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Este trabajo muestra la aplicacion del metodo de elementos finitos para resolver
problemas de flujos en aguas poco profundas, as! como una comparacion entre el uso del
metodo 'lumped' SUPG y el metodo de masa consistente SUPG. Un esquema explicito
ha sido desarrollado para la integracion en la capa temporal. Diversos ejemplos basados
en ecuaciones de aguas poco profundas unidimensionales i1ustran la precision y eficiencia
alcanzada con tales metodos. Este trabajo forma parte de un proyecto cuyo fin es
modelar problemas en aguas poco profundas incluyendo efectos de turbulencia usando
d.lculo paralelo.

This paper shows the application of a finite element method for solving shallow
water flow problems as well as a comparison between the use of lumped mass SUPG and
consistent mass SUPG method. An explicit scheme has been employed for the integration
in the temporal layer. Several examples based on the one-dimensional shallow-water
equations illustrate the accuracy and efficiency obtained with such methods. This work
is the first stage of a big project oriented to parallel computing to solve turbulent shallow
water equations.

Applications of the shallow water equation include a wide variety of coastal phenomena
such as drift and tidal current, pollutant dispersion, storm surge, tsunami wave propaga-
tion, drifts and transport. A great number of civil engineering projects in river hydraulics,
coastal water and estuaries require predictive models of the flow. The trend is towards
computational methods based on the one, or two dimensional shallow water equations.
The use of a fine spatial grid is often required in practical applications thereby necessi-
tating a very small integration time step if an explicit scheme is employed, having as a
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consequence, an unacceptable computing cost. Due to the current state of parallel com-
putation, explicit methods have found a new interest because of their great adaptation to
the parallel programming [1],[2],[3],[4],[5],[6].

In this paper an application of an explicit scheme in time using both Lumped SUPG
mass matrix or Consistent SUPG mass matrix in combination with the use of a stabilized
spatial discretization for solving shallow water flow problems has been examined[2],[7].
For simplicity we began adopting the lumped SUPG mass matrix scheme but our results
show a very diffusive behavior in the description of a typical test problem like a solitary
wave propagation along a one-dimensional channel with uniform bottom slope. On the
other hand and thinking about to be consistent with the stabilized SUPG formulation we
found that this scheme results to be unstable for the planar shallow water one-dimensional
equation. These facts have been the main motivation to the introduction of a ,6-parameter
in the mass matrix of the consistent SUPG method in order to recover part of its stability
taking advantage of its reasonable accuracy. We have confirmed this hypotesis by numer-
ical analysis arguments taking as a model equation the clasical unsteady one-dimensional
advective equation. Moreover, several numerical examples based on the one-dimensional
shallow-water equations illustrate the accuracy and efficiency obtained with such methods.

In order to analize the stability of numerical schemes obtained by the application
of the ,6-SUPG procedure in combination with an explicit scheme, let us consider one
of the most representative equations for modeling transport phenomena, the convective,
hyperbolic equation, written here as follows:

au au
at + aax = 0, 0 ~ x ~ L, t 2 0

where u is the unknown function of (x, t) and a is the convection speed (a > 0). When
linear elements are used, global matrices M and K will be obtained by assembling the
element matrices. Matrix Me may be diagonalized by using the row-sum lumping tech-
nique(see [8] for different choices of Me arising from numerical integration). When this
matrix is not diagonalized and the element matrices are assembled, a typical algorithmic
equation for an internal node m (consistent mass SUPG method) may be written as:

1 (1 a) (n+l n ) 4 (n+l n) 1 (1 a) (n+l n)2 :3+ 2' Urn - Urn +:3 Urn - Urn + 2 :3- 2' Urn - Urn =

~t[~~ (U;:'+l - 2u;:' + U;:'_l) - 2~ (u;:'+l - U;:'_l)]

In the practice we have used a = 1 and we have a compromise between the accuracy
and stability of this procedure. One of the way to guarantee the stability property of this
scheme is introducing a ,6 parameter in the mass matrix corresponding to the temporal
term. Based on this idea, using the ,6 -SUPG discretization, we obtain an explicit scheme
in the following form:



Replacing in the above equation the following field u;:' = ei(kmh-wn~t), where i is the
imaginary unit and k is the wave number in the x direction, we have an equation for the
interior nodes in which the function G is the amplification factor

G = 1 + C_Q_(c_os_(_k_h_) _-_1_)_-_i_si_n_(k_h_)
cos(kh)+2 _ i(3"sin(kh)
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where C is the Courant number. A scale of diffusivity has been obtained by means of the
introduction of ,3 parameter. By means of this scale the critical Courant number has been
determined. In the Figure l(a) the critical Courant values respect to the (3 parameter for
Q = 1 are shown. For (3 2: ,95, we obtain a critical Courant value less than 0,05. We
know that the "Consistent mass" SUPG method is obtained for (3 = 1 value, and their
representative curve is not included in the family of allowed curves that characterize the
(3- SUPG method.
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Figure l(b) shows the absolute values of amplification factor G. On this figure the
stability property for several (3 values is represented. We can appreciate that ,8- SUPG
method is unstable for (3 = 1 only.

Several strategies of SUPG method have been applied to a number of shallow water
flow problems, such that

One-dimensional flow along a channel of uniform width
Darn break problem
A solitary wave propagated along a channel with uniform bottom slope.
Water Flux over the shoal
Hydraulic jump a diverging rectangular channel



and others.
A solitary wave propagated along a one-dimehsional channel with uniform

bottom slope.

The following example is the analysis of a solitary wave propagated along a one-
dimensional channel with uniform bottom slope. The initial configuration of the solitary
wave and the variation of the depth is shown in Figure 2. The initial conditions are given
by:

1 1
TJ = a sech2-~(x --)

2 a
u = -(1 + a/2)TJ/(ax + 1])

where a = 0.1, g = 1.0, a = 1/30. Figure 3 shows the computed results by "Lumped
mass" SUPG method at left and (3 - "Consistent mass" SUPG method at right. For
this problem the exact solution has a peak value of 1.2 times the initial peak value. This
example allows to examine the numerical diffusivity property of several schemes[5],[6]. For
the "Lumped mass" SUPG method the computed results seem to include a significant
damping effect, which, as the number of subdivisions is increased(e.g. N = 160 or 320)
the results seem to improve. It is very noticeable that the (3 - "Consistent mass" SUPG
method produces better solutions even for relatively coarse grids (see figure 3(right) where
the peak value increased up to 1.2 times the initial peak value).

In this paper a technique to solve shallow water equations system has been examined.
The use of the SUPG method and an explicit scheme in the time discretization allows to
describe several physical phenomena for inviscid flow. An analysis about the stability of
this method for these equations system shows the convenience of using (3-SUPG method
in the solution of problems where others methods become very diffusive. A comparison
between several methods has been developed. The numerical tests show that the numerical
code describes adequately the physical phenomenon. The future work is oriented towards
large scale simulation of a shallow water model with turbulent effects.
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