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We present an algorithm to solve an inverse problem originated in seismic ex-
ploration. In order to briefly describe the geophysical techique, we can say that
while drilling a borehole, the drill-bit generates a signal asumed as a seismic source.
The wavefront propagates through the earth, and the direct and reflected waves at
the different interfaces are recorded at a line of geophones laid out on the ground.
Thus we aim to estimate the wave speeds of the different formations within the earth
interior from the measurements at the geophone positions. The forward model is for-
mulated, assuming cylindrical symmetry, by means of the displacements of an elastic
solid, and discretized using the Morley mixed finite elements. For the inverse prob-
lem, casted as a minimum squares one, we use a quasilinearization algorithm, which
allows for a late discretization of the problem. A parallel version of the algorithm is
used to solve the included numerical example.

Presentamos un algoritmo para la resolucion de un problema inverso que surge
en exploracion sismica. Una breve descripcion de la tecnica de prospecci6n es la
siguiente: Durante la perforaci6n de un pozo petrolero, el trepano genera una senal
a la que se la considera como una fuente sismica. EI frente de onda acustico viaja
a traves del subsuelo, y las ondas directas y las reflejadas en distintas interfaces son
grabadas mediante una linea de ge6fonos dispuesta en la superficie. Asi, elobjetivo
es obtener una estimacion de las velocidades de propagacion de los distintos estratos
en los cuales se asume esta formado el subsuelo a partir de los datos obtenidos. El
modelo directo, en el cual se asume simetria cilindrica, es formulado en termino de los
desplazamientos de un solido elastico, y es discretizado usando los elementos finitos
mixtos definidos por Morley. En las front eras artificiales se utilizan condiciones de
bordes absorbentes, haciendolas transparentes a ondas que arriban normalmente a
ellas. Para el tratamiento del problema inverso, formulado como uno de cuadrados
minimos, utilizamos un algoritmo conocido como cuasilinearizaci6n, que permite el
planteo en forma continua, discretizando en ultima instancia. Utilizamos una version
paralela del algoritmo para resolver el ejemplo numerico propuesto.
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The aim of this effort is to describe a nonlinear inversion procedure to solve an inverse scattering
problem arising from exploration seismology when using the so called seismic while-drilling
technology [1). This technique can be briefly described as follows. During the drilling of a
borehole in hydrocarbon exploration, the drill-bit generates a signal that can be regarded as a
seismic source. The acoustic wavefront induced by this source propagates through the earth,
and the direct and reflected waves at the different interfaces are recorded at a line of geophones
laid out on the ground. Thus we aim to estimate the wave speeds of the different formations
within the earth interior from the measurements at the geophone positions.
To simplify the problem and reduce the number of parameters to be estimated we assume that
our domain of interest n is bounded and radially symmetric around the z-axis, located at the
center of the borehole, where the drill-bit is positioned at a fixed depth. This drill bit is assumed
to behave as a compressional point source of known shape in the time domain. We further assume
that the medium is acoustic, ignoring shear waves. At the artificial boundaries of the model we
employ absorbing boundary conditions making them transparent to normally arriving waves.
The inverse problem is formulated as an output least-square problem. It is an iterative procedure
known as quasilinearization and at each step of the parameter estimation procedure needs to
compute the (Fnkhet) derivative of the solution with respect to the parameter [2, 3). This
derivative is obtained as the solution of a differential problem identical to the forward problem
but with different source and boundary data. The identification procedure is formulated at the
continuous level, and then its discrete version is obtained by computing approximations to the
solution of the partial differential equations associated with the forward problem and the Fnkhet
derivatives using an explicit finite element procedure. This way of solving the problem is known
to be much more efficient than the classical approach where the the gradients are obtained
from the discretized functional as is done for example in (4). For a thorough description of the
technique, see (5)

The Differential Model
Let

n={(r,O,z): O::;r<RB, 0::;9<211", O<Z<ZB}

be a 3D layered and radially symmetric open bounded domain with boundary an. Let rT =
an n {z = O} be the part of an associated with the free surface, i.e, the earth-air interface
and let r = an \ rT denote the bottom and lateral (artificial) boundaries of n. Let besides
p = p{z) and A = A(z) denote the mass density and incompressibility modulus of the material,
assumed to be bounded above and below by positive constants: 0 < p. ::; p(z) ::; p' < 00,

0< AI' ::; A(z) ::; A' < 00.

Let fI = fI(r, z, t) = (ur{r, z, t), 0, uz{r, z, t)) be the displacement vector in n. We will assume
that the density p is known and we will regard the displacement vector as a function of the incom-
pressibility modulus A, employing the notation fI(A) to indicate such dependence, and omitting
the dependence of fI on the spatial and temporal variables to avoid cumbersome notation. Re-
call that the wave speed c{z) is related to the parameter A by the equation c{z) = (~)~, so
that once the parameter A has been estimated it is immediate to obtain the desired wave speed
estimate.
We will assume that the propagation of compressional waves in n is described by the following
forward problem: find fI{A) such that

a2fI(A) ~
p {ji2 - V(AV . fI(A)) = fer, z, t), (r, 9, z) En, tEl = CO,T),



_ ail(A)
n(A)lt=o = ~It=o = 0, (r,O,z) E 11,

In (1)c"(4) I= (I., 0, fz, t) denotes the external source and iJ the unit outer normal to a11. Also,
(3) is'an absorbing boundary condition which makes the artificial boundary r transparent to
outward going waves arriving normally to rand (4) represents the free--surface condition on rT

The Inverse Problem.
First we describe the set of admissible parameters P. Assume that 11 consist of the union of
Nz-layers 11j, where

11j={(r,O,z), O:::;r<RB, 0:::;O<27r, Zj-l <z<Zj}, j=l,··· ,Nz,

and Zj,j = 0,··· , Nz is a partition of (0, ZB). Further assume that the parameter A(z) have a
constant value on each layer 11j. Thus we define P = {A E L2(11): A* :::;A(z) :::;A*, A(z) =

2:~1AJXf1j}' where for any D c 11, XD denotes the characteristic function of the set D. Note
that P is a compact convex subset of £2(11) with the inherited topology and A E P has a well
defined traceAlaf1Jon each 11j, so that (3)-(4) make sense for elements A E P. Also note that
any element A E P can be identified with the vector A = (Aj)j=l,. .. ,N, E RNz; we will refer
either to A or to A indistinctly in the rest of the paper .
Suppose that at time t = 0 the medium is excited with a known source function l(r, z, t)
and that the values ii"b8(r,z,t) = (n~b8(r,z,t),n~S(r,z,t)) of the displacements induced inside
11, assoclated with direct and reflected waves, are recorded at receivers located at the points
r = ri, Z = z*, i = 1,··· , NT> inside 11 for all tEl. Then the objective is to infer from
the l~easutements ilOO"(ri, z*, t), 1 :S i :::;NT> the actual value of the parameter A. To
formulate the problem in a meaningful fashion, since the solution of the forward differential
problem may not have well defined pointwise values, we define the nonlinear averaging map
<I>:(P, 11·110) --t £2(I,R2Nr) as follows:

1 1<1>(g)(ri'z*) = IB(. * d)1 g(r, z) rdrdz.
r"z , B(ri,Z',d)

(Here the radius d of the balls B(ri, z*, d) is small enough 80 that B(ri, z*, d) nB(Tj, z*, d) = 0
for i # j). Next, for UObs(-) E L2{I;R2XNr) and A E P, let the cost functional J(A) and its
regularized form J/i(A) with nonnegative regularization parameter fJ be defined by the equations
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where we denoted by lIylIR" the euclidean norm of any vector Y ERR.
Then we formulate our standard least-squares estimation problem as follows:

Also, the regularized least-squares estimation problems is given by

minimize JfJ (A) over P.

The problem of existence of solutions of the minimization problems (9)-(10), as well as re-
sults on the existence, uniqueness and regularity on the solution of (1)-(4) were addressed
in [5]. To solve the the minimization problems (9)-(10) we will employ an iterative quasilin-
earization technique requiring the calculation of the Frechet derivative q(u) == DA(U)X{lj =
(~(u)Tl(.~(it)z), j = 1," ·Nz, of the solution ofthe (1)-(4) with respect to the parameter
A. The algorithm reads:
For A E P set

Gr(i,j)(t)
Gz(i,j)(t)

~«~)r)(ri' z*, t»,
~«D~)Z)(ri' z*, t), 1::; i ::;Nr, 1 ::;j ::;Nz.

MfJ(A) = I[ (Gr(s)Gr(s) + Gi(s)GZ<s)) ds + {33, (12)

(HfJ(A)) j = I[ (2:f.;l Gr(j,i)(S)[tl~8(ri'z*,s) - ~(tlr(A»(ri,z*,s)] (13)

+2:f.;1 Gz(j,i)(s)[tl~b8(ri'z*,s) - ~(uz(A»(ri'Z*,s)]) ds, 1::; j ::;Nz,

where 3 = diag (I'll I,'" , InN. I). In (12) Gr, Gi denote the trasposes of the matrices GTl Gz

defined in (11).
Let ...ro be an initial guess for A. Then the iterative quasilinearization estimation procedure at
the continuos level is defined as follows.

We will employ an explicit finite element procedure to compute the solution of the forward
problem and the Frechet derivatives in order to obtain a discrete version of the identification
algorithm (14). Let rh, 0 < h < 1 be a quasiregular partition of n into elements em generated
by the rotation around the z-axis ofrectangles in the (r,z)-variables of diameter bounded by h.
Let

Span {(r, 0, 0), (0,0,1), (0,0, z)} ,

Span {(r-l, 0, 0), (r, 0, 0), (0,0,1), (0,0, z)}
(15)

(16)

where Q* = Q for elements em located away from r = 0 and Q* = QO for the innermost elements
em near r = O. The space Vh is the vector part of the lowest-order mixed finite element space



defined by Morley [6] in an unpublished manuscript and it was employed in [7] to simulate the
propagation of waves in a model for full waveform acoustic logging. The property that elements
in Vh be globally in H(div, 0) is equivalent to the requirement that their normal components
be continuous across interelement boundaries rpq = oEp U oEq. The natural degrees of freedom
for v E Vh are the values of v . iJ at the mid points of the edges of the elements Em E Th.

Since we want to define an explicit finite element procedure, all integrals involving time deriva-
tives will be computed using a quadrature rule as follows. For a rectangle R of side lengths hr

and hz and side mid points ai = (ri, Zi), i = 1,2,3,4,

r 21T 4J~j(r,z)rdrd8dz::::; 4"hrhz. L!(ri,Zi)ri
R ~1

Si~ilarly, for the boundary integrals we will employ the mid-point quadrature rule.
Let [f,g] and ((f,g)) denote respectively the inner products (f,g) and (f,g) computed approx-
imately using the indicated quadrature rules. Next, let L be a positive integer, L'!.t= TIL, and
g" = g(nL'!.t). Set

g"+1 _ g" " gn+I _ g"-1
citg" = L'!.t' og = ~M-' (19)

gn+I _ 2g" + g"-1
rPg" = (L'!.t)2 (20)

Then the approximation to the solution iI(A) of the weak version of (1)-(4) is computed as
follows: find iIh'''(A) E Vh such that

[p 02iIh,,, (A), v] + (A\7 . iIh,,, (A), \7 . v) + (( (pA)! oiIh,n(A) . II, ~7·v))r (21)

= Un, v) , v E vh, n = 1, ... ,L - 1,

iIh,o(A) = iIh,I(A) = O.

The approximation to the Frechet derivatives q (iI) are computed in a similar fashion: find
jj~h,,, E Vh such that

v E V, n = 1, ... , L ~ 1,
jj~h.O = jjt,1 = O.

is satisfied, with 01 depending on the wave speed. Then the argument employed in [7] can be
used here to show that the discrete procedures (21) and (22) are stable and satisfy the following
apriori error estimates :

max1:S,,:SL-l (1Idt(un - iIh,nllo + "un - iIh'''llv) ::;0 (L'!.t2+ h),

maxl:S,,:SL-l (llcit.i3~n(iI) - dtD~h,nllo + IID~n(iI) - D~h,nllv)

::;0 (L'!.t2+ h),



G~,n(i,j)
G~,n(i,j)

<p((~h,n)r )(r;, z·)),

<p((~h,n)z)(r;, z*), 1S i S N., 1S j S Nz, 1S n S L.

(26)
(27)

MtJ,h(A) = ~;=l((G:,nfG:,n + (Gz,n)TG~,n) At+ (33, (28)

(HtJ'h(A)) j = ~~=l(~~lG:,n(j,i)[u~bs,n(r;,z*) - <p(u:,n(A))(r;,z*)] (29)

+ ~~l G~,n(j, i)[u~s,n(ri' z*, s) - <p(u~,n(A))(r;, Z*)]) At, 1 s j S Nz.

Let AO be an initial guess for A. Then the discrete iterative estimation procedure is defined as
follows.

In the next section we show examples of the implementation of the discrete quasilinearization
algorithm (30) to model problems in the context of the seismic while-drilling technology.

For the numerical experiments we used a sequence of domains all having the same horizontal
length of 300 m , and increasing depth. This is done in this way because one wants to estimate
the velocity up to 500 m below the drill bit. On the top boundary, which coincides with the
surface of the Earth, we set 12 equally separated sensors.
For the sake of simplicity, the source was assumed to have a central frequency 10 of 25 Hz, and
a time shape given by g(t) = -2Me(t - to)e-{(t-to)2, where M is a scaling factor, e = 816,
to = 1.25/10'
The model is a typical one, consisting of a set of layers of different velocities and thickness. It
is assumed that the distribution of velocities is known for the layers above the drill bit.
As the goal is to predict, for example, the existence of a low velocity layer associated with the
fluid overpressure region. This leads to optimize the drilling process, diminishing costs and
enhacing safety.
Figure 1 shows the behaviour of the algorithm in the vicinity of the above mentioned region
when the drill bit is (a) at 1000 m, (b) 1100 m, (c) 1200 m and (d) 1300 m depth. After many
numerical examples we decided that the best choice for the algorithm to yield accurate results
is to use as initial guess for a fine grid the output of a coarse one, using to get it a very low
frequence of 5 Hz. In the example the coarser grid had an inter-node distance of 15 m in both
directions, and the time interval was 2 ms. These quantities satisfy the CFL condition, and the
same must happen with the ones corresponding to the finer grid. Therefore, as the inter-node
distance was assumed to measure 5 m, the time interval was 1 IDS.

It can also be observed in Fig. 1 that only 5 iterations on the finer grid are enough to recover
at least the low velocity layer of the true model.

We have presented an algorithm to solve an inverse problem originated in seismic exploration.
The forward model was formulated, assuming cylindrical symmetry, by means of the displace-
ments of an elastic solid, and discretized using the Morley mixed finite elements. For the inverse



Figure 1: We display the sequence of results of the inversion process, for different depths of the
drill bit. In (a) 1000 m, (b) 1100 m, (c) 1200 m and (d) 1300 m

problem, casted as a minimum squares one, we used a quasilinearization algorithm, which al-
lows for a late discretization of the problem. The results yielded by the numerical examples are
satisfactory, because it can be seen that the algorithm is able to find the jumps in velocity, in
particular, it can determine after few iterations the presence of an overpressure region, main
objective in this application.
A parallel version of the algorithm was implemented, but the results were not as good as ex-
pected. We continue working on this point.
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