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Sumirio: Apresenta.-se Ulna abordagem para avaJia.r urn estimador de confiabilidade a
partir de urn pequeno nv.mero de am08tras. A aoordagem pode Bel utilizada com amostras
reais de uma va.riavel de controle ou com resll1tados de uma dada func;30 de estado limite
obtid08 por meio de simul.al;Oesde Monte Carlo. A simplicidade do metodo sugere sua
aplicabilidade a normas de projeto que devam considerar aspectos probabilistioos.
Abstract: An approach to evaluate reliability estimates from a small number of samples
is presented. The approach can be used either with actual samples of a reliability indE'oXor
with the outcomes of a limit state function obtained through Monte Carlo Simulation. The
simplicity of the method suggests its applica.tion to account for probabilistic issues in design
codes.

The theory described in this paper is useful for solving engineering problems of prescribed relia-
bility. This means that it is aimed not at the exact calculation of the reliability - or optionally
of the proneness to failure - but at verifying whether or not an acceptable reliability has been
achieve.d by a given design. The evaluation of the reliability of complex systems, or in fact of any
system Characterized by very low proneness to failure, usually requires significant computational
efforts. State of the art in the area were presented by Schueller and Stix (1987) and Ayyub and
McCuen (1995).

Almost all methods flexible enough to be applicable to arbitrary systems, Le. systems involving
non-linear failure criteria and arbitrarily distributed variables, are based on Monte Carlo simu-
lation, or on variations thereof aimed at achieving maximum computational efficiency .. Although
the preferred approach is to determine the proneness to failure by simply counting the number of
simulations of a failed state, related to the total number of simulations, the possibility of fitting
a probability distribution to the limit state function remains as an appealing alternative, which
does not require having simulated observations of a failed state. One of the arguments against
the last scheme is that it passes through the selection of a mathematical model for the probability
distribution. This is a difficult and always sensitive issue, bound to have a perceptible influence
on the final result. Herein a method is proposed that enables the direct evaluation of an upper
bound for the proneness to failure, on the basis of the availa.bility of a.ny number of observations
or realizations of the limit state function.



Note that in reliability assessments of engineering systems this is often all that is needed: the
analyst is usually interested in verifying whether a given reliability threshold has been satisfied,
not in an exact reliability measure. Moreover, it has been argued by the authors (Riera et al.,
1995) that, on account of phenomenological uncertainties, the assessment of total proneness to
failure of engineering systems smaller than about 1 x 10-7 is, more often than not, irrelevant in a
decision making process, for instance, in deciding whether a system is safe enough.

In most practical cases, failure of engineering systems may be defined in numerical terms. A
single control variate can be chosen, or a mathematkal function of a set of control variates can
be adopted to quantitatively represent the state of failure, F. This representation can always be
rearranged in order to fit the form:

F: {XIX ~O}
such that the proneness to failure results defined by:

where the continuous variate X bears a physical uncertainty, represented by its unknown proba-
bility density function px(x) or its cumulative distribution function Px(x). Consequently:

PF = 1:px(x)dx = Px(O)

The reader acquainted with stnctural reliability analysis may call the variate X the safety margin
(the difference between capacity and demand) or even in a more mathematical vein the outcome
of a limit state function. Indeed, a mudl broader meaning can be assigned to X, for it can be any
measured or c-alculated control quantity related to a failure criteria.

From the considerations above, it can be rea.d1y concluded that the basic problem of reliability
estimation is the solution of equation 2, which is possible only if px(x) exists; the existence of
this continuous probability density is the first basic assumption of this work. The second basic
assumption is that, although px(x) is unknown, a set of samples from X is available.

The purpose of this paper is to apply the concept of Chernov Bound to provide a conserVative but
sometimes useful estimation of Pi, which at the same time is simple enough to be adopted as a
codified procedure. The main feature of the approach is the independence of an arbitrary choice
for px(x), which was found to have an undesirably strong effect on the final results.

The moment generating function, Gx(s) of a random variate X is defined as the expected value
of the function cox. Hence,

1+00

Gx(s)=E{cOX
} == -00 c"px(x)dx



MX,k = E {Xk} = dk~(Ol (6)

From the equations above, it can be concluded that the moment generating function can alter-
natively be defined by the moments of X, rather than by the probability density px(x). This is
possible by means of a MacLaurin expansion of Gx(s) around the value oS = 0:

00 k

Gx(s) = 1+L ~!Mx,k
"'~1

The moment generating function plays /I, central role in the Chernov Bound definition. Equations 4
and 7 offer two alternative ways of estimating Gx (,,), as discussed in Section 5.

(O"X)2Prob{IX - ttxl::; t:}::; -;-

where /tx and O"x are the mean value and the standard deviation of X, respectively. By setting
t: = p.x and defining Ox = O"x / p.x, the coefficient of v.matioD of X, eq. 8 provides a bound for the
solution of eq. 2 as: .

Unfortuna.tely, this bound can be regarded as too conservative for meaningful a.pplications, as
exemplified in Section 4.

The Chernov bound (Papoulis, 1984) can be seen as an improvement of t,he bound resulting from
Tchebychev's inequality. But while the latter makes use only of the two first statistical moments
of a random variate and leads to excessively conservative results, the former may consider as ma.ny
moments as available - or even all of them at once, depending on the chosen estimator for the
moment generating function - and yields values that ca.n be truly useful for engineering purposes.

The derivation of Chernov bound starts by considering that, for any real valued a;

1+00

Prob {Y? a} = ex fy(y)dy



then the following inequalities hold:

E{Y} = 1~yfy(y)dy 2': 1+00

71fy(y)dy 2':01+00 fy(y)dy

which combined with eq. 10 leads to the general inequality:

Prob{Y 2': o} ~ E{Y}
o

By replacing Y = eOx and a = eOPin eq; 13 it results:

Prob{eoX 2': eOP}~ e-oPGx(s)

But for s ~ 0 and X 2': 0 it is true that:

Prob {eOx 2': eOP} = Prob {X ~ ,8} , s ~ 0

and the so-called Chemov Bound is finally obtained as:

Prob{X ~,8} ~ e-oPGx(s), s ~O

Considering now the inicial purpose of solving equation 2, the application of Chemov bound for
,8 = 0 and non-positive values of s leads to:

where the smallest value of the moment generating function will provide the less conservative
bound. The task of finding the minimum of Gx(s) will be examined in the next sections.

Eq. 17 can be better understood with the aid of Fig. 1. It is seen tha.t, if s ~ 0, then e"" 2': 1 for
:c ~ O. Consequently:

Prob{X~O}=[ooPx(:C)d:C::; l:eo"'px(X)dX~ l:e"",px(x)dx=Gx(s) (18)

Hence, the surplus of Chemov bound is:

GX(S)-PF= I: (e""'-l)px(x)d:c+ 100

eOXpx(x)dx, s~O (19)

In this equation, the value of s can be tuned in order to minimize the right-hand side, in which the
first term increases for de(:reasing s, while the second term decreases for decreasing s. This implies
the existence of an optimum value that must be calculated a.ccording to the specific function px (x ).

In order to allow a. direct comparison of equations 9 with 17, and of both with an exact solution
of equation 2, a normal (Gaussian) random variate X is used in the following. In this case, the
probability density function is given by:

px(x) = _l_t>.xp rl-(;I; -1-'~)21J
ux-./2if 20'}



( q2 S2)
GX(S) ;:= exp Jtxs ++

It can be easily shown that this function has a minimum at s;:=-p,x/oi, which leads to:

[Gx(s)lmm ;:= exp ( - :~)

For example, let P,x ;:= f3 and qx = 1. A comparison of results is given in Table 1, where .(x)
is the standard Gaussian cumulative distribut.ion function. Table 1 highlights the advantage of
Chemovover Tchebychev bound. It is import.ant. to emphasize at this point that, for the initial
purpose of reliability estimation, the difference of approximately one order of magnitude between
the Chemov bound and the exact solution of equation 1 may be acceptable as acceptable in many
practical applications.

Another instructive comparison can be performed by using a uniformly distributed f"dJldomvariate,
such that:

where a may be a small positive real number that represents a shift to the left in the distribution.
In this case the moment generating function can also be analitically derived as:

1Gx(s);:= - {exp[(l- a)s] - exp(-as)}
s

For small values of a, this function has a minimum approximately located at s = -l/a, which
:utei repla.cing gives:



Table 1: Comparison among Chernov and Tchebychev bounds with exact solutions for
Prob {X .$ O}, in the case where X is a Gaussian variate with PX = fJ and Ux = 1.

Exact Chernov Tchebychev
fJ .(-f3) exp(-fl2/2) 1/ f32

3.090 1 x 10-3 8.4 X 10-3 105 X -10-3

3.719 1 x 10-4 9.9 X 10-4 723 X 10-4

4.265 1 x 10-5 11.2 X 10-5 5497 X 10-5

4.753 1 x 10-6 12.4 X 10-6 44265 X 10-6

Table 2: Comparison among Chernov and Tchebychev bounds with exact solutions for
Prob {X .$ O}, in the case where X is a variate uniformly distributed in the intervall [-a,1 - a].

Exact Chernov Tchebychev
a ~ae h/i2(o.s - a)1-2

lx103 2.7 x 10 3 335 X 10-3

1 X 10--4 2.7 X 10-4 3335 X 10-4

1 X 10-5 2.7 X 10-5 33335 X 10-5

1 X 10-6 2.7 X 10-6 333335 X 10-6

A comparisoll of the bound provided by eq. 25 with Tchebychev bound is presented in Table 2.
Which illustrates the clear superiority of Chernov bound. Note that here the error is not increasing
for smaller failure probabilities. Furthermore, for a -+ 0 the bound will also have zero as a. limit.

It must be clear that the neat advantage of the Chernov bound stems out from our knowledge
of the underlying distribution type, which is very rarely known in real engineering problems.
However, it is possible to estima.te Gx(s) from a limited number of samples, as will be discussed
in the following. Given now n samples {Xl, X2, ••• ,Xn} of a random variable X with probability
density px(x), an estimator for the expected value of the moment generating function Gx(.~) may
be straightforwardly defined as:

"EX;cxp(sXi) = 0
i:::::l



It is clearly seen that, if only positive samples of X are available, which is the moot likely case in
common practice, then there will be no value of s satisfying eq. 27. This me,&lSthat:

Jim Gx(s) = 0
_-+-00

Therefore the choice of s leading to a safe bound must be carried out with the aid of an auxiliary
criterion.

One of such criterion may be provided by the definition of an acceptable statistical error in the
estimator Gx(s). It can be shown that this error increases with Isl, in the same way as the
statistical error in the estimation of moments Mx,,, increases with the order Ie (see eq. 6).

Now, in order to estimate the variance of the estimator provided byeq. 26, the expected value
and the variance of Gx(s) should be calculated as:

E{Gx(s)}

V {Gx(s)}

E {exp ("Xi)}
V {exp(sXi)}

E{GX(s)}
V {Cx(s)}

1 ••
- EE{exp(sXi)}
n i=1
1 ••

2" EV {exp(sX.)}
n i=l

E{exp(sX)}
E{exp(2sX)} - E2 {exp(sX)}

(31)
(32)

Gx(s)

~ [Gx(2s) - Gi(s)]
n

(33)

(34)

Vl!2 {Gx(s)}
bG(S) = { • }

E Gx(s)

Combining equations 33, 34 and 35 and replacing the moment generating function by its estimator
finally results in:

n8&(s) = ~x(2s) - 1 (36)
Gi(s)

Eq. 36 can be used to choose the appropriate value of ., in two different ways: (1) For a given
number n of available samples, s is chosen in 9rder to respect an acceptable coefficient of variation
bG(S)' (2) For a specified coefficient of variation bG(s), the number n of samples to be taken is
chosen in order to reach the smallest possible value of Gx(s).
It must be aknowledged that the estimator SG has a statistical error even larger that Gx(s), for
it makes use of values of 2s. This fact, in view of eq. 28, may lead to difficulties in finding a truly
reliable bound. The problem is overcome by combining this method of estimation with a second
approach, presented in the following.



The moment generating function can be altemativelly estimated through its McLaurin expansion,
eq. 7. Each moment MX,k is estimated through eq. 7 as:

where only a finite number m of moments, i.e. terms in the expansion can be evaluated. It is
known that, if all samples Xi are positive and if the number m of considered moments is even,
then eq. 38 has a minimum for s < O. This minimum decreases as m increases, leading to the
same problem already faced in the direct estimation of Gx(s).
A criterium for specifying m may be proposed on the basis of the statistical error of Mx,k(m).
Hence, the expected value and the variance are, respectivelly:

E{MX,k(m)}

V {Mx,k(m)}

MX.k
1 m;;L (MX,2k - Mh)

k=o

Intensive numerkal experimentation has shown that the best results are achieved under the con-
dition:

where m is taken as t.he largest even integer smaller than mO.95' A mathematical justification of
this criterium is still missing.

Although application of eqs. 26 and 38 are straightforward, there are some important aspects of the
estimation procedure that are now clarified by means of a brief numerical example. The estimators
are applied to simulated samples of a Gaussian random variate X, with mean flx = 4.265 and
standard devia.tion Ux =1, leading to Prob{X SO} = 1 X 10-5• The theoretical bound is given
byeq. 21, with a minimum [Gx(s)lmin = 1.1 x 10-\ provided in Table 1.

It is observed that both estimators eqs. 26 and 38 are very sensitive to samples lying in the lower
tail of px (z), what C<'tnbe understood by recalling Fig. 1. For this reason, if simulation is used to
produce samples of Xl the simulation technique must be accurate in generating extreme values.
Hen<..-e,in~lt:aJ or using a random llWllberl:l genera-tm with maximum period, like a.u IBM System
/ 360 (Rubinstein, 1981), a.kind of numerical integration over the sample space should be carried



oo1סס0.0 Gx(S)
Figure 2: Comparison among theoretical and estimated moment generation function for the nu-
merical example. Each set of three curves are obtained for 128, 512 and 1024 samples, respectively.

out. This requires the use of a generator with prescribed periodicity (Bourgund et. al. 1986),
which provides random ordered samples in the form:

where n is the period and (1-1 [.J is the inverse standard Gaussian cumulative distribution. The
results obtained for n = 128, 512 and 1024 are presented in Fig. 2.

Two important conclusions are drawn from this example: (1) If the variate X is a function
X ;:::F (l't, 1'2, ... ) of random variables Y; with given distribution, the Chernov bound is better
estimated by means of a fair numerical integration scheme aimed at a good representation of
statistical moments and extreme values. Pure Monte Carlo simulation is not reconunended, mainly
in the case where only a small number of fnnction calls is allowed. (2) If the samples Xi are obtained
as measurements of a real quantity, the probability distribution may not be of any known type
and the sensitivity presented by the Chemov bound to extreme values is consistent with the goal
of the analysis.

The theoretical importance and potential practical usefulness of little known Chemov bound has
been demonstrated in this paper. In practical reliability assessments through simulations or other
numerical methods, the use of Chemov bound wonld free the analyst from often questiona.ble
assumptions concerning distribution models of the limit state function, or of the behavior of the
latter at the tails.

A criterium is proposed for estimating the bound, which allows the verification of very low prone-
ness to failure even in the case where a relatively sm<.'-]number of $","mp}ellof the limit 8tate
function is available. It has been verified that optimum efficiency is achieved with the utilization



of an specific numerical integration scheme, which is aimed a.t an accurate evaluation of sta.tistical
moments of the limit sta.te function. This subject is presently under further investiga.tions.
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