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Se describe un remallado de superficies, de tipo Lagrangiano, para problemas de
"tenida a la mar". Para tal fin, se considera una malla inicial de elementos finitos
para la superficie mojada hidrostatica del cuerpo flotante. El remallado se hace en
funci6n de la posici6n instantanea de ]a curva de intersecci6n, entre la supemcie libre
m6vil del flujo y la superficie rigida del casco. El desp1azamiento de los nodos sobre ]a
supemcie del casco, constituye una restricci6n ncrlineal del problema numerico. Para
resolverlo, se introduce una estrategia de desplazamiento de tipo pseudo-e18stico, en
conjunci6n con una tecmca mediante multiplicadores de Lagrange.

ABSTRACT
A surface remeshing, of Lagrangian type, for seakeeping-like problems is outlined.
For this, an initial finite element like mesh is considered for the hydrostatic weted
surface of a floating body. The remeshing is done as a function of the instantaneous
position for the intersection curve between the moving free surface and the rigid body
surface. The node displacements on the body surface, is a non-lineal restriction
of the numerical problem. Fbr solving, an pseudcrelastic displacement strategy is
introduced, in conjunction with a Lagrangian multipliers technique.

In previous works, numerical methods for potential flows with a free surface have been con-
sidered, for instance, sloshing and ship-like hydrodynamics. In the later case, wave-resistance
[3, 7, 6] and seakeeping [11, 4] ones. The basic numerical scheme chosen was the boundary
t'Jement method, or panel method, e.g. see Morino [8] in the aerodynamics context, and Ohkusu
[10] in the naval one. Fbr seakeeping ship motions see [15, 1, 14, 2, 9].
In [5], a Lagrangian-type panel method, in the time domain, for potential flows with a moving
free surface was proposed. After a spatial semi-discretization, with a low-order scheme, the
instantaneous velocity-potential and normal displacement on the moving free surface, were ob-
tained by means of a tim~marching scheme. The kinematic and dynamic boundary conditions,
at the free surface, were non-lineal restrictions over the related Ordinary Differential Equation
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Figure 2: Extended degree of freedom for a truss e-element: Ul, '112, U3, Al at the local node 1,
and U4, U6, 'U6, A2 at the local node 2.

system and, for handle them, an alternative Steklov-Poincare operator technique was proposed.
But, an unsolved geometrical problem was a remeshing strategy for the instantaneous wetted
hull surface so, in this work, we will concentrate in a strategy for this.
Thus, let us consider an initial finite element triangular mesh, for the hydrostatic weted surface
of a floating body, for instance, on an hemispherical one, see figure 1. Let us suppose, that we
replace the triangular elements by truss ones, which are assumed as uniform, linearly elastic, pin-
connected at its ends, and 3D axially loaded (13). Now, let us introduce a prescribed perturbation
on the boundary curve of the hemispherical surface, and we wish to move the nodes over the
prescribed rigid surface, in such way, that the new mesh should fit with the perturbed boundary
curve, and its mesh quality should not degrade too much. The instantaneous intersection curve,
between the moving free surface and the hull surface of the floating body, is known from solving
the dynamics of the free surface and its projection on the surface hull.

A Lagrangian function W for the pseud~elastic energy and restrictions on the displacement of
the mesh, e.g. see (12), is chosen as

where uT = {Ul1,..,11;, ... ,Un}, AT = {>.h ... ,.x;, ... ,An} and gT = {9h,..,9i, ...,9n} are the
global vectors for the displacements, Lagrange multipliers and the surface equation, respectively,
evaluated at the nodes. The (implicit) surface equation 9(:1:,71,%) = 0 is assumed differentiable
enough. The stiffness matrix K is obtained by means of a standard finite element discretization
with truss elements, while 11; = (u,tJ,W)i,Ai and 9i = 9i(X,1I,Z) = 0 are the displacement,



Lagrangian multiplier and the (implicit) surface equation, respectively, at the i-node, for i =
1, ..,Nn, where Nn is the node number on the mesh.
The minimum "pseudo-elastic" energy of the global truss, is found performing the first derivative
of Eq. 1 with respects to the global nodal displacements u, subject to the surface restrictions
g = 0, non-lineal in general. As a "pseudo-elastic" modulus, the reciprocal of the bar length Le
is generally chosen, that is, E = 1/Le, since thus the bar stiffness is bigger when the bar length
is smaller.
As usual in finite element analysis, the total elastic energy is the sum W = Le we of the
contributions we of each element, for e = 1, ..,Ne, where Ne is the element number on the
mesh. Choosing the local numeration shown in figure 2, we have the parameters (Ull 'U2, Ua, All
at the local node 1, and (U4,U5,U6,A2) at the local node 2, so the element contribution to the
pseudo-elastic energy of the whole structure is reduced to

We = ~ (U1KnU1 + ...+U6KOOU6) + AI91(UllU2, ua) + A292(U4,U5, U6) ; (2)

For an hemisphere of radius R, for example, we have

91(Ut,U2,Ua) == 9i(Ul,U2,Ua) = (Xi - ul)2 + (Yi -U2,2 + (Zi - ua)2 - R2

92 (U4, u5, U6) == 9j(U4, U5, U6) = (Xj - U4)2 + (Yj - U5)2 + (Zj - U6)2 - R2

The residual element vector for Eq. 2 is

T1 = W,Ul = KllUl + + K16U6 + A191,1
T2 = W,U2 = K21'UI + + K26U6 + A191,2
Ta = W,U3 = Kal Ul + + Ka6U6 + A191,3
T4 = W,U4 = K41Ul + + K46U6 + A292,4
T5 = W,U3 =K51U1 + + K56U6 + A292,5
T6 = W,ue = K61U1 + + K66U6 + A292,6
T7 = W,U~l = 91
Ta = W,u~2= 92

where 9a,i = 89alOui, for a = 1,2 (local nodes) and i = 1,2,3 (global Cartesian coordinates).
Since the surface restrictions 91 and 92 are non-lineal in general, we employ a standard iterative
solution, for instance, a Newton-Raph80n scheme

where r = (ru, r;,)T is the residual vector, J is the Jacobian matrix, assumed as not singular
det J of 0, and ~x is the increment solution for x = (u, A)T. Imposing null next residual
r\'+l = 0, we arrive to

{
Jk~Xk = -rk

xk+1 = xk + ~xk

where the element Jacobian matrix is

~~~

~~~
performing the derivatives in Eq. 7, reordering and replacing'in Eq, 6:1, we obtain the element
NewtQn-RapbBon system equation '

K12 bf
K22 + A2H2 0

o 0
b2 0



[

90,11 90,12 90,13]
Ho = 90,21 90,22 90,23 ;

90,31 90,32 90,33

for a = 1,2 are the local nodes (i,j), with 90jA:= fPgo/aujauA:, where j, k = 1,2,3 correspond-
ing to the x, y, z global directions, respectively, and the gradient vector

The local mapping on the element is chosen as

Ul23= (U1,U2,U3)T
t1456 = (114, Us, U6)T ;
A12 = (Ab A2)T

for the element nodal displacements, and

rl23 = (rb~, r3)T
r456 = (r4' rs, r6)T ;
r78 = (r7,rs)T

for the element nodal residuals. The element stiffness matrix K is on the 3D space (6 x 6), and
it is obtained from the local one

Kp= EA [1 -1]
L -1 1

by means of the standard rotation K = RTKpR, where

R = [II ml n1 0 0 0 ]
o 0 0 II m1 n1 ;

where (Lt, ffll, Rl) are the director cosines of the tl'U8Srespect to the global axis~, V,Z, and A, E
are "pseudo" sectional area and elastic modulus, respectively. An obvious assumption for the
solution of the Newton-Raphson scheme, is that the Jacobian matrix must be regular. On the
other hand, an appropriate relative order for the global equations is necessary to prevent null



Figure 4: A 3D view of the defonned mesh obtained with the proposed method, when a large
perturbation of 70 % of the sphere radius R, is imposed on its great circle.

pivots on the principal diagonal. As Cook remarks [13], in a Gauss elimination solution with
pivoting on the principal diagonal, a zero pivot appears if a constraint equation is processed
before any of the degree of freedom to which it is coupled. Otherwise, the null sub-matrix fills
in, and the solution proceeds nonnally if the stiffness matrix K is positive definite. Then, we
choose the global numeration (Ui,Vi,Wi,>'i) on the i-node, for i = 1, ..,Nn. Finally, the Dirichlet
boundary conditions, at the nodes with prescribed displacements, make its related Lagrangian
multipliers as passives [12], so we impose null values for them.

A simple example is included as a first validation of the proposed method, where a relative
large perturbation is introduced on the intersection curve between the free surface of a fluid
and a floating hemisphere. The hemisphere radius is R = 1, and the perturbation is a sine
curve of amplitude A = 0.7R and 4 periods along its boundary, which is also the intersection
curve between the free surface and the floating body. For the computation of the deformed
mesh on the sphere surface, we have considered a 3D pseudo-elastic problem with restrictions.
Its components are truss finite elements and, for the restriction given by displacement on a
prescribed surface, the sphere equation in this simple case, a Lagrange multiplier is introduced
by node. Then, we have 3 displacements u, v,W and a Lagrange multiplier, as unknowns, by
node. The original panel mesh is shown in figure 3, with 321 nodes, 600 triangular panels, so,
with 4 degree of freedom by node, we have 1284 unknows. When a large perturbation is imposed
on its maximum circle, as 70 % of its radius, the resulting defonned mesh obtained with the
proposed method, is shown in figure 3.

Next stages should include an extension to B-splines representations for ship-like configurations,
a coupled formulation between the dynamics.of the free surface and the floating body, and a
version for a parallel computation on the Beowulf cluster "Ger6nimo" of the ClMEC Group, for
instance, the HPF (High Performance Fortran) or OpEmM!' paradigms.
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