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ABSTRACT

We present a formulation to compute the local response of elastic and viscoplastic anisotropic
3D polycrystals based on the Fast Fourier Transform (FFT) method. This FFT method can be
applied to a heterogeneous periodic medium but also to structures in which the size of the
heterogeneities is small compared with the size of the specimen. It provides an exact solution
of the Lippmann-Schwinger equations and has better numerical performance than small-scale
FEM. The results of this n-site FFT formulation are here compared with the predictions
obtained for the same microstructure with the I-site selfconsistent model.

INTRODUCTION

In a recent work [I], Moulinec and Suquet developed a method to compute the overall linear
(elastic) and non-linear (elastoplastic) response of heterogeneous composites based on the
FFT algorithm. The FFT method - formulated, in principle, for a periodic medium - can also
be applied to non-periodic materials, if the size of the heterogeneities remains small compared
with the specimen size. The FFT method is a formulation of the n-site kind. It does not make
use of any homogenization assumption. It does provide an exact solution of the equilibrium
equation and has better numerical performance than small-scale FEM for the same problem.
Moreover, it avoids meshing and can make direct use of the microstructure images [1].
Briefly, the FFT method is based on computing the exact expression of the Green function of
a linear homogeneous comparison material. In this work, after reviewing the elastic FFT
formulation, we apply it to obtain the local response of a 3D elastic polycrystal with
anisotropic constituent crystallites. Afterwards, we present the extension of the FFT
formulation to the viscoplastic regime and a corresponding application to a viscoplastic
polycrystal with constituent grains deforming by dislocation glide. The viscoplastic extension
is based on an iterative solution for a representative volume element (RYE) of the viscoplastic
incompressible Lippmann-Schwinger equations, i.e. : linearized viscoplastic constitutive law,
equilibrium and incompressibility equations and periodic boundary conditions across the
RYE. In both cases (elastic and viscoplastic), the n-site FFT results are compared with the
predictions obtained with the I-site selfconsistent formulation for the same model polycrystal.

Formulation [I)

The local problem of an inhomogeneous elastic medium where the size of the heterogeneities
is small compared with the size of the specimen of interest can be solved by considering a
heterogeneous RYE with periodic boundary conditions, i.e. :
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Defining a homogeneous comparison medium of stiffuess C', system (1) is formally
equivalent to:
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(Jij.j =0

periodic boundary conditions

where the perturbation field associated with the heterogeneity is given by: t(x) = 8C(x): e(x)
with OC(x)=C(x)-C'. Combining the constitutive equation (2a) and equilibrium equation
(2b) we get:

Algorithm [I)

The 3D RVE can be divided into a regular grid {xd}defined by:



where Lq and Nq are the wavelength and the number of points along each space direction. If a
strainE is prescribed to the RYE, the algorithm can be initialized with: eO(x)=O and
O'O(x)=Co:E; \;]xE{xd}.Iteration(i+l) -provided ei,O" areknown-consistsin:

1- ti (xd) = a' (xJ- Co :ei (xd)

2- 0-' = fft{O'i) ; ti = fft{ti)

3- Convergence test: is equilibrium fulfilled?
4 ..:.,+' ;"0 -i 'th ":'i+'1 0- e = 1 : t Wl e (~=o)=
S_ei+' =fft-'(~i+') and O'i+'(xd)=C(xd):{E+t+'(xd))

In the latter, fft and fft-! denote the application of direct and inverse discrete Fast Fourier
Transform algorithms, respectively. Concerning step #3, a measure of the error in the
equilibrium condition can be obtained by taken Fourier transform to: O'ij.j= O. This leads to
the following convergence condition:

where <.> denotes spatial average and II00i«=0)11 is an appropriate normalization factor.

Results

Figure 1 shows a comparison
between the I-site elastic
selfconsistent (ELSC) model and
the n-site elastic FFT formulation.
Both calculations were performed
for a Cu polycrystal with 64
randomly oriented grains under
uniaxial tension. In the FFT case
the grains were cubes arranged in a
4x4x4 structure. Using a grid of
16xl6xl6 Fourier points, each
grain contained 64 points. The
ELSC gives one spot while the FFT
gives 64 spots per grain. The ELSC
predictions show a monotonic
behavior as a function of the

1.8 directional Young modulus with
negative slopes. The regression line
In the FFT case also shows a
negative but less pronounced slope.
We conclude that in the FFT case
not only the orientation but also the
neighbourhoods are playing a role

in dictating the local behavior. Finally, it can be observed that the overall dispersions of the
local strain predicted by both models are of same magnitude (± 20 % aprox.).
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Figure I: Relative longitudinal strain deviation calculated with
I-site ELSC and FFT vs. Directional Young modulus for a Cu
polycrystal under uniaxial tension. Straight line: linear
regre~sionofFE points.



Formulation

The local non-linear behavior of a anisotropic polycrystal deforming by dislocation glide can
be described in terms ofa tangent approximation [2]:

where in (13) we used the well-known viscoplastic law (see [2] for details). The
homogeneous comparison medium may also have a tangent behavior:

Lt~ijkluk.lj + "tij.j - P.i = 0

uk,k = 0
periodic boundary conditions

in RYE
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across RYE
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where 'l = e - E and cr = (1' - L' are the local fluctuation in strain-rate and deviatoric stress
respectively. System (14) can be also solved by means of the Green function method, Le.:

I
L~ijkl Gkm.Ij(x)-Hm.i(x)+Oirno(x-x')=O

Gkm.k(X)= 0

~I~j L'~ijkl Okm-i~/Im = Oirn

~/Jkm ==0
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~I 1 0

~

A;k ~2 x Gkm 0 1

~J 0 0
(20)

~, ~2 ~J 0 -iH, -iH2 -iHJ 0 0
'--v---""

A"(4X4)

Gjk =A;~-I

-iHj =A;j-'

j,k = 1,3

j= 1,3

p(x)= fH;)x-x') tij(x')dx'
R'

p = Hioj* tij :::) P = Hiojiij (23)

(24)

Algorithm

As for the reference medium, a Voigt average is assumed: L'~= \Mlgo, (x)). If a strain-rate E
is prescribed to the RVE, the algorithm can be initialized with: ~o(x)= 0 while to get O"°(x)

we solve E=Yo~m,(x)(m'(:~(~;O(x)J 'v'xe{xd}. With ~;,o"; being known, iteration

(i+ I) reads:

1- ti(Xd)=(ri(Xd)-L~ :~;(Xd)

2- «; = m{a';) ; p; = (-iH.)~j i~; 't;o=m{ti)

3- Convergence test: is equilibrium fulfilled? (see (25))

4- ~i+1= to: ii with ~i+II(~=o)= 0

5- ~i+1= m-I(~i+') and to get O"i+'solve: E + ~i+'(Xd)= YoLm'(xd) (m'(Xd~: aM,(xd))n
, to(xd)

Results

Figure 1 shows a comparison between the I-site viscoplastic selfconsistent (VPSC) [2] model
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Figure 2: Relative longitudinal strain-rate deviation calculated
with I-site VPSC and FIT vs. Taylor factor for a fcc
polycrySlal under uniaxial tension. Straight lines: linear
regression ofVPSC and FIT points.

and the n-site viscoplastic FFT
formulation. As in the elastic case,
both calculations were performed
for a fce polycrystal with 64
randomly oriented grains under
uniaxial tension. In the FFT case
the grains were cubes arranged in a
4x4x4 structure. We used a grid of
32x32x32 Fourier points, so each
grain contained 512 points. The
regression line of the VPSC points
displays a negative slope as a
function of the Taylor factor (TF).
(the VPSC output shows two
branches at high TF). As in the
elastic case, the regression line of
the FFT points also shows a
negative but less pronounced slope,
due to neighbourhood effects. The
overall dispersion of the local
strain-rate predicted by n-site FFT
formulation is twice higher than
in the I-site VPSC case.

CONCLUSION AND PERSPECTIVES

The FFT formulation has been applied to solve the local response of an elastic anisotropic
polycrystal and the method has been extended to the viscoplastic regime. The numerical
performance of the method (in a single-processor machine) is largely superior to a FEM
calculation since the FFT method does not involve inversions of large matrices as FEM does.
For instance, the viscoplastic FFT calculation whose results are shown in figure 2 (that
involved 323=32768 points) took 2 minutes in a PC Pentium III 450 MHz. Furthermore, the
FFT algorithm can also be parallelized [1]. In a coming paper [4] we will present a more
detailed description of the viscoplastic FFT formulation (Le.: influence of the spatial
resolution and the choice of comparison medium on the convergence, etc.) together with new
applications to more realistic microstructures in order to get predictions of texture
development, subgrain formation, intragranular distribution of stored energy, etc.
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