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This paper reports the implementation of a full multigrid method for the solution of
pressure like 3D Poisson equations for control volume discretization over structured
grids. The method was tested on a four leve140x40x40 nodes grid and converges to
£2 - 10-5 for the residual. The implementation is faster than the SIPSOL method
used as a smoother, although there is space for performance improvements.

This paper reports the development of a full multigrid solver for Poisson equation. This is intended to be
used in a Large Eddy Simulation (LES) model for the Navier Stokes equation, also under development.
LES requires accuracy in the time evolution and three dimensionality. The applications in sight requires
geometrical complexity beyond the capabilities of many other fast solvers. Multrigrid methods appeared
as the right choice.

In the past decade various solvers for NS and other equations are based on some sort of multigrid
technique. Among them, we can cite Arad and Martinelly [1], Dawood and Burns [2], Muzaferija, Lilek
and Peric [6] and many others.

THE POISSON EQUATION AS THE PRESSURE EQUATION IN FRACTIONAL
STEPS METHODS

A Poisson like equation appears naturally in the application of fractional steps methods to the solution
of Navier Stokes equations. Fractional steps methods let us solve these three equations in stages, solving
for the velocities, disregarding the pressure term. This yields an approximate velocity field that does not
satisfy continuity. Enforcement of continuity yields a Poisson like equation as follows.

Navier Stokes equations can be compactly expressed as
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For incompressible flow, the continuity equation is

OiU. = 0
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and can be written as a Poisson equation for pressure. For the numeric solution of thes~ equations we
are going to use a very simple fractional step method. Let us consider Hi be the spatial dlsc~etlzatlOn of
Hi, and 6 be the central difference operator (actually control volume approach), then the discretizatIOn
equation for 1 is

pn+l _ pn (6)
6.p = ~x

the exact nature of the discretized Hi does not matter at this point. First we solve equation 1 for the
velocity at time n + 1, disregarding the pressure term. This approximate velocity doesn't satisfy the
continuity equation, so it will be denoted with an asterisk,

(pun - (PUi)n + 1 _ 6 P
~t •

furthermore, taking the numerical divergence of this equation we have

Momentum equations can be solved explicitly or implicitly. In cases when we are interested in close time
evolution, like in the case 0 Large Eddy Simulation, explicit methods are the adequate ones. Solving the
Poisson equation can take 50% of the computation time for a complete time step. Thus, a fast solver is
very important.

Many alternatives have been analyzed before cboseosing a solver. Fourier methods, cyclic reduction,
spectral methods. Early successful use of fractional step methods for Navier Stokes equations have
been achieved by Kim and Moim [4]. They solve the Poisson equation with direct methods based on
trigonometric expansion. This method is applicable when the equation has constant coefficients in space
and the grid lines coincide with the boundaries. Different procedures appliy for periodic, homogeneous or
inhomogeneous, Dirichlet, Neumann, or Robins boundaries condition. For the pressure Poisson equation,
the coefficients are only related with the discretization mesh. A more general problem, like a heat
conduction one, would need allowance of non constant coefficients. We also require the method to be
applied to non uniform meshes.

Cyclic reduction 0 Fourier analysis and cycled reduction is applicable when the equation is separable and
the mesh fits well with the boundaries, thus restrcting too much our applications.

Multigrid method is a class techniques to improve performance of iterative solvers, whose performance
do well even compared with spectral methods when applied in explicit codes for Large Eddy Simulations,
see Gavrilakis at al.,[5].



The base module of many multigrid implementation, and of this one in particular, is the two meshes
algorithm. Starting with a test field <1>8, we want to iteratively solve the following problem:

subject to boundary condition <I>¥.After a number of n iteration steps we got the <I>~approximation to
the solution. At this stage we can compute the residual or defect dh

fh=<I>~+<I>h

The linearity of the operator J2 makes it possible to build the following problem

J2fh = dh

subject to fh = 0 over r.
Iterative methods are fast to smooth grid size frequencies of the solution and very slow to any other,
thus, to accelerate convergence, multigrid methods solve the error on a coarser grid. To do this the error
problem is built on a grid of size H, twice as coarse as the first one. The source term, the defect, is
restricted to the coarser grid

where R is the restriction operator. Finally we solve the following problem

fJ2fH = dH

with boundary condition fH = 0 over r, starting with test field ftf = O. On the H grid we look for the
best solution we can afford. The error fH is prolonged to the fine grid in order to correct the solution
<I>~,thus

fh = pfH

where P is the prolongation operator. Then, we can correct the solution

If necessary, a new smoothing iteration can be done over <I>using the corrected value of <I>as the test field.
Figure 1 schematize these ideas.



The differential operator in equation 10 is actually the result of the usual Patankar's control volumes
method.
To build differential operator on the coarse grid we use the so called coarse discretization approxi-
mation. In this practice the 15k operator obtained by discretizing the differential equation on the coarse
grid. Here the coarse discretization approximation is also co'."patible coarse~ing, the ~oarsening follows
the same kind of discretization technique used for the fine grid problem. This IS a desirable property of
an algorithm to be used in connection with a Navier Stokes solver.

The coarse grid approximation is easier to implement, as it takes advantage of the same routine that
builds the 15h coefficients matrix. Additionally it allows the change of the restriction or interpolation
operators without any change in the coefficients matrix.

Most of the complexities of the implementation is in the the data structure to handle two grids, and
in the full multigrid approach any number of grids. For this, we have used the data structure of a
program published by Ferziguer and Peric [3]. Also we use their mesh generator and the solver used
as the smoother. All the rest of the implementation of the multigrid algorithm was programmed from
scratch.

To prolongue the values from the coarse to the fine grid, a prism defined by eight node in the coarse grid
is taken. The prism enclose eight control volumes of the fine grid. The values of the later are interpolated
from the first using threelinear interpolation. Formulas of common use in finite element practice are
used. Implementation is done with two subroutines; ftoe6 which swept the coarse grid grouping control
volumes in packets of eight and inter6 which does the actual interpolation. In this way, it is easy to
change to some extent the interpolation method, if so is required.

The same approach is used for the restriction. In this case, eight control volumes in the fine grid will
collapse in one control volume in the coarse grid. The eight nodal values on the fine grid are used to
interpolate threelinearly a nodal value in the coarse one. The same subroutine inter6 is used by ftoc6
to do the job. Although we have used the same algorithm for interpolate top to bottom or bottom to
top, this is not a requirement of the method.

The two level grid approach is also called a "V" cycle, and we can do it any time it is necessary. The" V"
cycle is schematize in figure 1. V cycles can be done in many levels too. The subroutine VCY implements
them on any number of levels and let control the number of smoothing swepts on the descending branch,
called pre-swepts, and on the ascending branch, called pos-swepts. It also let control the number of
swepts on the lower level grid.

It is well known that efficiencyof iteration methods improves when a test field near the solution is chosen.
It si possible to estimate a good test field on a coarse grid and then prolongue its value to a finer grid
where the" actual calculation of the problem" will be done. On the fine grid we can use the two grid
algorithm described before.

A further step is to go up any number of levels to reach the ultimate fine size of grid we desire for the
calculation. This algorithm is schematize in figure 2.

A full multigrid algorithm with any number of "V" cycles at each level and any number of levels was
implemented (although this must be set at compilation time). A subroutine called MGSIP2 implement
the initial test calculation on the first level and lunch a nested iteration of "V" cycles on all the levels of
grids. MGSIP2 can be used with any smoother, among them, Gauss Seidel, SIPSOL, CGSTAB , but
so far it has been tested with the first two.
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For the purpose of checking the accuracy and performance of the implementation, we have first solved a
pressure like Poisson equation subject to Neumann boundary conditions. Two sources have been tested:
a sinusoidal function f = sin(7I"x)sin(7I"y)sin(7I"z) and a uniform source located in a centered small cube.
The right solution has been achieved in both cases. Only the second one is reported here.

"r4gs.dat"
"r4sipsol.dat"

D ~ ~ 0 ~~~~~WOO
iterations

Table 1 shows the summary results of six typical runnings with the four level full multigrid algorithm on
an 40 x 40 x 40 grid. The program was compiled with g77 on a Linux System running on an AMD K6
II processor at 350 Mhz, with 251MB of RAM. The program was previously compiled with roo and ran
over a 80 x 80 x 80 mesh (five level full multigrid) on a Linux dual processor PC. We could not reproduce
the last calculation on our PC probably because a poor configuration.

We can compare performance with SIPSOL results shown in figure 3. To get an L2 norm of the residue
to 0.001 there is a need of 45 iterations, approximately. They take about 14.53 seconds. Compared with
run 1, ~ or 5, even though MG·SIPSOL is better, there is uot much of a difference. To get L2 = 0.0002 it
is required 65 iterations with SIPSOL, and it takes 16.88 seconds, while run 7 shows that the incremental
time requiered by MG-SIPSOL get the same accuracy is very small. On a finer grid these results show
even better.
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Run V cycles pre swepts post swepts bottom swepts £1 L2 time, sec.
1 1 1 1 1 0.47 0.008 9.16
2 2 1 1 1 0.16 0.001 10.48
3 3 1 1 1 0.10 0.0005 11.71
4 2 1 1 10 0.15 0.001 10.53
5 2 1 1 20 0.15 0.001 10.63
6 2 1 2 20 0.09 0.0005 10.88
7 2 1 5 20 0.04 0.0002 11.72
8 3 1 5 20 0.023 0.0001 13.47
9 4 1 5 20 0.015 7.9 10-' 15.24
10 7 1 5 20 0.005 2.810-' 20.63
11 10 5 5 20 0.0002 1.2 10-· 31.54

A set of subroutines that implement various kinds of multigrid methods have been implemented for 3D
Poisson like equations. These subroutines satisfy the basic requirement of convergence to the machine
accuracy level. They compare favorably against -5IPSOL in the test problem. We can expect that on
finer grids, the properties of multigrids methods will prevail against the use of a stand alone smoother.
Also, we think that there is ample space for improvement and optimization.
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