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Abstract
The numerical simulation of waves in a dispersive porous solid saturated by either single-
pahse or a two-phase fluids is accomplished by solving a collection of non-coercive elliptic
problems in the space-frequency domain for a finite number of frequencies. For each
frequency, the space-frequency domain solution is computed approximately using non-
conforming finite element techniques. These numerical procedure is an iterative, hybridized
non-conforming domain decomposition algorithm. To obtain the space-time solution, an
approximation to the inverse Fourier transform is employed. Numerical examples showing
the implementation of the procedure are also presented.

1. Introduction.
The study of attenuation of seismic waves yields important information about rock prop-
erties, such as saturation levels, lithology, and porosity distribution. These effects are
more often described better in the space-frequency domain than in the space-time domain.
The object of this paper is to present a non-conforming iterl1tive finite element domain
decomposition procedure to solve a model problem describing the propagation of pressure
waves in a two-dimensional, bounded, dispersive fluid-saturated porous solid.
This formulation is designed for implementation in parallel architectures. The idea is to
solve in parallel a collection of non-coercive elliptic problems subject to absorbing boundary
conditions at artificial boundaries and then to obtain the space-time solution using an
approximation to the inverse Fourier transform.
This approach has already been presented by the authors and some of their colleagues to
find solutions for acoustic and elastic waves with another type of dissipative behaviour
and another technique to solve the algebraic equations arising in the elliptic problems
generated by the space-frequency domain approach; see [9),[8],[18],[5],[10] . Other domain
decomposition procedures related to these include [3},[4],[6],[12],[13],[14].
The organization of the paper is as follows. In §2 we present the differential model prob-
lem. Then in §3 we derive a formally equivalent domain decomposition at the differential



level and present an iterative hybridized non-conforming domain decomposition algorithm.
Finally, in §4 we present the results of experimental calculations.

2. The Differential Model.
Let n = (0,1)2 and r = 8n.
Consider the following problem. Find u(x,w) such that

-w2u(x,w) (1 )K(x,w) - \7.. r;(x)\7u(x,w) = !(x,w),

8u(x,w) .
8/.1 + lwa(x,w)u(x,w) = 0,

In (2.1), u(x, w) represents the Fourier transform of the pressure u( x, t), p(x) is the density,
/.I denotes the unit outer normal on rand I«x,w) is the complex bulk modulus of the
saturated material, which is given by the formulas
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In the above relations, ¢J = ¢J( x) denotes the effective porosity and J( f the bulk modulus
of the saturant fluid. Also, I<.(x,O) and J(m(X, 0) denote the relaxed bulk modulus of the
solid grains and the the dry matrix, repectively.
The coefficients Aj(w) and Bj(w), j = s,m, associated with a continuous distribution of
relaxation times, characterize the viscoelastic behaviour of the material and are given by
(see [15],[16])

B () 2 t -1 wh,i -T2,i)iw=---an ;
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In (2.3) T1,i and T2,i are given angular frequencies such that the quality factor Sj(w) =
~;~:lis approximately equal to Sav,i in the range T1~J ~ w ~ T2~J. Realistic values for
Sav,i in rocks are in the range 40 to 1000.
For the non-disipative case formulas (2.2) reduce to those derived by Gassmann in [11] ~
which are valid under the assumptions that in the low frequency seismic range the relative
motion between the fluid and the solid frame can be ignored, the shear modulus of the
saturated rock coincides with that of the solid skeleton and that all the paral space is filled
with a single-phase fluid (capillary forces are ignored). Formulas (2.2) are an extension of
those due to Gassmann obtained by using the Correspondence Principle [1].



In the case in which the porous solid is saturated by a two-phase fluid, The bulk modulus
of the saturated porous solid can be computed using the following expressions [17) :

f = Kf(K. - ~(m),
¢(K. - Kf)

1 1 (5Sn Sw)
Kf = ~ Kn + Kw '

5 = 1 + p~(Sn)SnSwjJ(w),
1+ p~(Sn)SnSwIKn)

Here Pc(Sn) denotes the capillary pressure function, and Sw, Kw, Sn and J(n are the
saturation and bulk modulus of the wetting and non-wetting phases, respectively.
Equation (2.l.ii) is a first order absorbing boundary condition obtained by imposing the
condition that the boundary r be transparent for normally arriving waves. Its derivation
can be found in [16). The complex coefficient a(x,w) in (2.l.ii) can be written as

It can be shown that problem is well posed [8).

3. An Iterative Hybridized Non-Conforming Finite Element Domain Decom-
position Procedure.
We will consider a nonconforming finite element approximate solution of (2.1) using a
nonconforming finite element space constructed using the following reference rectangular
element



Any q E Q is uniquely defined by its values at the nodal points ai, 1 ::; i ::;4.
Let Th be a partition of fl into squares (flj)l<j<J of side length h. Let fj = aflj n f
denote the boundary of flj and let fjk = aflj-n-aflk = fkj denote the common face of
adjacent elements flj and flk. (see Figure 1)

flj

Vk,j fk,j
-«---
Figure 1. Mesh description

Consider the decomposition of problem (2.1) over flj as follows: for j
Uj (X, w) satisfying

-W2Uj(X,w) (1 )
I«x,w) . - 'V. -p'VUj(x,w) = !(x,w),

aUj(x,w) .
a + zwa(x,w)uj(x,w) = 0,

Vjk
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-p aVjk = --p aVkj

Instead of (3.2)-(3.3) we will impose the nonconforming Robin transmission boundary
conditions

louk(mkj) . louj(mjk) .
- a +z,BjkUk(mkj)=-- a +z,BjkUj(mjk),
P Vlj P ~k

x E fkj c aflk,

with ,Bjk being a positive function defined on the interior boundaries fjk.



Since the object of the domain decomposition procedure is to localize the calculations,
we define the iterative procedure at the differential level in the following fashion: Given
u~ E H1(!1jk), find u'J E Hl(!1j) such that

C_},(w
2
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We will denote by (., ')j and (., .)rjk the inner products in L2(!1j) and L2 (f jk), respectively.
Also, let ((., '))rjk denote the approximation to the inner product (., ')rjk computed using
the mid-point rule; i.e., if mjk = mkj is the mid-point of the interface fjk, then

((u,V))rjk = Ifjkl(uv)(mjk),

where Ifjkl denotes the measure of fjk.

Next we will define a nonconforming hybrid finite element domain decomposition procedure
motivated by (3.4). For that purpose, we introduce a new set !I.h of Lagrange multipliers
A7k associated with the flux values -~~(mjk) at the mid-points mjk of the interior
faces fjk as follows:

!I.h = {A: Alrj' = Ajk E POCfjk) == !I.jd·
Also, set a nonconforming finite element space NCh as follows.

The iterative hybridized nonconforming finite element domain decomposition procedure is
defined as follows: choose (u~'o, A~ko, AZjO) E NCj X !I.jk X !I.kj arbitrarily. Then, compute

(u7,n, A7t) E NCj x !I.jk as the solution of the equations

It can be shown that iterative procedure is convergent [8].
The following alternatives are implemented for improving effectiveness of the algorithm:

i) Relaxation of the solution and the Lagrange multipliers then each iteration.
ii) To use an iterative red-black strips scheme for the calculations of the solution and

the Lagrange multipliers.



4. Experimental Calculations.

For the numerical experiments we were chosen a reservoir model and several location
parameters are shown in Figure 2.

.25 Km .75 Km 1 Km

Figure 2. Reservoir model

The source function !(x,w) was the Fourier transform of the function [19]

with e = 8/g, to = .8/10, 10 = 15 Hz being the main source frequency; J(x,w) was
filtered linearly between w. = 30 Hz and w' = 35 Hz. The iterative domain decomposition
procedure (3.5)-(3.6) was employed to compute the ap roximate solution U1k at a finite
number of frequencies between zero and w', and the time domain solution was obtained
using an approximation to the inverse Fourier transform. The constants Q In, 7"), and 7"2

in (2.3)-(2.4) were chosen to be 70, .1591 106 msec, and 103 msec, respectively, so that
Q(w) ~ Qm in the range [fJ, Iz] = [10-6 kHz, 103 kHz].

Outside the saturated region the compressional velocity at zero frequency was chosen to
be 4.0 Km/sec. In the saturated region the compressional velocity of the dry matrix was
taken to be 3.0 Km/sec. The saturant fluids were chosen to be either gas or brine or a gas-
brine inmiscible fluid with water saturation Sw = 0.7, and the following properties: pga. =
0.1 g/cm3, 1(gu = 0.0221010 dyn/cm2, pwater = 1.0 g/cm3, 1(water = 2.4 1010 dyn/cm2.

For both formations, the bulk modulus 1(. and density P. of the solid grains were taken
to be 1(. = 37.9 1010 dyn/cm2 and p. = 2.65 g/cm3. The porosity was 0.3.

Figure 3 shows a snapshot of the real part of the solution U1k(X,W) at 20 Hz.
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Figure 3. The real part of UJk(X,:.v)

Figure 4 shows a "slice" of the same solution along the straight path connecting Sand
R2 for different saturant fluids. The figure show the expected change in character of the
solution across the the change in the material properties.
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Figure 4. Slice of snapshot for 20 Hz at z=.5 Km

All the numerical tests were run in an IBM SP2 supercomputer with 16 nodes at Purdue
University.
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