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Abstract

The usual dyadic tiling D of IR? induces a natural triangular tiling of IR?, just by dividing
each 2-cube QED into two rectangular triangles. The only difficulty in leading with these
geometrical objects is that, even for triangles in the same level, we can not generally obtain
any of them by integer translation of a fixed one. Our approach to this situation would be to
introduce a new basic transform aside from the usual dilation and integer translation, namely,
a "spin". Our aim in this note is to show that the multiwavelet approach solves the problem
neatly using only the two traditional transforms.

Resumen

La particion diadica usual D de IR? induce naturalmente una particion por triangulos, sirnple-
mente dividiendo cada cubo QED en dos triangulos rectagulos. La uniea dificultad que aparece
al trabajar con cstos objetos geornetricos es que, en general, no podernos obtener cualquiera de
ellos par traslaciones enteras de un triangulo fijo y esto aun para triangulos en el rnismo nivel.
Una solucion seria introducir una nueva transformada, la transformada de "spin". El objetivo
en estas notas es rnostrar que las "multiwavelets" resuelven el problema usando solarnente las
dos transformadas tradicionales.

Let V be the usual dyadic tiling of IR2• Let us induce a triangular tiling of IR2 by dividing,
for instance by the diagonal whose slope is -1, each 2-cube Q E V. Unfortunaly these known
since Pithagoras geometrical objects do not satisfy the all important similarity property: even for
triangles in the same level, we can not generally obtain some of them by integer translation of a
fixed one. Instead, two figures will do. Our aim in this note is to show through three special cases
that the multiwavelet approach solves the problem nicely using only the two traditional transforms:
integer translations and dyadic dilations. Moreover our results can be extended to non-rectangular
triangles by changing the dyadic dilations by an adequate dilation matrix A. And even more
generally to families of nested partitions satisfying some basic properties.

The existence problem of wavelet bases associated to a MRA of multiplicity r, with arbitrary
dilation matrix A and general lattice r for cubic fundamental domains, is studied in [2J and [3] (see
also [4] and [5]). On the other hand, the existence of Haar like bases on spaces of homogeneous
type is considered in [1].
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2 FIRST CASE: TILING OF IR2 BY RECTANGULAR TRIAN-
GLES

2.1 Domains

Let us start with two rectangular triangles

Tl = {(Xl, X2) E m2; Xl ~ 0, X2 ~ 0, Xl + X2 < I}
TZ = {(Xl, xz) E m2: Xl < 1, Xz < 1, Xl + X2 ~ I}

as basic domains, such that Tl UT2 = [0,1)2 and Tl nT2 = 0. Let us choose the lattice r = ZZ2
and the dyadic dilation matrix A = 21. We will denote -ra 0= Ti. Moreover, Tj k = k + TJ° with
k E r are the ZZ2-translates of TJ,o' Let 11l'1 write Tj,o = A-i(Tj,o) for t.he A-i_' dilation of' (-ra,o)'
Also Tj,k = A -i (1'j,k) for i = 1,2, j E ZZ and k E r.

Remark 2.1.1: Observe that these domains do not satisfy two properties that are associated to
domains of the type Q = [0,1)2.

• There is no k E r such that T' = Ti + k for i f= j and i,j = 1,2.

• It does not exist a set K c r such that A(T') = UkEIC Tj,k'

However, if X = (Xl, X2) E m2 then X belongs to exactly one of our triangles. Indeed, if 0 ~ Xi < 1
for i = 1,2 then

E {Tl
, if X2 < 1 - Xl·

X T2, if X2 ~ 1- Xl.

On the other hand, if for i = lor i = 2 we have that Xi < 0 or Xi ~ 1, then x = [:r;i] + {xd
where [Xi] is the integer part and {Xi} is the decimal part of x. Again, x E TJ,k or X E T5,k' with
k = ([Xl], [X2]), according to {X2} ~ 1 - {xd or {xd > 1 - {X2}, respectively.

Moreover, our triangles satisfy two fundamental properties.
Tiling Property The r-traslations of Tl, T2 define a tiling of m2, i.e.,

• UkEr[TJ,k U Tg,kJ= lR,z,

• -ra,k n T6,1 = 0 for all k f= I and i,j = 1,2.

Quasi-similarity Property For

K = {kl = (0,0); k2 = (1,0); k3 = (0,1); k4= (1, I)}

we have Ut=l(~ + A(r)) = ZZ2 ( K is a digit set for A and r). Then

• A(TI) = [ULTJ,k,] U T5,kl '

• A(T2
) = [Ut=2Tg,k;] U TJ,k4'

2.2 Multiresolution Analysis
Let ¢>l(x) = XT1 (x) and <f(x) = X

T
2(X), Denote

¢>h(x) = 2i¢>i(Aix - k) = 2iX; (x), supp(¢>h) = Tjk;
, Tj,k I I

4>(X) = (~1,~2)(X) and ~j,k(X) = 2i(¢1(Ajx - k), ¢2(Aix - k)),



for i = 1,2, k E r and j E 7Z.

For each j E ~ we define the following functional spaces:

Vj = L2-closure of the subspace generated by {¢},k: i = 1,2, k E r}.

Because of the Quasi-similarity Property Vo C VI' So each ¢i = XTi can be expressed as a
linear combination of characteristic functions associated to Tt,k' for k E K.. In fact,

¢I(X) = (XTI + XT, + XT, + XT2 )(x)
l,kl l,kz l,ka l,kI

= ELI ¢I (2x - ki) + ¢2(2x - kl).
¢2(x) = (XT2 +XT2 +XT2 + XT, )(x)

1,k2 l,k3 1,k. l,k.

= EL2 ¢2(2x -~) + ¢1(2x - ~).

4

c$(x) = L Ci$(2x - ~)
i=l

where Cl = (~ ~) , C2 = C3 = I d and C4 = (~ n.
It is not hard to prove that ¢l, ¢2 are the scaling functions of a MRAs (Multiwavelet Multires-

olution Analysis, see [3]) associated to A and r, Le., the family {Vj} jE7Z of closed subspaces of
L2(m2) enjoys the following propertie.8

• Separa.tion: njE7ZVj = 0.

• Density: UjE7ZVj = m2
.

• Similarity: 9 E Vj if and only if g(2·) E Vj+l.

• Ba..'lis: It exists ¢i E L2(m2) with i = 1,2 such that
{¢l(. _ k), ¢2(. - k), k E r} is a bon(Vo).

As usual, we define the wavelet spaces Wj associated to the multiresolution spaces to be the
orthogonal complement of Vj in Vj+l, for j E 7Z.

Let us first find a basis for Woo By definition VI = Vo EElWoo Since we already have a basis
for Vo, then the task is to complete this basis to a basis in VI' On one hand, supp(¢fi,o) = T1 =
Tlk UTlk UT{k3UTfk andsuPP(¢50)=T2=Ttk UTtk UTtk UTlk4. On the other hand,, 1 J 2 , , 1 J , 2 , 3 , 4 ,

we need to have the function identically V2, on each Ti, as an element of the basis. So we must
construct three more functions for each triangle Ti, i = 1,2.

This can be done in many ways. A "naive" one is to start with characteristic functions and
to orthogonalize with the Gram-Schmidt's method. Let us start with the characteristic functions
associated to our triangles Ti. Set

vI = V2x
T'



We obtain three orthonormal functions supported on T1, which are orthogonal to each other
and orthogonal to Vo. Let 11k = r;. Then..

Similarly, other three functions are obtained supported on T2• The functions in this second set
are orthogonal to the above one, because the supports are disjoint, and they are orthogonal to Vo
by construction. So the set {1P;(A· -k), "p;(A· -k): k E r, s = 1,2,3} is a bon(Wo). Then
{VI, tJ2, "p;(A·-k), 1/J;(A.-k): kEr, s=1,2,3} isabon(Vt}.

Yet a "traditional" way to construct an orthonormal basis of W 0 is by using the self-similarity
condition provided by the MRA. Since 1$ E Vo C VI then the wavelets must be a linear combina-
tions of shifts and dilations of the vector scaling function 1$:

"pi =L 4i$(Ax - k)
k

for some 2 x 2 matrices c~. For a particular choiceof the entries of ck we obtain the followingset
of functions which have Q-moments:

"pI (A· -kt) = ¢'f,kl + 4>h, - 4>Lk2- 4>h3
"p~(A. -k2) '= 4>f,kl + ¢Lk2 - 4>Lkl - 4>h3
"pHA· -ka) = ¢f,kl + ¢Lk3 - ¢Lkl - ¢Lk2
1/J?(A. -k4) = ¢Lit4 + ¢tit4 - ¢h3 - ¢~,k2
1/J~(A. -k3)) = ¢h4 + ¢f,k3 - 4>h. - ¢h2
1/J~(A. -k2) = 4>l,k4+ ¢f,k2 - ¢f,k4 - ¢f,k3

Again the set {¢i(A . -k), 1/J~(A. -k): i = 1,2 k E rand s = 1,2, 3} is a bon(V t}.

The construction of bases for Wi, j =I- 0, is now easily done, as a consequence of the following
straightforward properties .

• Wi is similar to Wo: !E Wi if and only if !(A-i.) E Wo, for j E Zl.

• {1/Jf(x - k) : l = 1,2,3, i = 1,2 and k E r} is bon(Wo) if and only if{2i"p;(Aix - k): l =
1,2,3, k E r} is bon(Wj) for each j E Zl.

The set {2i"p:(Aix - k): i = 1,2, s = 1,2,3, j E Zl, k E r} is an orthonormal basis of L2(JR2)
because of the MRAs structure.

Let us finally observe that if we keep the domains Tl, T2 and r = Zl2, but take A = 31d,
then Ti = [Ur;;lTi,d U [U:.1T{,s] with i t= j. Now we need tQconstruct eight functions 1ft- The set
{"p;(A· -k), "p;(A. -k): k E r, s = 1,··· ,8} is a bon(Wo).



If we use the lattice r = ~~2 and the same dilation matrix A we end up with four triangles:

T1 =T6,0: (0,0),(1,0),(!,!), T2 =T~o: (1,0),(1,1),(!,~),

T3=T5,0: (1,1),(0,1),(!,~), T4=T~0:(O,I),(0,0),(~,~).

The Tiling Property is straighforward. To verify the Quasi-similarity Property we choose the
following set K- associated to r and A

K- = {kl = (0,0), k2 = (1,0), k3 ==(0, 1), ~ ==(1,1), k5 = (!,!)}

U{SI = (~,-!),S2 = (~,!),S3 ==(!,~),S4 ==(-!,!)}.

Then each Ti = TJ,o can be written as union of four triangles of the next level:

~==~U~U~U~, ~==~U~U~U~,

~=~U~U~U~, ~==~U~U~U~.

Let (pi == v'2 XTi be the normalized characteristic function associated to the triangles Ti for
i == 1, ... ,4. Then for j E ~

Vj ==L2-closure of the subspace generated by {4>;,k: i ==1," . , 4, kEn.

The sequence {Vj} jE~ of L2-closed subspaces defines a MRA of multiplicity r == 4 associated

to the dilation matrix A = 21 and lattice r ==!~2, the vector function ($ == (4)1, ¢2, ¢3, ¢4) being
the scaling vector for the MRAs.

Again t.he wavelet. spaces Wj will be the orthogonal complement of Vj in Vj+!' And because
Wj is similar to Wo, we only need to built a base for Woo To each Ti we associated three functions
wit.h O-moments and ort.hogonal t.o each other. The set {4>~k' 1{;~0 k : i = 1,'" ,4; u == 1,2,3; k En is a bon(Wo). ' , ,

Let r = ~3 and A == 2Id. We use as basic domains six tetrahedra:

1'1 : 0, (1,0,1), (0,0,1) (1,1,1) T2 : 0, (1,0,1), (1,0,0), (1,1,1)

T3 : 0, (1,0,0), (1,1,0), (1,1,1) r :0, (1,1,0), (0,1,0), (1,1,1)

T5: 0, (0,1,0), (0,1,1), (1,1,1) T6: 0, (0,1,1), (0,0,1), (1,1,1)

As before we will denote Ti ==TJ,o and the r-translation as TJ,k ==TJ,o+ k with k E r.

Since ur=1 Ti = [0,1)3 then it is clear that these tetrahedra satisfy the Tiling Property, Le,

• UkErlUr=1 TJ,k] == m3
•

• TJ,k n T5,1 ~ 0 for all k # I and i, j = 1, ... ,6.

Here ~ means that the possible intersection has measure zero. But of course a strict disjoint
partition of m3 can be done, like in m2•

To see the Quasi-similarity Property, we choose the following set of digits associated to rand
A.

K- =={kl = 0, k2 ==(1,0,0), k3 = (0,1,0), k4 = (0,0,1), k5 ==(1,1,0),



1'1 = [1'l,kl U 1'l,ko U 1'l,k4 U 1'l,kol U [1'15,ko U 1'f,ka] U [1'lk4 U 1't,k4]

1'2 = [1't,kl U 1't,ko U 1't,k2 U 1't,kS] U r11',k2 U 1'l,k2] U [l1,ka UTt,ke]

1'3 = [1'{,kl U 1't,k2 U 1'f,ks U 1'r,ko] U [1'l,kS U 1't,kS] U [1't,k2 U'I'f,k2]

1'4 = [1'~kl U Tt,ka U 1't,kr, U 1't,kS] U [1't,ks U 1'f,ks] U [1'tks U 11',kS]

1'5 = [1'f,kl U 1'tka U 1'15,k7U 1'f,ko] U [1'r,k7 U 1't,k7] U [1'~,kaU 1'l,ka]

T6 = [1'~,kl U 11,k4U 11,k7U 1'f,kS]U [1'f,k4 U 1't,k4] U [1'l,k7 U 1't,k7]'

Both, the definition of the MRAs and the construction of the wavelet space follow the pattern
already described for m2.

The basic domains were obtained by using the three diagonal issuing from the vertex (0,0,0),
which divide each one of the three faces into two triangles. In each face we join the triangles vertices
to the vertex (1,1,1) obtaining two tetrahedra. For example, by using the diagonal between the
vertices (0,0,0) and (1,0,1) we obtain 1'1 and 1'2. A similar construction can be obtained by using
the diagonals that issue from anyone of the other seven vertices of Q.

We first observe that if we keep f = ~2 and use a non-dyadic dilation matrix A then we end
up with triangular domains which are non-rectangular, but that still satisfy the two fundamental
properties.

Secondly, by keeping as dilation matrix A = 2I d we can extend the above construction to
any number of subset as basic domains as long as they satisfy the Tiling and the Quasi-similarity
properties. Each time we have to find out the appropriated nested tHings of the space. In [1)
is proved the existence of such families of nested partitions on metric spaces with a very mild
homogeneity property.

Thirdly, the domains 1'1, 1'2 were obtained by partitioning Q by the diagonal between the
vertices (1,0) and (0,1). Everything works similarly for domains i'l, i'2 which are obtained by
using the diagonal between the vertices (0,0) and (1,1).

The scheme developed in the Third Case can be generalized to mn, where we will have n! tetrahedra
as basic domains, which can be obtained by using, for instance, the n diagonals issuing from
(0,···,0). The Tiling Property is straighforward. As for the Quasi-similarity Property we can use
the following set of digits associated to A and f:

K = {k E mn: k = 2:::ei}
iES



where S C {I, 2, ... ,n} and ~ is a vector of the canonical basis of mn .

Again the construction of the functional and wavelet spaces follow the pattern described for
m2.
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