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In this work the use of non-conventional statistics for estimating the probability
density function of a given process is investigated. It is well known that the calcula-
tion of higher-order statistics, like skewness and kurtosis (which I call C-moments),
is very sensitive to the presence of outliers and very dependent on sample size. Re-
cently, the development of L-moments estimators (which are linear combinations of
ordered statistics) had a significant impact on the use of sample statistics to in-
fer probabilities. In contrast to C-moments, L-moments provide more robust and
consistent sample estimators. I take advantage of this fact to obtain superior non-
parametric pdf estimates via the principle of maximum entropy. The potential use
of alternative skewness and kurtosis measures is also explored. The results obtained
from simulation studies are discussed. .

Probability density functions (pdf) are of central importance in science and engineering. As-
sessing the pdf shape of a sample of data is useful, for example, for screening data for outliers,
describing information about asymmetry and tail weight, determining how well a distribution
fits the data, etc. One way of estimating the pdf is by means of the calculation of moments
(including mean and variance) from the available data, which are in turn used as constraints the
pdf must satisfy. The calculation of higher-order statistics, such as skewness and kurtosis (which
I call C-moments), is very sensitive to the presence of outliers and very dependent on sample
size. Recently, the development ofL-moments estimators (which are based on ordered statistics)
had a significant impact on the use of sample statistics to infer probabilities. In contrast to C-
moments, L-moments are more robust to the presence of outliers in the data, more consistent for
small samples, and less biased [4]. I couple these facts together with the principle of maximum
entropy to obtain conservative pdf's which are superior, in most cases, to C-moments derived
ones.

The method described in this work consists of selecting, among all distributions that agree with
the available information (sample moments), the one which has the least information content.
This is the so-called principle of maximum entropy [5, 2]. The usual procedure is to maximize the
entropy of the unknown distribution subject to constraints on its moments. The key is the use of
L-moments instead of C-moments to constrain the unknown pdf [12]. This paper also explores
the potential use of alternative skewness and kurtosis measures for estimating densities using
the maximum entropy method. These new measures, which I call S-measures for convenience,
were defined in [10]. The results obtained from several simulation studies with symmetric and
asymmetric distributions are discussed.

Quantifying the shape of a distribution is important in data analysis. Classical skewness and
kurtosis are two of the main indices that characterize shape and are included in most statistical
packages. The first one is associated with the symmetry (or lack of symmetry), and the second



one is usually associated to tail heaviness, pdf peakedness, bimodality, or any combination of the
three conceptsl. Classical skewness and kurtosis are higher-order moments which are difficult
to estimate when sample size is small, specially because they are too sensitive to moderate
fluctuations in the tail of the distribution (where outliers may be present). This is the main
motivation for developing new skewness and kurtosis measures which are more robust, less biased
and more consistent for small sample sizes.

Let X be a random variable with probability density function p(x) and mean p.. The r-th
moment about the mean of p( x) is defined as the expectation of (X - p.)', that is E[ (X - p.)'] =
f(x - p.)'p(x)dx. Denoting the variance by u2 = E[(X - p.)2], the usual indices of skewness,
../131,and kurtosis, th, are E[Z3] and E[Z4], respectively, where Z = ¥ is the standardized
variable, a random process with zero-mean and unit variance.

In a practical context, given the sample {XI, ... , xn}, skewness and kurtosis are estimated using
average values where p. is replaced by x = L:xi/n, and u2 by 82 = L:(Xi - x)2 In. So

../131 = .!:. ~ (Xi =- x)3 and {32= .!:. ~ (Xi =- X)4 .
n~ ~ n~ ~

i=l i=l

L-moments

Let Xl:l ~ ... ~ Xl:n be the population order statistics corresponding to random samples of size
n drawn from p(x) (note that these quantities are clearly distinct from values Xl:!> ••• ,Xl:n ob-
tained in actual sampling). TheL-moments of X are defined by lr = ~L:j;;;~(-1)j (rjl)E[Xr_j:r],
(r = 1,2, ... ), where Xj:n is the j-th smallest observation in a sample of size n. Note that we
are estimating a linear combination of order statistics. In fact the "L" in L-moments represents
exactly this linearity. Akin to the definition of conventional normalized moments, T:l = ~ and
T4 = ~ are statistics related to the skewness and kurtosis of the pdf, usually called L-skewness
and L-kurtosis.

Hosking [4] has shown that the first four L-moments are It = 1'0, 12 = 21'1-1'0, 13 = 6')'2-5')'1 +1'11>
and 14 = 20')'3 - 3D-r2 + 121'1 - 1'0, respectively, where 1'r = fo1 x(F)Fr dF are the probability
weighting moments (PWM) defined by [3], and F is the cumulative distribution. Finally, given
ranked samples of X, Xl ~ ••• ~ Xn, Landwehr et al. [7] have shown that the unbiased estimator
of 1'r is given by

_ 1 ~ (i-l)(i-2)···(i-r)
1'r = ; ~ (n _ l)(n _ 2) ... (n _ r) Xi·

.-1

Seier [IOJproposed a family of skewness and kurtosis measures of the form E(g(J(Z»], where 9
is a linear function, f is an odd or even continuous function, and Z is the standardized variable.
Some common skewness and kurtosis measures are identified as members of this family, such
as vlf3t = E[Z3J and th = E[Z4]. Two other interesting members, which I call S-skewness and
S-kurtosis for convenience, are lit = E[alZIZlb'j and ~ = E[a2b;IZlj, respectively. Here ai,

'How kurtosis is related to shape is far from clear (see for example [9, 1]).



b\, a2 and ~ are coustants that I choose to be: a\ = 2, b\ = 0.5, a2 = 5.7344, and ~ = e
(a2 = 5.7344 is to honor E[a2e-1Z1j = 3 for a normal distribution [10]).

Like in the computation of ../13\ and /32, (h and O2 are estimated using average values, i.e.

o = ~~ (x; - x)lx; - xl\/2
\ n ~ 83/2

s=l

d <L 5.7344 ~ _1.,:-'1
an V;l=--L...Je .•.

n i=l

At this point it is worth mentioning that often T:l and '4 are less seusitive to small changes in the
tails of the distributious than .../13\ and 132. Thus, L-measures are more robust to the presence
of outliers than the classical measures. Also '3 and '4 have less variability, are less biased and
are less sensitive to sample size than .../13\ and /32. On the other hand ../13[ and /32 tend to be
highly correlated when the distribution is skewed. This is because C-moments focus on the tails,
whereas '3 and '4 focus on the tails and on the peak of the distribution, respectively. These and
other issues motivated some authors to suggest the replacement of .../13\ and 132 by '3 and '4 in
all statistical packages [8]. S-skewness and S-kurtosis exhibit a strong correlation with '3 and '4·
As a cousequence, 0\ and 02 are also quite robust and cousistent shape indices, being suitable
alternative measures for quantifying shape [10]. For a detailed review the reader is referred to
[4,8,10].

A very useful method for couservatively assigning probabilities cousists of maximizing the en-
tropy of the unknown distribution subject to constraints on its moments [5]. The available
information is given by the natural constraint J p(x)dx = 1, and the moment coustraints
J h(x; r)p(x)dx =!Jr, (r = 1, ... , K), where h(x; r) = xr and K is the number of moments that
are taken into account, and J.'r are estimated from the data using sample statistics. Lagrange
multipliers are then used to solve this constrained optimization problem. The replacement of
h(x; r) by J(g(x)) for r = 3,4 only, allows one to use the same algorithm for setting S-skewness
and S-kurtosis coustraints iustead of the classical indices.

Because L-moments are defined in terms of F(x) rather than in terms of p(x), L-moments
constraints cannot be easily incorporated into the optimization problem through Lagrange mul-
tipliers [12]. Rather, the problem is transformed into an uncoustrained optimization problem
by minimizing the following cost function with respect to the unknown distribution:

~[P(x);F(x)] = -H +.0 [( 1-t P(X)dX) 2 + ~ (Ir - i,.r] ,

I now illustrate the behavior of the non-parametric density estimation using the maximum
entropy criterion with Co, L- and S-measures constraints. I choose four distributions that reflect
only kurtosis (Laplace and Logistic) and both skewness and kurtosis (Exponential and Log-
normal) (see for example [6]). Clearly, this is a rather limited investigation, but, I am primarily
interested in some broad rather than detailed conclusions. In all cases I set K = 4, and n = {20,
50, 100, 250, 500, WOO}. Also, for each sample I tested the methods under the presence of
outliers. For comparison, all examples show the pdf derived using a kernel approach, specifically
the Epanechnikov kernel [11].
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Figure 1: Pdfresults from numerical simulations. The curves show erm., equation (5). VB sample
size n for various distributions, with and without outlier. "C" (C-moments), "L" (L-moments),
"5" (S-measures), and "K" (Kernel) denote the method utilized.

Here, samples of different sizes are drawn from Laplace and Logistic distributions, without
outliers and with an outlier at X = 1.75. The results of the computations are shown in Figure 1
(top two rows), where I have plot the root-mean-square error, erma, between true and estimated
pdf's, after averaging 500 independent realizations, that is

1 500

erma = 500 L
j=1

where pt is the estimated pdf i-th coordinate point of the j-th realization. Figure 2 shows
the measures used as constraints in the estimation of the Laplace distribution for n = 50 and
n = 250 (500 realizations). Note that classical skewness and kurtosis are highly correlated.
Also, note that L-moments and S-measures are less sensitive to the presence of the outlier that
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Figure 2: Skewness vs kurtosis (row 1), L-skewness VB L-kurtosis (row 2), and S-skewness vs
S-kurtosis (row 3) for the Laplace distribution (500 realizations) using n = 50 (columns 1 and
2) and n = 250 (columns 3 and 4). Dashed lines represent theoretical values.

C-moments. This explains, in part, why L-moments and S-measures derived pdf's are better
estimates than C-moments derived ones, as illustrated in Figure 1, specially for the Laplace
distribution. Estimated Laplace distributions (n = 250) are displayed in Figure 3. Note how
well it has been estimated when using L-moments and S-measures. Conventional statistics fail
to characterize the peak of the distribution.

In these experiments, samples are drawn from Exponential and Log-normal distributions, with-
out outliers and with an outlier at X' = 1.75 and X = 2.5, respectively. Figure 1 shows erm•
as a function of n for the various methods. Note that L-moments derived pdf's are superior
estimates of the true pdf for almost all sample sizes. Besides, the sensitivity to the presence of
the outlier is smaller. Here, S-measures derived pdf's are not better than C-moments derived
ones. However, erms decreases faster with increasing n when using S-measures than when us-
ing C-moments under the presence of the outlier. Figure 4 displays the estimated Log-normal
pdf's (n = 250). It is clear that L-moments derived estimators are much more accurate than
C-moments derived ones, specially in the outlier case.

I have investigated the use of non-conventional statistics to obtain density estimators in the
maximum entropy method. The approach I have used is to compare the rms error between
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Figure 3: Laplace pdf estimates (n = 250). The shaded area is limited by 10 and 90 percentiles
of the results (500 realizations), while the dashed line shows the median solution and the solid
line the theoretical distribution.

the theoretical pdf and the corresponding estimates, when selecting alternative sets of moment
constraints. In general, L-moment constraints provide superior pdf estimates. C-moment con-
straints, on the contrary, provide limited accuracy even for large sample sizes, specially under
the presence of outliers. The performance of S-measures is intermediate. When using S-skewness
and S-kurtosis as constraints for the Laplace case, the results are excellent, but they tend to
be poor in the Log-normal case. However, I believe they represent an interesting alternative
to L-moments, because the latter lead to a more complicated optimization problem requiring
penalty terms to constrain the maximum entropy solution.
The results show not only how powerful it is the maximum entropy method for estimating the
pdf given a (possible small) data sample, but also how non-conventional statistics that measure
shape are utilized to obtain superior density estimates than using classical skewness and kurtosis.
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