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RESUMEN
Be presenta un modelo numerico para la simulacion de infiltracion y flujo subteml.neo
unidimensional en medios porosos de saturacion variable. El algoritmo consiste en
una discretizacion de la ecuacion de Richards que combina una linealizacion temporal
usando un esquema de Picard con una aproximacion espacial utilizando un metodo
mixto h.ibrido de elementos finitos. El algoritmo es computacionalmente eficiente
y conservativo. Be incluyen ademas algunas caracteristicas relevantes del problema
algebraico asociado y un ejemplo numerico de infiltracion en una zona de llanura.

ABSTRACT
A numerical model for simulation of one dimensional infiltration and groundwater
flow in variably-saturated porous media is presented. The algorithm consists in a
discretization of Richards' equation that combines a temporal linearization using a
Picard iteration with a spatial approximation employing a hybridized mixed finite
element procedure. The algorithm is computationally efficientand mass conservative.
Some relevant features of the associated algebraic problem and a numerical example
of infiltration in a flatland region are also included.

Prediction of water movement in variably-saturated porous media is an important problem in
many branches of science and engineering. The water motion is assumed to obey Richards'
equation. This equation may be written in terms of pressure head (p-based form) or water
content (8-based form) as the dependent variable. Only the p-based form of the equation can
be used for simulating water flow in soils with saturated regions, but unfortunately this models
are inherently non-mass-conserving([l],[2]). Celia et al. [3]greatly improved the performance
of p-based models by using an appropiate temporal discretization of a mixed form of Rlchards'
equation. The approximations that are usually applied to the spatial domain are finite difference
and finite element standard methods.
The object of this work is to present a numerical model to solve the mixed form of Richards'
equation based on a global hybridized mixed finite element procedure. The algorithm produces
perfectly mass conservative numerical solutions and it is computationally efficient.



Wewill consider the numerical simulation of nnderground water flow in a porous domain n =
(0,1) with bonndary an = rB urT, where rB = {z = O}and rT = {z = I}. It will be assumed
that water flow obeys Richard's equation stated in the form

i) ae:)+v.q=o, zEn,

ii) q= -K(P)V(P + z), zEn,

where 8 and p are water content and pressure head, respectively; K is the hydraulic conductivity,
which is assumed independent of p for saturated soils but varies strongly with p in unsaturated
soils; z denotes the vertical dimension; and t is time.
Equation (1.i) states conservation of mass for the water phase and (1.ii) defines the water flux
q in terms of Darcy's law. Equations (1) are valid under the followingassumptions: the porous
media is nndeformable; the water density remains constant; and the air mobility is much greater
than the water mobility so that the air remains at essentially atmospheric pressure.
We will consider solving (1) with the followingbonndary conditions:

q. ii = qin(t), on rT,

q. ii= qout(t), on rB•

The function qin(t) represents the rainfall data, while the term qout(t) is used to represent the
effect of the regional flow.
To solve the differential problem (1)-(2) we also need additional relations between the dependent
variables 8 and p. We will use the followingwater retention and hydraulic conductivity models
proposed by van Genutchen [4):

8( ) 8, - 8r 8
p = [1+ (alpl)nJm + r,

{I - (alpl)n-l[l + (alpl)n)-mp
K(p) = K, ----[1-+-(a-lp-l)-n-)m-/-2---

where m = 1 - ~; Or and 8, are the residual and saturated water contens, respectively; K, =
K,(z) is the saturated hydraulic conductivity; and a and n are model parameters determined
by laboratory experiments ([5),[6)).

Time Discretization

Temporal discretization of (1) using a backward Euler method coupled with a Picard iteration
scheme may be written as follow:

on+l,i+l on
i) at - + v· ijn+l,i+l = 0, Z E fl,

ii) q nH,iH = _Kn+1,mV(pn+l,i+l + z), zEn,

where superscript n and i denote time and iteration level, respectively; tlt = tn+1 - tn is the
time step; 8nH:iH = 8(pnH,iH) and Kn+1,i = K(pn+l,i).



, In+1,i
being Cn+1" = ~ .

Using (5) in (4) and rewriting the equations in terms of the increment Opi+1 = pn+1,i+1 - pn+1,i

we obtain:

en+1,i _ en Cn+1,i , 'i) + __ op'+l + V . q n+1,,+1 = 0 z E 0,
tlt tlt '

ii) qn+l,H1 = _Kn+l,iV(pn+l,i + Opi+1 + z), z E O.

The next step will be define a spatial approximation of (6) using a global hybridized mixed finite
element procedure.

A Mixed Weak Formulation
Let us introduce some notation. For all nonnegative integers 8, let (H'(O), II . II,) denote the
usual Sobolev space. In particular, HO(O) = L2(0) and II 110is the usual L2-norm, with inner
product

(fJ, w) = In v wdz.

denote the inner product on L2(r), with the associated norm denoted by I· !o,r = ((.,.)r)1/2.
Let

v = {iiE H(div,O): v' iJ= 0 on afl},

W = {1/1 E L2(fl)},

provided with the natural norm.
Thus we can state a mixed weak formulation for problem (1)-(2) as follows: Assume that
W',pn) E V x W are known and if". iJ satisfy (2). Then, given (l/"+l,O,pn+l,O) E V x W find
(1/"+1,i+1 , opH1) E V x W such that 1/"+1,i+1 . iJ satisfy (2) and

i) (en+1~t- en, 1/1) + (C:
t

1
'iopi+l, 1/1) + (V· qn+1,i+1, 1/1)= 0,

i') (l/"+l'i+1) '+1 +1 '• Kn+1,i'v -(Op' ,V·V)_(pn ",V·V)+(VZ,V)=O,

In the next section we will solve approximately (7) using global and hybridized global mixed
procedures.

A Global Mixed and Hybridized Mixed Procedure
Let us consider a nonoverlapping partition Tf:% of fl into subintervals Ok = (Zk, ZH1):

N.
fl = U aflk; flk n fl, = 0 k i' 1.

k=l
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vh = {ii E H(div,O): iilo. E Vk
h and ii· iJ= 0 on n,

Wh = {1/1 E L2(O) : 1/110. E w/:},
where VI: = PI (Ok) and WI: = PO(Ok). Here Pm(Ok) denotes the polynomials of degree not
greater than m in Ok.

Then the global mixed finite element procedure for (7) can be stated as follows: Let «(,.n ,ph.n) E
Vh X Wh be given and such that ('.n. iJ satisfy (2). Then, given «('.n+l.0,ph.n+1.0) E Vh x Wh,
find «('.n+1.i+1, 6ph.i+1) E Vh X Wh such that ('.n+1.i+1 . iJ satisfy (2) and

(
8h.n+1.i 8h.n ) (Ch•n+1•i )i) t::.t-' l/J + ~6ph.i+1, l/J + (V . if n+1.Hl, 1/1)= 0,

ii) (('.n+l.Hl ii) _ (6ph.Hl V. ii) - (ph.n+l.i V· ii) + (Vz ii) = 0
Kh,n+l,i ' , , "

1/1 EWh,

(8)

In order to define a global hybridized procedure, following ([7],[8])we will remove the constrain
imposing the continuity of the normal components of the flux across the intedor boundaries
rk = aOk_1 naok, k = 2"" ,N •. We also introduce a space of Lagrange multipliers Ah which
elements Ah will be associated with the pressure head values at the interior boundaries rk• Thus,
let

Ah = {Ah : Ahlr. = A~ E PO(rk), k = 2, .. · ,N.},

V':-1 = {v E L2(0) : t110. E vI: and v· iJ = 0 on an}.
The global hybridized mixed finite element procedure is defined in the following fashion: Let
(Qh.n,ph.n,Ah) E V~1 X Wh X Ah be given and such that Qh.n. iJ satisfy (2). Then, given
(Qh.n+1.0, ph.n+1.0, Ah•n+1.O) E V~1 XWh XAh, find (Qh.n+1.i+1, ph.n+l.i+1, Ah.n+l.Hl) E V~1 X
Wh X A h such that Qh.n+1.i+1 . iJ satisfy (2) and

(
8h•n+1•i _ 8h.n ) (Ch.n+l.i )

i) t::.t ,l/J + ~6ph.i+1,l/J + (V· Q n+l.i+1,1/1) = 0, 1/1E Wh,
(9)

(
Qh.n+l.i+l ) N.

ii) ---- ii - (6ph•H1 V· ii) - (ph•n+1.i V· ii) + ""(Ah•n+1.i+l ii· iJ'IKh,n+l,' 1 , , L.J k ,,,,r1c

k=2

+ (Vz, v) =0, iiEVh,

N.
iii) L (ph, Qh.n+l.Hl . iJ)r. = 0, ph E Ah.

k=2

It can be shown that problem (9) has a unique solution. Moreover, the solution (Qh.n+1.i+1,
ph.n+1.i+1) E V~1 X Wh coincides with the solution «('.n+1.i+1,ph.n+1.i+1) E Vh x Wh of
problem (8) (7j.

Algebraic Problem associated with the Global Hybridized Procedure

Let us describe the algebraic problem associated with (9). First note that VI: = span{ cpf, cp{l},
and W/: = spanNk}, where



p:,n+l,i+l(Z) = p;:+l,Hlt/1k(Z), k = 1"" ,N.,
QZ,n+l,i+l(z) = Qf,n+l,i+lrpf(z) +Q~,n+l,Hlrp:(z), ,k = 1",' ,Nz'

8n+1,i 8n Cn+l,i
------h + --h Opi+l + QL,n+l,Hl + QR,n+l,i+l= 0

At k At k k k k '

Then, take v = rpf in (9,i) and v = rp: in (9,ii), and apply a trapezoidal rule to compute the
first term in (9.ii) to obtain

2KL,n+l,i h
i) QL,n+l,i+l= k [OpHl + pn+l,i _ An+l,Hl + ~] k = 2"" , Nz, (11)k hk k k k 2 '

2KR,n+l,i h
ii) QR,n+l,Hl = k [opHl + pn+l,i _ An+l,i+l _ ~] k = 1, ... ,Nz - 1.

k hk k k k-'-l :2 '

where K;,n+l,i and K:-,n+l,i are de hydraulic conductivity on the left and right borders of Ok
evaluated using A~+l,i and A~t~,i,respectively.
Next note that (9.iii) is equivalent to

Using (11) in (12) we get the following expresion for the the Lagrange multipliers in terms of
op;+l

A _ hkhk-l
k - h KL,n+l,i + h KR,n+l,ik-l k k k-l

Finally using (11) and (13) in (10) we obtain a tridiagonal system of equations for the unknowns
oP;+l,k = 1,'" ,Nz•

The steps in a full time iteration can be indicated as follow:
i) Give as initial guess for (Pk'+l,i, A;:+l,i)the previous time solution (Pk, Ai:).
ii) Solve the tridiagonal system to obtain op;+l, k = 1"" ,Nz.

ill) Update Lagrange multiplier A~+l,i+l using (13).
iv) Check the convergence for p;:+l,i+l. If it. has not been achieved, shift p;:+l'i using

p;:+l,i = p;:+l,i +Op;+l and start a new iteration ( go to ii».
v) When the converge has been achieved the fluxes can be computed using (11).



We implemented a dynamic time step control which significantly improved the CPU efficiency.
The time step is increased whenever the Picard scheme converge in less than 3 iterations; t.t is
decreased whenever the number of iterations is greater than 10. The automatic time adjustments
is stopped when the time step becames either smaller or greater than preselected minimun and
maximun step sizes.

The algorithm have been used to simulate the infiltration and variation of water table lavel in
a flatland region in the Province of Buenos Aires.
The hydraulic parameters of the soils were taken from the example in the work by Celia et al.
[3]. The domain lenght is 4 meters and the size mesh is 1 cm. The monthly average net rainfall
was used at the upper boundary (qin) and an extimated value of regional flux was applied at the
lower boundary (q""t). In order to start the numerical simulation a hydrostatic initial condition
with the water table at 2.6 meters from the surface was chosen. We simulate 8 years, from 1972
to 1979.
Figure 1 shows saturation profiles for severals times of the simulation. The evolution of water
table levels in the period and mesured field data are shown in Figure 2. Satisfactory agreement
is achieved.
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No plot of mass balance as a function of time is provided because the mass balance ratio (total
additional mass in the domain / total net flux into the domain) is always unity.

We have present a numerical algorithm for simulation of I-D infiltration and groundwater flow
in variably-saturated porous media.
The method solves the mixed form of Richards' equation using a Picard linearization in time and
a global hybridized mixed finite element procedure. Numerical results show that the algorithm
produces solutions that are essentially mass conservative. Implementation of dynamic time step
control greatly improved the CPU efficiency.
From the numerical example we can see that the algorithm can be a powerful tool to predict
water movement in flatlands regions.
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