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We consider the numerical solution of a junction problem involving bilateral restric-
tions and described by a variational inequality (V.I.). After a discretization phase,
the resulting discrete V.I. is solved by an algorithm which combines fast methods for
solving the bilateral obstacle problems and algorithms of Newton type for solving a
convex optimization problem on the set (R+)R+l. The algorithm is highly efficient
and finds the discrete solution in a finite number of steps.

En este trabajo consideramos la soluci6n numerica de un problema de junturas des-
cripto por una inecuaci6n variacional (I.V.), que involucra restricciones bilaterales.
Despu~ de una etapa de discretizaci6n, la LV. discreta resultante es resuelta por un
algoritmo que combina metodos rapidos para resolver problemas bilaterales con dos
obstaculos y algoritmos de tipo Newton para resolver un problema de optimizaci6n
convexa sobre (R+)n+l. El algoritmo es muy eficiente y encuentra la soluci6n dis-
creta en un numero de pasos.

This paper deals with the numerical computation of the state of a coupled system de-
scribed by PDE's. A fruitful way to analyze those systems is the variational inequality
(V.I.) approach, specially when there are state constraints or connections involving uni-
lateral or bilateral restrictions. This approach can be seen in [1], where several cases
are modelized and analyzed with the V.I. method. In this paper we study the numerical
analysis of a junction problem involving bilateral restrictions. Using the V.I. formulation,
we obtain through a discretization procedure a numerical method to compute the state
of the coupled system.
The original problem can be solved by a decomposition-coordination method (see [2] and
[3]; the method itself stems from the theory analyzed in [4]). Also the discrete problem
can be solved by a method of this type. Our procedure solves the coupled problem
through the solution of two simple independent problems - one of them a bilateral obstacle
problem and the other one a linear problem. These problems depend on some auxiliary
variables which are modified (by a fast coordination procedure) until the desired solution
is obtained.



The contents of this paper can be outlined us follows: Section 2 contains the description
of the problem and the characterization of its solution. Section 3 presents the relation
between the V.I. system and a minimum problem. Section 4 describes the discretization
and the numerical algorithm. In Section 5 we present an example of application.

We consider i11 = [-1,0] x [0,1] C ~2, i12 = [0,1] x [0,1] C ~2, ri = i11 n i12. Let
P : ~2 •.....•ri be the function defined by: P(XI,X2) = (O,X2)' Let m(·) E H2(i1d and
M(-) E H2(i1d be such that 0 ~ m(x) ~ M(x) ~ 1, 'Ix E nil mlr• = Mlr• = 1,
m(x) < M(x) in int(i1I). Let K C HJ(i1J) x HI(i12) be the convex set

The variational inequality

Find U = (UI,U2) E K such that

al(UI, VI - UI) + a2(u2, V2 - U2) ~ (fl' VI - UI) + (12, V2 - U2), V (VI, V2) E K, (3)

where II E L2(i1I), 12 E L2(i12) and (v, w) denotes the inner product in L2(i1I) or L2(i12).

Existence and uniqueness

Since K is a closed convex set and the bilinear form aJ(uI, vd +a2(u2, V2) is coercive then
there exists a unique solution U = (uJ' U2) of (3) .

Conditions verified by UI

1) Case of U2(P(X)) = 0 => UI(XI, X2) = 0, VXI E (-1,0) .



{

S+ = {x E °1: Ul(X) = U2(P(X)) M(x)} ,
S- = {X E °1: Ul(X) = U2(P(X)) m(x)} ,
C=OI\(S+US-) ,

then the following differential relations hold

{

AIUl 2: fl a.e. x E S-,
A1Ul ~!I a.e. x E S+,
A1Ul =!I a.e. x E C.

"Ix E f 1 = a01 \fi such that U2(P(X)) > 0

{
g;:(X) 2: 0,

an(X)~O,
QUI
an(X)=O,

if Ul(X) = m(x) U2(P(X)),

iful(x) = M(X)U2(P(X)),

if m(x) U2(P(X)) < Ul(X) < M(x) U2(P(X)).

The coupling equilibrium conditions at the interaction boundary fi

We present here the coupling conditions that hold at each point (0, X2) of the interaction
boundary fi. We denote 01(X2) = [-1,0] x {X2}.
We define, if U2(P(X)) = 0,

(E(Ul' U2)) (X2) = - ~~:(p(x)) - J Ud+ (x) M(x) dXl + J Ud- (x) m(x) dXl
fh(X2) fl,(X2)

and if U2(P(X)) > 0,

(E(Ul' U2)) (X2) =



We will suppose that the bilinear forms al and az are symmetric and we define the
functional J: HI(Dd EEl HI(Dz) -> R in the following way:

In consequence the variational inequality (3) is equivalent to the necessary and sufficient
conditions that characterize the point (UI, uz) which minimizes the functional J in the set
K.

Solution by decomposition

A hierarchical problem

We define the set K1 and, "Iu/ E K/, the associated sets KI(UI), Kz(u/)

K/ = {u/ E Ht(r;) : u/(x)::::: 0, "Ix E r;},
KZ(UI) = {uz E HI(Dz) : uz(O, xz) = u/(xz) , "IXz E r;}, (8)
KI(UI) = {UI E HI(DI) : u/(p(x))m(x) ~ Ul(X) ~ uI(p(x))M(x), a.e. x E Dd .

PI(U/): FinduI(u/) suchthat J(U1l0)='Pl(U/),
PZ(UI): Finduz(uI) such that J(O,uz)='PZ(UI)'

We can write K = U (KI(u/) EEl Kz(u/)) and in consequence
urEK1

(10)

(11)

( min J( UI, 0)) + ( min J(O, UZ))
UIEKI(Ur) uzEKz(ur)

'PI (U/) + 'Pz(ud = 'P(UI)'

(13)

(14)



min J(Ul,U2) = !Din 'P(UI),
(U',U2)eK ureKr

Properties of 'P

Properties of 'Pl.

• 'PI is differentiable and its derivative is Lipschitz continuous.
We define the following operator T1: WI = T1 (VI) if WI is the solution of the elliptic
system:

{

AIWI = 0, in C,
WI = VI M in S+,
wl=vIm inS-,

with this definition it is easy to check that the (Frechet) derivative of 'PI has the
following form

(D'Pl(UI),VI) = al(ul(uI),T1(VI)) - (h,T1(vI)) = (AIUl(UI) - h, TI(VI)). (18)

In an equivalent form we have D'Pl(UI) = Ti (A1Ul(UI) - h).

• Since Ul(UI) is a Lipschitz function of UI, from (18) we can check that D'Pl(UI) is
also a Lipschitz function of UI.

• 'P2 is a quadratic function

• The derivative of 'P2
We define the following operator T2 : W2 = T2 (VI) if W2 is the solution of the elliptic
system:

{

A2W2 = 0,
W2 = VI in ri, (19)
8w2 0 . r&= tn 2,

with this definition it is easy to check that the (Frechet) derivative of 'P2 has the
following form



The Hessians of <P1 and <P2

It can be proved that the Hessians have the following form

H1 = Ti A1T1 and H2 = T; A2T2.

If '1t is the derivative of <P, to find the minimum of 'P is equivalent to find the unique value
ill such that

min (ill, '1t(ilI)) = rnin (ill, V'<p)= 0, 'r/X2 E (0,1) ..

In fact, this condition is equivalent to condition (6).

The discretization procedure is similar for both domains 01, O2, Therefore, for the sake
of briefness, we will present only the case O2 and to simplify the notation we will omit
the subindex 2.

• We make a partition of the domain 0 in n2 squares with side h = ~.
n

• Each node will be identified by the notation Xi,j = (ih, jh) for i, j = 0, ... , n.

• We define the following characteristic functions

- X(X1,X2) = X[-1,lj(X1) x X[-1,1](X2)

- X~jO(X1,X2) = x(2n(x1 - ih),2n(x2 - jh))
Le. the characteristic function of a square with center in Xi,j and side h

- X~/(X1' X2) = x(2n(x1 - ih - ~), 2n(x2 - jh))

- X~/(X1,X2) = x(2n(x1 - ih),2n(x2 - jh - ~))
Le. the characteristic functions of squares with centers in (ih + ~,jh) and in
(ih,jh +~),both of side h.

• Let Xn = R(n+l)x(n+l) (the space of real functions defined on the discrete set

{Xi,j : i= 0, ... , n, j = 0, ... , n} .

• We define the discrete bilinear form a1(for u, v E Xn x Xn)

a~(u, v) = L (Ui,i+1 - Ui,j) (Vi,j+l - Vi,j)
i=O,n

j=O,n-1

+ L (Ui+1,j - Ui,j) (Vi+l,j - Vi,j) + ah2 L Ui,jVi,j
i=O,n-l i=O,n

j=O,n j=O,n

and similarly the form a2'



and J" :Xn EI7Xn ......•~

J"(Ul' U2)= ~a~(ul' Ul) - (ft, Ul)" + a~(u2,U2)- (12, U2)",

The discrete problem

In relation to (3) we define the associated discrete problem

P": Find(ii.~,ii.~) such that J"(u~,u~)= min J"(u~,u~). (20)
(u~,u~)EKh

In consequence, instead of solving problem P", we will solve the equivalent discrete prob-
lem Pl pP : Find u7 such that cp"(u7)= min cp"(u7)·

u~EK~

Remark 1 It can be easily proved that the discrete problem Pl inherits the same prop-
erties of the original one, i.e .

• cp~(u1)is a quadratic function ofu1 (and so, the gradient is linear and the Hessian
is constant).

• cp~(u1) is a convex junction (piecewise quadratic).



• cP~(uJ) is differentiable at any point.

• 'Vcp~(uJ) is Lipschitz continuous (and so, the Hessian H1(uJ) exists a.e. uJ E
(wt+l)·

• The Hessian H1(uJ) assumes only a finite number of values (at most 3nx(n+l) dif-
ferent values).

Also, PJ' can be decomposed hiemrchically. Our method is based in this decomposition and
follows the general methodology described in [5].

Numerical methods to solve PJ'
The problem PJ' is solved iteratively. At each step of iteration we solve problems Pf and
P2h; Pf is a simple linear problem (although of large dimension). Pf is a bilateral obstacle
problem, we solve it using the fast procedure presented in [6], [7], [8]. The computation of
the gradients 'VCPl (UI), 'VCP2(UI),and the Hessians H1 (UI), H2(UI) are also computed using
the obtained solutions (Ul(UI),U2(ud) and solving two additional simple linear problems
associated to the discretization of problems (17) and (19) .

Description of the Algorithm

In order to clarify the writing, from now on Ub U2 and UI will be the discretized vectors.
We will denote with t the pseudo-inverse.

Choose initial UI E (wt+1

Set K = In+l (Identity matrix)
Compute Ul(UI) and U2(UI), CP(UI),9 = 'VCP1(UI)+ 'VCP2(UI),
H = H1(UI)+ H2(UI)
\;/7] = 1, ... , n + 1, if (( UI)" = 0 and g" > 0) set K'I'I = 0
Compute Newton's direction: d = -g K (K' H K) t

\;/7] = 1, ... , n + 1, if ((UI)" = 0 and d" > 0) set K'I'I = 0
If K has changed at Step 4, go to Step 3
If IIdli = 0 (we are at the optimal point in a submanifold),
go to Step 10.
If IIdll > 0, set X = max{>.: UI + >'d E (wt+l},
set VI = UI + Xd and compute CP(VI)

. UI +VI
While CP(VI)~ CP(UI),set VI = --2- and compute CP(VI)
Set UI = VI. Go to Step 2
Compute 9 = 'Vcp(UI) and the Hessian H
\;/7] = 1, ... , n + 1, if ((UI)" = 0 and g" > 0) set K"" = 0
Compute d = -gK(K'HK)t
If Ild\\ = 0, Stop (we are at the global minimum), else go to Step 1.

Step 0
Step 1
Step 2

Step 3
Step 4
Step 5
Step 6

Step 7

Step 8

Step 9
Step 10



Understanding the algorithm

Problem PJ' consists in the minimization of a C1-piecewise quadratic function in the
convex set Q = (R+r+1. Our method applies a method of Newton type to this task.
Whenever it be possible, we try to follow the Newton's directions (computed in terms
of "il cp and the Hessian H) to obtain a decrement of the function cp. When this is not
possible (because we have arrived at the boundary of Q, Le. some components (UI)j are
0) we restrict the minimization to the manifold {v E Q : Vj = O}. In this form we obtain a
decreasing collection of manifolds (each one included in the next one). As this procedure
is obviously finite, the major loop of the algorithm finishes finding the minimum in a
manifold (characterized by a set of indices which identifies the components of UI with
value 0). Let us denote u'[, 1I = 1,2, ... the points which realize those minima. As the
algorithm generates a strictly decreasing sequence of values (cp (U'[) , 1I = 1,2, ... ) the
associated manifolds are always different. The number of possible manifolds is finite (at
most 2"+1 manifolds) and so it is impossible to repeat the major loop an infinite number
of times. We conclude that the algorithm finishes in a finite number of steps.

We have solved an example of application where the meshes covering 01 and O2 have
15 x 15 points. The datas and the obstacles appearing in (1) are a = 2, {3= 4 and

( ) 0 5 cos(21l"x) M( ) - /05 cos(21l"x)
m x,y = . + 2 x,y - V . + 2

Figure 1 shows the solution obtained. The associated computational effort comprises 683
seconds (in a Pentium PC 133 MHz) and 4 major loops.
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