across the pipe section, d) average flow velocity negligible with respect to the fluid
speed of sound, and e) negligible viscous normal stresses, the averaged equations for the water-
hammer phenomenon are reduced to the following hyperbolic system of two coupled partial
differential equations for the average static pressure and velocity, p(z,t) and V(z,t):

()p dV
-+-=0dt dz '



1 /1 ..1
V(z,t) = Jv(r,z,t)dAjJ dA=J vrdr Jrdr= 2Jv(r,z,t)rdr
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where v( r, Z, t) denotes the mean axial velocity. The source term, S, comes from the integration of the
friction term on the pipe section, as follows:

flart" If f1iJr'r /fl flarT:S(z.t)=L L dA dA=L ~dr rdr=2L __ L dr=-2Vrw(z,t)
Ardr A our 0 odr

Quasi-steady model for the wall stress

In the traditional quasi-steady model. 't'w is evaluated as

-r =Mf1-fIT
w -u 8'

where Darcy's and Weissbach's friction factor./, is assumed to depend only on the average velocity, V
(or more properly on the Reynolds number, Re), and thus is obtainable using Colebrook's formula
(Moody's chart). Therefore. the source S is in this case only a function of V for a given pipe geometry
and material and for a given fluid, that is.

S = S(V) = -LMtlo f(V) IVIV.
4

Proposed transient model for the wall stress

In order to achieve a better representation of the time dependent mean shear stress at the wall, a more
realistic representation of the mean velocity profile must be considered. If the flow is considered
axisymmetric. the mean axial velocity profile, v(r,z,t), may be aproximated by a polynomial on the
radial coordinate, r, (see [1][2]). plus an exponential term. in the form

v(r,z,t)==v(r,z,t)= Laj (z,t)!j (r) (6)
je.f

where the expansion functionsfj are defined as:

J; (r) = (1- e-(I-r')id Y(l- e-1/d)

The coefficients aj and the parameter d will be defined below; for now, we consider d as a known
positive value. The set J is a user selected small set of natural numbers. J = ul j E N}. Note that

Eq.(6) verifies the non-slip condition at the wall and has null radial derivative at the centerline. Also.
note that!1 has been chosen so that limfl(r) = f2(r) = (1-r2

).
d •..•~

In order to calculate the coefficients aj. we start by defining the following weight-averetged velocities:I /1 IV;=V;(z.t) = f v(r. z,t) ri dA/f ri dA =f vri+1dr f ri+1dr= (i +2)f v(r, z,t)ri+1dr
A A 0 0 0

where i = O. 1.2•...• dim(J)-l. For i=O. Vo(z,t) == V(z,t). so that the "order zero weight-averaged

velocity" is "coincident" with the average velocity (within the precision of our expansion, Eq(6».

Once the set J is defined. the coefficients ajz,t) are determined (as functions of Vi) as follows. Eq.(6)
is replaced into Eq.(8), giving



1

V; ==(i+2)fv(r,z,t)ri+1dr== LGijaj
o jeJ

where the matrix Gij is defined by

Gij ==(i+2)If/r)rl+ldr==IiDlj+(1-DI/l-. i~2 )
o \ I+J+2

where ~ is the Kronecker delta, and Ii is defined recursively by:

10=(lI(l-e-lld )-d}, II = (10 +d)~ -td +id3/2e-lld F Er}i(d-1I2») 1; = 10 +d(l- ;;2 1;_2) Vi ~ 2(11)

where Erji(x) is the imaginary error function. From Eq.(9), the coefficients aj can be evaluated:

dim(J)-l

aj == EGftl Vi'
i=O

It should be noted that the index j is not a complete sequence of natural numbers, and therefore the
matrix notation of Eqs.(9) to (12), and other equations below, are somehow an abuse of notation. Their
meaning is, nevertheless, quite clear, although care must be taken when coding these equations.

Using Eqs.(6) and (12), the approximated mean velocity profile can be put in terms of the Vi as:

v(r,z,t)= ~~-l~Gijlfj(r)] Vi(z,t).

Using Eq. (13), the wall shear stress, -r,., can be determined (for a Newtonian fluid) as,

2Ma ail! 2Ma <ti""JH[ .] 2Ma din>UH[ ~' (14)Tw(Z,t)=--_O, = 0 E EG;,lf;<l) V,(Z,t) = __ 0 L EG;,'[20,j+}(I-0lj)] V,(z,t)
Reo u r r=J Reo ;",0 ]EJ Reo ;=0 jEJ

Consequently, the present model considers that the shear stress at the wall, 't;., is not only a function
of the average velocity, V, but also a function of the weight-averaged velocities. h

Equations for the weight-averaged velocities
Our model needs not only solve for the average pressure and velocity, p and V. but also for the weight-
averaged velocities, Vi. Under the assumptions (a) to (e), the axial momentum equation for the flow of
a Newtonian fluid along a horizontal rigid pipe of constant radius is reduced to

OV + {)p == [L Or'tz]ot {)z r Or

The procedure for obtaining the additional equations is (see [2] for details):

i) Eq.(15) is multiplied by I ,for i= O,1,2,...,dim(J)-1;

ii) the resulting equation is then integrated on the cross sectional area, A, of the pipe;

iii) the derivatives are taken out of the integrals;

iv) everything is divided by! IdA;
v) using the definition of Vi, Eq.(9), we finally get (in the form of Eq.(l):

av (}pat+ ik ==SI'



Sj = LI~rz ri-ldA/I r1dA= LJQ!1~drjI rl+1 dr = (i+2)LIOrrz ri dr (17)
Aar A oar 0 oar

for i=O,I,2, ..,dim(J)-1. To evaluate Eq.(17), we make the following additional assumptions:

f) the transient is fast enough for the turbulence to remain the same along the process, and
g) the initial velocity condition, Vo (r) = v(r, t = 0), corresponds to developed flow.

We can then compute the initial axial shear-stress using the given initial wall shear stress, ~, as:

'fz(r,t=O) = -'t'wO r = J.Lejf(r) v'o(r) (18)

The (non-dimensional) effective viscosity,J.leff (molecular+eddy), can then be evaluated as:

J.L./J(r)= -'CwQr/v'o (r) == -'t'wQr/il'o (r) = -'CwQr/EaoJ;(r) (19)
/ jeJ

where ao,; are the initial values of coefficients aj, evaluated using Eq.(l2) and the weight-averaged
initial velocities, Vo;. These velocities, in turn, are evaluated (either analitically or numerically) with
Eq.(8) and the approximation "'o(r) to the initial profile vO<r).

After some manipulations, it can be shown that the sources can be expressed as functions of the
weight-averaged velocities Vb in the following way: ~H( )Sj(z,t)= [Hijaj(z,t) = L [HjjG~ Vk(z,t)

jeJ k=O jeJ

where the matrix Bij is defined by:

Bij :::-(i +2)L't'wQ t ri :r(r2 f;(r)/~~Ift'(r)}r (21)

Unlike the laminar case [2], By is cumbersome to evaluate, and lacks of any evident analytical
solution. It is, however, feasible, small (dim(J)xdim(J) ), and may be computed at 1=0 and stored.

By combining Eq.(l5) with Eqs.(l), and recalling that Vo == V, the following hyperbolic system of
partial differential equations is obtained

dP + dVo =0
dt dZ '
dYo ap
-+-=S

iJt ik 0
av dp;t+dz = Sj ; i = 1,2,...,dim(J)-1

The non-dimensional characteristic slopes of Eqs.(22) in the (t,z) plane, S = dz I dt, are

SI,2=±1, S3,...,dim(J)+1 =0. (23)
Substracting Eq.(22.b) from Eq.(22.c) to eliminate the pressure gradient term and rewriting Eqs.(22) as
a system of ODEs along the characteristic lines defined in Eqs.(23), we finally get a hyperbolic system
of dim(J) + 1 equations in the unknowns {P'va.Vh ... 'vdim(J)+d, as follows:

dVo+dp=S
dt dt 0

dVo_dp=S
dt dt 0

dV; _ dVo =S.-S
dt dt I 0

dz
·-=+1
• dt
dz·-=-1, dt

; i= 1,2, ...,dim(J)-l ; dz =0
dt



Detennining the non-dimensional parameterd .

For a given set J, the parameter d depends only on the initial conditions, more precisely on the initial
Reynolds number. Reo; that is. d=dI..Reo). It may be interpreted as a rough measure of the extension of
the laminar sublayer. Its value is defined by asking the expansion of the initial profile. v(r,t = 0). to
exactly match the initial shear stress at the wall. 'tWo, and can be determined as follows:

Step 1: Compute the initial wall stress, 't'wo, with Colebrook's formula and Eq.(4).

Step 2: Find a mathematical expression. Vo(r) , for the "real" initial velocity profile, vo(r). There is no

need for vo(r) to accurately represent the velocity gradients near the wall, nor even to have null
velocity at the wall itself; this approximated profile is only required to be a good approximation in the
core of the flow. It may,forexample, be a power law of the type \IoU') =Vrnax(l-r)lIn.

Step 3: Provide a seed value for d.

Step 4: Compute the shear stress at the wall, 't'w. using vo(r) and Eqs.(8), (10) and (14).

Step 5: if the difference l't'w - 'tWo1 is less that a specified tolerance. stop. If not, change the value of d
and repeat from Step 4.

This algorythm may be applied completely offline, in the sense that a table d vs Re can be constructed
for each set J, and stored for later use or for finding a suitable interpolation function dARe).

For laminar cases. this algorithm does no apply; in these cases d is set by hand to a big value (-20) so
as to rnakefl(r) - 1-; (that is. the initial laminar velocity profile).

Numerical results

The system of equations (24) is solved via the Methods of Characteristics (for details see [2]). The
model is tested against two experimental works: low Re laminar results for oil (Holmboe and Rouleau,
referenced in [7]) and high Re laminar and low Re turbulent results for water (Bergant, Simpson and
V ftkovskY [8]). Both experiments deal with pressure transients originated by the sudden closure of the
downstream valve in a tank-pipe-valve hydraulic system (Fig.(l». In the following numerical tests, the
set J has been chosen to be J={ 1.2, ...•9}.

In figure (2), pressure results using the proposed method are compared against measurements due to
Holmboe and Rouleau and numerical simulations using the quasi-steady method. The improvement in
the solution is evident.

In figure (3). the wall shear stress obtained with our method is compared against the stresses computed
using the quasi-steady method and numerical results due to Vardy and Hwang [5J. based on a finite-
differences discretization of the radial direction into 24 concentric annuli. The similarity between our
results and Vardy's, and the huge difference between these results and those obtained with the qllasi-
steady method, is clearly seen. For more details and results regarding this case, see [2].



The evolution of pressure at the valve and at the midpoint of the pipe for the experiment of Bergant et
al is shown in figure (4). Results obtained with the quasi-steady method and experimental
measurements are compared against the method proposed in this paper. Although the results are not as
good as those obtained for Holmboe's case, the improvement is more than evident.
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Figure 2: Case Holmboe and Rouleau. Pressure histories at z=L.
(-- experiment, -- quasi-steady, - - present model J={ 1,2,... ,9})
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Figure 3: Case Holmboe and Rouleau. Wall shear stress at z=U2.
(-- Vardy and Hwang [5], ---- quasi-steady, - - present modelJ={ 1,2,., .,9})

Although not shown in the numerical results presented, two main drawbacks have been detected: a)
high sensitivity of the results to the value of the parameter d , and b) extremely high values of
coefficientes Qj in some cases, which are prone to lead to round-off numerical errors. These issues
must be properly addressed before the method is considered well established.

Conclusions
A method for evaluating friction during pressure transients has been presented. The method is a
generalization of that for laminar flows proposed by the present authors in [1,2], and provides a much
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Figure 4: Case Bergant et al. Pressure histories at the valve and at the midpoint.
(-- experiment, ----- quasi-steady, - - present model J= ( 1,2,3,4 ))

better representation of the shear stress at the wall during transients in both laminar and turbulent flow,
as compared to the widely used quasi-steady method. The ability to recover the instantaneous radial
profile of the mean axial velocity may also allow in the future for a smooth coupling between ID and
2D/3D simulations of transients in pipe networks.

The numerical tests shown good agreement between numerical simulations using this method and
experimental results and numerical simulations of other authors, both for laminar and low Re turbulent
flow. Nevertheless, these results must he considered as preliminary; due to a couple of undesirable
features regarding high sensitivity to the parameter d and the likeliness of numerical round-off errors
in some cases. Solving these two problems is the main branch of future work in the subject.

References

[1] Prado R.A., Larreteguy A.E., Modelo Transitorio de Tensiones de Corte para el Aniilisis del
Golpe de Ariete en Regimen Laminar, X ENIEF, Bariloche, Argentina, November 10-14, 1997.

[2] Prado R.A., Larreteguy A.E., A Transient Shear Stress Model for the Analysis of Laminar
Water-hammer Problems, to appear in IAHR Journal of Hydraulic Research, 2001.

[3] Prado R.A. Marchegiani A.R., Flujo tubular no pennanente par presencia de trenes de ondas de
presion, Mecanica Computacional, VoI.XV, pp.285-294, 1995.

[4] Prado R.A. Marcbegiani A.R., Discrepancias en La determinacion de la tension cortante enjlujo
tubular, bajo condiciones no estacionarias, Anales del vn Congreso Nacional de Ingenieria
Mecanica, Valdivia, Chile, pp.587-590, Octubre de 1996.

[5] Vardy A.E. and Hwang K.L., A characteristics model of transient friction in pipes, Journal of
Hydraulic Research, Vo1.29, No.5, pp.669-683, 1991.

[6] White F.M., Viscousfluid flow, Second Edition, McGraw-Hill, Inc.,1991.
[7] Zielke W., Frequency-Dependent Friction in Transient Pipe Flow, Paper 67-WAIFE-15, 1967.
[8] Bergant A., Ross Simpson A., Vitkovskj J., Developments in unsteady pipe friction modelling,

IAHR Journal, vo1.39, 3, 2001.


