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This paper deals with the asymptotic and numerical analysis for the steady-state
transpiration cooling of a thin porous flat plate in a laminar hot convective flow,
taking into account the longitudinal heat conduction through the plate. For very
good conducting plates, a regular perturbation analysis has been done, obtaining a
three-term asymptotic solution for the distribution of the temperature of the plate.
Parallel we solved numerically the equations using a quasilinearization technique.
The numerical results are in good agreement with the asymptotic solution close to
the asymptotic limit studied.

En este trabajo se estudia tanto asint6tica como numericamente del proceso de
enfriamiento por transpiraci6n de pelicula de una placa plana porosa en un flujo
convectivo forzado a alta temperatura, tomando en cuenta la difusi6n de calor lon-
gitudinal. Para placas muy conductoras, se realiz6 una soluci6n asint6tica para
encontrar la distribuci6n de temperatura en la placa. Paralelamente se encontr6 la
soluci6nnumericausando una tenica de cuasi-linealizaci6n.Hay buena concordancia
entre los resultados numericosy los analiticos cerca del limite estudiado.

One of the most important problems in gas turbines development is the related with
the increase of the efficiency by increasing the working temperature at the exit of the
combustion chamber. However, this is limited by the blade material. Transpiration
cooling in this case is used in order to protect any solid material in contact with very hot
fluids. The injected cooling fluid travels through the porous material, being heated first
by the wall and later by mi..'<ingwith the hot fluid. The effect of wall transpiration on the
heat transfer process, has been studied numerically in several works [1] - [5]. Brouwers
in a recent paper [6] studied the heat and mass transfer between a permeable wall and a
porous medium, including the effect of injection and suction on the process. He uses the so
called film model, which is an approximation of the boundary layer flow. For an injection
parameter of B = 0.5. he obtained a relatively good correlation with an accuracy of 87%.
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as compared with the boundary layer model. Eckert and Cho [7] obtained numerically
the heat transfer characteristics of a porous wall in a turbulent boundary layer flow, using
the k - E: model. In none of these works, the longitudinal (parallel to the free stream) heat
conduction through the porous material has been considered. The objective of the present
work is to study both numerically and using asymptotic techniques the influence of the
injection of a cooling fluid through a porous wall in contact with a laminar convective
flow of a hot fluid. The longitudinal heat conduction through the wall is considered for
the different appropriate regimes.

The physical model analyzed is the following and showed in figure 1. A thin porous flat
plate of length L , thickness 2h is placed parallel in a forced flow of a incompressible fluid
with velocity Uoo and temperature Too. A transpiration cooling flow is added through the
porous plate, with a temperature To and an injection velocity Va. The thermal conduc-
tivity of the plate material makes it possible the heat conduction through the plate. Both
edges of the plate are assumed for simplicity to be adiabatic. Introducing the following
non-dimensional variables

(Tw - To) x y
Ow= (Too _ To);X = Liz = h (1)

(Tg - To) (T - To) ru: 7jJ
Og= (Too _ To); 0 = (Too _ To); 1/ = Y "7;iY; f = ,jUoovx (2)

the non-dimensional energy equations for the plate and the injected fluid are given by



Aw h 1 VoRe;;2 U=L h PI/C

a = >:LRe;;2,(3 = u:::-,Re= = -I/-'€ = L,Pr = T'
Here, 1 is the internal heat transfer parameter defined as 1 = Hhl(pcVo), where H is the
volumetric heat transfer coefficient between the plate and the injected fluid, with a local
temperature Tg• For large values of I' rapidly the injection fluid temperature reaches the
temperature of the plate, that is 0.., = Ow at z = 0 for 1 » 1. The governing equations
for the hot fluid take the classical nondimensional form [8]

&1 £82/ _ [81 821 _ 81821]
&r,3+ 2 &r,2 - X &r,8X&r, 8X &r,2

.!- 820 + £ 80 = [8180 _ 8180]
Pr 81]2 2 &r, X 87]8X 8X 81]

with the boundary conditions

1(0) + 2y'x(3(X) = 80w _ €2 [_1 80 _ (3Pr(Ow _ 0 )]
8z a v'x&r, 9

81
= &r, = 0 - Ow = 0 at 1] = 0 (6)

81- - 1 = 0 - 1 = 0 at 1] -. (Xl (7)
81]

Here the injection function (3(X) = VO-JRe=IU= is assumed to be a function of the
longitudinal coordinate X- We introduce the normalized function ,6(X) = (3(X) I B, such
as J~,6(X)dX = 1. B is then the strength of the injection process.

In this regime the non-dimensional transversal temperature variations in the plate are
very small, of order €2Ia. Integrating the energy equation across the solid and applying
the boundary conditions we obtain

d20w 1 80\ad"2 + ;;;a - Pr (30w= O.
X yX 1]~=o

In this regime, the final equation does not depend on the value of" Therefore, it does
not matter if the cooling fluid is heated by the wall or by the hot fluid. The result would
be exactly the same.

Asymptotic Limit a > > 1
For very large values of the parameter a compared with unity, the nondimensional tem-
perature of the plate changes very little in the longitudinal direction of order a-I. This
limit is regular and is to be analyzed using a-I as the small parameter of expansion. In
this limit, the nondimensional temperature of the plate can be obtained using by the
following asymptotic series



Introducing the above relationship into the nondimensional governing eq. (0.8), we obtain
the following set of equations

d20wO
dX2 = 0,

d20wn 1 8(}n-1 I--;[2=- IV~ +Pr,60w(n-I») forn2: 1,
X yX V'I '1=0

with the following adiabatic conditions at both edges

dOwn
-- = 0 at X = 0 and 1 for all n.
dX

Solving equations (0.10) and (0.12), gives a constant value for OOw, which can be found after
integrating the following higher order equation (0.11) with the corresponding adiabatic
conditions at both edges. In this form, the solution for Owo is given by

1 - 1 rl GodX
Owo = PrB with Go = 2 io ;;.

1+ 2Go(m.B.Pr) 0 y X

Here Go(X : m, B, Pr) corresponds to the nondimensional temperature gradient at the
surface of the wall obtained with the normalized conditions 00 = 0 at 7] = 0 and 00 = 1 as
7] .......•00. In this case we represent the normalized injection function as j3(X) = (1+m)xm.

Any other function can be included without any difficulty. A first integration of Eq. (0.11)
for n = 1, gives

dOwl = 2Go(1 _ OwO) [xm+1 _ 1 r X GodX] .
dX 2Go io ..;x

For m = -1/2, we obtain that Own = 0 for all n > O. For this specific injection function,
the leading order solution is valid for all values of a. A second integration gives

OWl = C1 + 2Go(1 - Owo) [~:: - 2~0 faXdX fa X G~] (15)

where C1 can be obtained by solving the higher order equation. For small values of B,
from eq. (0.13) and assuming a solution of the form

fo = foo + 2BXm+I/2(1 + m)( -1+ 91) + O(B2)

00 = 000 + 2BXm+l/2(m + l)cpI + O(B2)

we obtain to the leading order

d3 foo foo d2 foo _ 0 d d2000 Pr foo dOoo _ 0
dTf3 + 2 dTf2 - an dTf2 + 2 dTf - ,

with the well known solution for large Prandtl numbers

r(!2.dEJ.) 1/3'1 [-t3]
000 = 0.7765 io 4 exp 3 dt with J"(O) = 0.332.

The first order equations take the form



d3g1 100 d2g1 ( 1) dloo dgl d2
/00 d2

/00
dTJ3 + 2" dTJ2 - m + 2" dryd;) + (m + 1) dTJ2 gl = (m + 1) dTJ2 '

1 d2'PI lood'Pl ( 1) dloo dOo dOo--+--- m+- -'PI+(m+1)-gl = (m+1)-,
Pr dTJ2 2 dTJ 2 dTJ dTJ dTJ

with the boundary conditions

dgl dgl
gl = - = 'PI = 0 at TJ= 0 and - = 'PI = 0 for TJ-.. 00,

dTJ dTJ
The nondimensional temperature gradient then is given by

dOoo I 1/3 d'PIIGoo= d = O.3387Pr and GOl(m,Pr) = d
TJ '1=0 TJ '1=0

The average value of the nondimensional temperature gradient is up to the first order
terms

Go = Goo+ BGo! + O(B2)
By using eq. (0.13) and the previous result we obtain

O = [ _ Pr B Pr
2

B
2

( 2Gol(m, pr)) O(B3)] (24)
wO 1 2Goo + 4G60 1 + Pr + .

Fig. 2 shows the leading order solution Owo obtained numerically, as a function of the
injection strength B, for a Prandtl number of unity and different values of m. The
asymptotic solution, up to terms of order B, given by eq. (0.24), is also plotted. This
approximation is enough to describe with acceptable accuracy the leading order solution.
This function can be well correlated by

GOI ':=. -1.212 - 1.0487m + 0.436m2 - 1.1072(Pr -1),

for values of Pr ~ 1. Therefore up to the second order Ow! is given by

[

rn+O 2 ]
Owl = CI + BPr ~ + ; - 3'X3/2 + O(B3). (26)

After evaluating the constant CI by integrating the second order equation (0.11) we obtain
finally up to the second order

o = {1- Pr B Pr
2

B2 (1 2GOI(m,pr))
w 2Goo+ 4G60 + Pr

PrB [ GI(m+2) _ GI(3/2) 2G (xrn
+

2
-~ 3/2)1}

+ o2Goo (m+2)(m+5/2) 3 + ()()m+2 3X

+O(B2/0., B3), (27)

where GI, obtained using the Lighthill approximation, is given by

__ 4nGoo rl U4n/3-ldu
GI(n) - 3 Jo (1 - U)l/3'
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Figure 2: Leading order solution for the nondimensional temperature of the plate, ()wo,

obtained numerically, as a function of the injection strength B and three different values
of m. The Prandtl number is Pr = 1. The two-term asymptotic solution given by eq.
(0.24) is also plotted.

The nondimensional governing equations (0.4) to (0.8) were solved numerically using a
quasilinearization technique with a tridiagonal matrix solver using a mesh of 101 and 900
grid points in the longitudinal and transversal directions in the fluid phase, respectively.
Fig. 3 shows the nondimensional temperature distribution for different values of the
parameter a, for m = O. The injection strength assumed for these calculation was B = 0.1
and the Prandtl number was Pr = 1. For large values of the parameter a, the large
thermal conductivity of the wall does not permit large temperature gradients and the
temperature distribution is almast flat. As the value of a decreases, the temperature at
the leading edge increases, decreasing it at the trailing edge, thus producing important
temperature gradients in the longitudinal direction. For large values of a, the temperature
of the wall is decreases as the value of m increases, contrary of expected. However, as
the value of a decreases, the maximum temperature (at the leading edge) increases by
increasing the value of m. All this information can be obtained from the asymptotic
solution, given byeq. (0.27). The nondimensional temperature at the leading edge, ()wL.

is after eq. (0.27)

() "" Pr B _ Pr B [( 2G01(m, pr))
wi - 1 + 2Goo 1 + 2Goo 1 + Pr

+.!.[ G1(m+2) _Gl(3/2)}}.
a (m+2)(m+5/2) 3

Here, all the parametric dependence is explicitly written. Thus
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Figure 3: Nondimensional temperature of the plate as a function of the longitudinal
coordinate for different values of the longitudinal heat conduction parameter a and m = O.
The injection strength is B = 0.1 and the Prandtl number is Pr = 1.

BOWl PrB [ B
8m ~ 2Goo Goo(-1.0487 + .872m)

4Goo r1 u4rn/3+5/3du (4 1)]
+ 3a(m + 5/2) Jo (1 - u)1/3 3'ln(l/u) + (m + 5/2)' (30)

The first term in the right hand side of eq. (0.30) is negative, indicating that the tempera-
ture of the plate, to the leading order, decreases as the value of m increases. On the other
hand, the second term, indicating the effect of a, is always positive, showing that the
temperature at the leading edge increases as the value of m increases, for m > -1/2. For
values of m < -1/2, the temperature distribution on the plate inverts, being very small
at the leading edge but with the highest temperature at the trailing edge. In general,
the numerical results are in good agreement with the asymptotic solution close to the
asymptotic limits studied.
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