
A FINITE ELEMENT METHOD FOR THE APPROXIMATION OF
WAVES IN FLUID SATURATED POROVISCOELASTIC MEDIA

Juan E. Santos∗

∗Facultad de Ciencias Astronómicas y Geofı́sicas,
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Abstract. This work presents and analyzes a finite element procedure for the simulation of
wave propagation in a porous solid saturated by a single-phase fluid. The equations of mo-
tion, formulated in the space-frequency domain, include dissipation due to viscous interaction
between the fluid and solid phases and intrinsic anelasticity of the solid modeled using lin-
ear viscoelasticity. This formulation leads to the solution of a Helmholtz-type boundary value
problem for each temporal frequency. For the spatial discretization, nonconforming finite ele-
ment spaces are employed for the solid phase, while for the fluid phase the vector part of the
Raviart-Thomas-Nedelec mixed finite element space is used. Optimal a priori error estimates
for a standard Galerkin finite element procedure are derived.
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1 INTRODUCTION

The propagation of waves in a porous elastic solid saturated by a single–phase compressible
viscous fluid was first analyzed by Biot in several classic papers,1.2 Biot assumed that the fluid
may flow relative to the solid frame causing friction to arise. In the low frequency range, such
flow is of laminar type and obeys Darcy’s law for fluid flow in porous media. In the high fre-
quency range, Biot pointed out that a frequency correction factor had to be introduced in the
Darcy coefficient. Biot also predicted the existence of two compressional waves, which he de-
noted type I and type II compressional waves, and one shear wave. The three waves suffer
attenuation and dispersion effects in the seismic to the ultrasonic range of frequencies. The type
I and shear waves have a behavior similar to those in an elastic solid, with high phase velocities,
low attenuation and very little dispersion. The type II wave behaves as a diffusion–type wave
due to its low phase velocity and very high attenuation and dispersion. The experimental con-
firmation of Biot’s theory was done by Plona, who reported the observation of the three waves
in several papers.3, 4

This article presents and analyzes a finite element method for the appoximate solution of
Biot’s equations of motion stated in the space-frequency domain, including solid matrix dissi-
pation using a linear viscoelastic model and frequency dependent mass and viscous coupling
coefficients.

The algorithm employs the nonconforming rectangular element defined in5 to approximate
the displacement vector in the solid phase. The dispersion analysis presented in6 shows that
employing this nonconforming element allows for a reduction in the number of points per wave-
length necessary to reach a desired accuracy. The displacement in the fluid phase is approxi-
mated using the vector part of the Raviart-Thomas-Nedelec mixed finite element space of zero
order, which is a conforming space.7, 8 Under minimal smoothnes requirements on the solution
of Biot’ s equations of motion, the error analysis yields optimal apriori error estimates both in
L2(Ω) and H1(Ω), as well as an optimal error estimate in L2(∂Ω).

2 REVIEW OF BIOT’S THEORY

We consider a porous solid saturated by a single phase, compressible viscous and assume that
the whole aggregate is isotropic. Let u(1) = (us

i ) and ũ(2) = (ũ
(2)
i ), i = 1, · · · , d denote

the averaged displacement vectors of the solid and phases, respectively, where d denotes the
Eucliden dimension. Also let

u(2) = φ(ũ(2) − u(1)),

be the average relative fluid displacement per unit volume of bulk material, where φ denotes the
effective porosity. Also set u = (u(1), u(2)) and recall that

ξ = −∇ · u(2),

represents the change in fluid content.
Let εij(u

(1)) be the strain tensor of the solid. Also, let σij, i, j = 1, · · · , d, and pf denote
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the stress tensor of the bulk material and the fluid pressure, respectively. Following,9 the stress-
strain relations can be written in the form:

σij(u) = 2µ εij(u
(1)) + δij(λc ∇ · u(1) − α Kav ξ), (1a)

pf (u) = −α Kav ∇ · u(1) +Kavξ. (1b)

The coefficient µ is equal to the shear modulus of the bulk material, considered to be equal to
the shear modulus of the dry matrix. Also

λc = Kc −
2

d
µ,

with Kc being the bulk modulus of the saturated material. Following10, 11 the coefficients in (1)
can be obtained from the relations

α = 1 −
Km

Ks

, Kav =

[
α− φ

Ks

+
φ

Kf

]−1

Kc = Km + α2Kav,

where Ks, Km and Kf denote the bulk modulus of the solid grains composing the solid matrix,
the dry matrix and the the saturant fluid, respectively. The coefficient α is known as the effective
stress coefficient of the bulk material.

2.1 Modification of the elastic coefficients to introduce viscoelasticity

In order to introduce viscoelasticity we use the correspondence principle stated by M. Biot,9 i.e.,
we replace the real poroelastic coefficients in the constitutive relations by complex frequency
dependent poroviscoelastic moduli satisfying the same relations as in the elastic case. In this
work the linear viscoelastic model presented in12 is used to make some of the moduli in (1)
complex and frequency dependent. The set of poroviscoelastic moduli is computed using the
following formula:

M(ω) =
Mre

RM (ω) − iTM(ω)
,

where the symbol ‘M’ represents any of the moduli in (1) and the coefficients Mre is the relaxed
elastic modulus associated with M.13

The frequency dependent functions RM and TM , associated with a continuous spectrum of
relaxation times, characterize the viscoelastic behavior and are given by12

RM(ω) = 1 −
1

πQ̂M

ln
1 + ω2T 2

1,M

1 + ω2T 2
2,M

, TM(ω) =
2

πQ̂M

tan−1 ω(T1,M − T2,M)

1 + ω2T1,MT2,M
.

The quantity

tan(δM(ω)) =
Im(M(ω))

Re(M(ω))
=

1

QM(ω)
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is a measure of the viscoelastic behavior of the material. QM(ω) is called the quality factor.
The model parameters Q̂M , T1,M and T2,M are taken such that the quality factors QM(ω) are

approximately equal to the constant Q̂M in the range of frequencies where the equations are
solved, which makes this model convenient for geophysical applications. Values of Q̂M range
from Q̂M = 20 for highly dissipative materials to about Q̂M = 1000 for almost elastic ones.

2.2 The equations of motion

Let us consider a unit cube Ω ⊂ Rd of bulk material with boundary Γ = ∂Ω. Let ρs and ρf

denote the mass densities of the solid grains and the fluid and let

ρb = (1 − φ)ρs + φρf

denote the mass density of the bulk material. Then Biot’s equations of motion stated in the
space-time domain are1, 10

ρb
∂2u(1)

∂t2
+ ρf

∂2u(2)

∂t2
−∇ · σ(u) = f (1), (2a)

ρf
∂2u(1)

∂t2
+ g

∂2u(2)

∂t2
+ b

∂u(2)

∂t
+ ∇pf(u) = f (2). (2b)

The mass coupling coefficient g represent the inertial effects associated with dynamic interac-
tions between the solid and fluid phases, while the coefficient b include the viscous coupling
effects between such phases. They are given by the relations

b =
η

k
, g =

Sρf

φ
, S =

1

2

(
1 +

1

φ̄

)
, (3)

where η is the fluid viscosity and k the absolute permeability. S is known as the structure or
tortuosity factor. Above a certain critical frequency ωc the coefficients b and g become fre-
quency dependent.2, 14 This effect is associated with the departure of the flow from the laminar
Poiseuille type at the pore scale, which occurs for angular frequencies greater than ωc. The
value of ωc can be estimated by the formula

ωc =
ηφ

k ρf S
. (4)

Let u = (u(1), u(2)). When the frequency correction factor is included, the mass and viscous
coupling coefficients g and b become

g(ω) =
ρf

φ

(
S +

Fi(θ)

ω

η

k

φ

ρf

)
, b(ω) =

η

k
Fr(θ). (5)
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The function F (θ) = Fr(θ)+ iFi(θ) is the frequency correction factor proposed by Biot in2 as a
universal function representing frequency effects for arbitrary geometries. It has the expression

F (θ) =
1

4

θT (θ)

1 + 2i
θ
T (θ)

, T (θ) =
ber′θ + i bei′θ

berθ + i beiθ
(6)

with the argument θ being defined by

θ = ap (ωρf/η)
1/2 . (7)

In the formulas above, ber z and bei z are the real and imaginary parts of the Kelvin function of
the first kind and zero order.

The pore–size parameter ap in (7) has to be estimated from the data of the given formation.
Following,15 ap can be computed using the relation

ap = 2(A0k/φ)1/2, (8)

where A0 is the Kozeny–Carman constant16 which in agreement with15 may be taken to be 5.
Let the positive definite matrix P and the nonnegative matrix B be defined by

P =

(
ρbI ρfI
ρfI g(ω)I

)
, B =

(
0I 0I
0I b(ω)I

)
,

where I denoted the identity matrix in Rd×d. Next, let L(u) be the second order differential
operator defined by

L(u) = (∇ · σ(u),−∇pf(u))
t .

Then if ω = 2πf is the angular frequency, equations (2) stated in the space-frequency domain
become,1, 2

−ω2Pu(x, ω) + iωBu(x, ω) − L(u(x, ω)) = f(x, ω), x ∈ Ω. (9)

Let us denote by ν the unit outer normal on Γ. In the 2D case let χ be a unit tangent on Γ so
that {ν, χ} is an orthonormal system on Γ. In the 3D case let χ1 and χ2 be two unit tangents on
Γ so that {ν, χ1, χ2} is an orthonormal system on Γ. Then, in the 2D case set

GΓ(u) =

(
σ(u)ν · ν, σ(u)ν · χ, pf (u)

)t

, SΓ(u) =
(
us · ν, us · χ, uf · ν

)t
, (10)

and in the 3D case set

GΓ(u) =

(
σ(u)ν · ν, σ(u)ν · χ1, σ(u)ν · χ2, pf(u)

)t

,

SΓ(u) =
(
us · ν, us · χ1, us · χ2, uf · ν

)t
. (11)
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Let us consider the solution of (9) with the following absorbing boundary condition

−GΓ(u(x, ω)) = iωDSΓ(u(x, ω)), x ∈ Γ. (12)

The matrix D in (12) is positive definite. In the 2D case is given by the following relations, with
the obvious extension to the 3D case: D = A

1

2N
1

2A
1

2 , where N = A− 1

2M
1

2A− 1

2 and

A =



ρb 0 ρf

0 g −
(ρf )2

g
0

ρf 0 g


 , M =



λc + 2µ 0 α Kav

0 µ 0
α Kav 0 Kav


 .

3 A WEAK FORMULATION

For X ⊂ R
d with boundary ∂X , let (·, ·)X and 〈·, ·〉∂X denote the complex L2(X) and L2(∂X)

inner products for scalar, vector, or matrix valued functions. Also, for s ∈ R, ‖ · ‖s,X and | · |s,X
will denote the usual norm and seminorm for the Sobolev space H s(X). In addition, if X = Ω
or X = Γ, the subscript X may be omitted such that (·, ·) = (·, ·)Ω or 〈·, ·〉 = 〈·, ·〉Γ. Also, set

H(div; Ω) = {v ∈ [L2(Ω)]d : ∇·v ∈ L2(Ω)}, H1(div; Ω) = {v ∈ [H1(Ω)]d : ∇·v ∈ H1(Ω)},

with the norms

‖v‖H(div;Ω) =
[
‖v‖2

0 + ‖∇ · v‖2
0

]1/2
; ‖v‖H1(div;Ω) =

[
‖v‖2

1 + ‖∇ · v‖2
1

]1/2
.

It will be assumed that the solution of (9) with the boundary condition (12) exists and satisfies
the regularity assumption

‖u(1)‖2 + ‖u(2)‖H1(div;Ω) ≤ C(ω)‖f‖0, (13)

where f = (f (1), f (2)).
Let us introduce the space V = [H1(Ω)]

d
×H(div; Ω). Then testing equation (9) with v ∈ V ,

using integration by parts and the boundary condition (12) we conclude that the solution u of
(9) and (12) satisfies the weak form:

−ω2 (Pu, v) + iω (Bu, v) + A(u, v) + iω 〈D SΓ(u), SΓ(v)〉 = (f, v), (14)

v =
(
v(1), v(2)

)t
∈ V,

where A(u, v) is the bilinear form defined as follows:

A(u, v) =
∑

l,m

(
σlm(u), εlm(v(1))

)
−
(
pf(u),∇ · v(2))

)
, u, v ∈ V. (15)

Note that the bilinear form A(u, v) can be written in the form

A(u, v) = (E ε̃(u), ε̃(v)) = (Er ε̃(u), ε̃(v)) + i (Ei ε̃(u), ε̃(v)) , u, v ∈ V,
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where E = Er + iEi is a complex matrix. Furthermore, we assume that the real part Er is
positive definite since in the elastic limit it is associated with the strain energy density. On the
other hand, the imaginary part Ei is assumed to be positive definite because of the restriction
imposed on our system by the First and Second Laws of Thermodynamics. In the 2D case the
the matrix E and ε̃(u) are defined as follows, with the obvious extension to the 3D case:

E =




λc + 2µ λc α Kav 0
λc λc + 2µ α Kav 0

α Kav α Kav Kav 0
0 0 0 2µ


 , ε̃(u) =




ε11(u
(1))

ε22(u
(1))

∇ · u(2)

ε12(u
(1))


 .

Let us analyze the uniqueness of the solution of our differential model for the case of a unit
square Ω = (0, 1)2 in the (x1, x2)-plane to shorten the argument; the 3D case follows with the
same argument. Then, set f = 0 and choose v = u in (14). Taking the imaginary part in the
resulting equation, we obtain

ω (Bu, u) + (Ei ε̃(u), ε̃(u)) + ω 〈D SΓ(u), SΓ(u)〉 = 0.

Using that Ei and D are positive definite and B is nonnegative, we conclude that

u(2) = 0, u(1) = 0, u(2) · ν = 0, Γ. (16)

Consider the part Γ1 of the boundary Γ defined by Γ1 = {x = (x1, x2) ∈ Γ : x1 = 1, 0 < x2 <
1}. Notice that (16) imply that

∂u
(1)
1

∂x2
=
∂u

(1)
2

∂x2
= Γ. (17)

Next, thanks to (12) GΓ(u) = 0, which leads to the following relations on Γ1

σ11(u) = (λc + 2µ)
∂u

(1)
1

∂x1
+ α Kav∇ · u(2) = 0, (18)

σ12(u) = µ
∂u

(1)
2

∂x1

= 0, (19)

−pf (u) = α Kav
∂u

(1)
1

∂x1
+Kav∇ · u(2) = 0. (20)

Now, since µ 6= 0 and in any physically meaninful situation the determinant of the 2 × 2 linear

system for
∂u

(1)
1

∂x1
and ∇ · u(2) formed by equations (18) and (20) does not vanish, we conclude

that

∂u
(1)
2

∂x1
= 0,

∂u
(1)
1

∂x1
= ∇ · u(2) = 0, Γ1. (21)
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The same argument applies for the validity of (17) and (21) in the rest of the boundary. Thus
by the Cauchy-Kowalevsky theorem u(1) = 0 in a neighborhood of any point on Γ where
the coefficients are analytic and with the possible exception at the corners. Then the unique
continuation principle17 implies

u(1) = 0, Ω. (22)

Now from (16) and (22) we have uniqueness. The 3D case follows with the identical argument.
We summarize the result in the following theorem.

Theorem 3.1. Problem (9) with (12) has a unique solution for any ω 6= 0.

For the analysis that follows a similar result can be demonstrated for the adjoint problem to
(9) and (12). Thus, the solution ψ =

(
ψ(1), ψ(2)

)t of

−ω2Pψ − iωBψ − L∗(ψ) = F, Ω, (23a)
G∗

Γ(ψ) − iωDSΓ(ψ) = 0, Γ, (23b)

is unique and satisfies the regularity assumption

‖ψ(1)‖2 + ‖ψ(2)‖H1(div;Ω) ≤ C(ω)‖F‖0. (24)

In (23a),
L∗(ψ) =

(
∇ · σ∗(ψ),−∇p∗f (ψ)

)t
,

where σ∗(ψ) and p∗f (ψ) are defined as in (1) but using the complex conjugates of the coefficients.
Similarly, G∗

Γ(ψ) is defined as in (2) but using σ∗(ψ) and p∗f (ψ) in those definitions. As before,
existence for (23a)-(23b) will be assumed.

4 THE FINITE ELEMENT PROCEDURE

The numerical procedure will be defined and analyzed in two dimensions and for rectangular
elements. With minor changes the arguments can be applied for the case of triangular elements
and the three dimensional case. See5 for the definition of the nonconforming spaces for triangles
in the 2D case and the case of tetrahedrons or cubic elements in the 3D case.

Let T h(Ω) be a nonoverlapping partition of Ω into rectangles Qj of diameter bounded by
h such that Ω = ∪J

j=1Qj . Denote by ξj and ξjk the midpoints of ∂Qj ∩ Γ and ∂Qj ∩ ∂Qk,
respectively.

Let us denote by νjk the unit outer normal on ∂Qj ∩ ∂Qk from Qj to Qk and by νj the unit
outer normal to ∂Qj . Let χj and χjk be unit tangents on ∂Qj ∩Γ and ∂Qj ∩∂Qk so that {νj, χj}
and {νjk, χjk} are orthonormal systems on ∂Qj ∩ Γ and ∂Qj ∩ ∂Qk, respectively.

To approximate each component of the solid displacement vector we employ the noncon-
forming finite element space as in,5 while to approximate the fluid displacement vector we
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choose the vector part of the Raviart-Thomas-Nedelec space7, 8 of zero order. More specifically,
set

R̂ = [−1, 1]2, N̂C(R̂) = Span{1, x̂1, x̂2, α(x̂1) − α(x̂2)}, α(x̂1) = x̂2
1 −

5

3
x̂4

1.

with the degrees of freedom being the values at the midpoint of each edge of R̂. Also, if
ψL(x̂1) = −1+x̂1

2
, ψR(x̂1) = 1+x̂1

2
, ψB(x̂2) = −1+x̂2

2
, ψT (x̂2) = 1+x̂2

2
, we have that

Ŵ(R̂) = Span
{
(ψL(x̂1), 0)t, (ψR(x̂1), 0)t, (0, ψB(x̂2))

t, (0, ψT (x̂2))
t
}
.

For each Qj , let FQj
: R̂ → Qj be an invertible affine mapping such that FQj

(R̂) = Qj , and
define

NCh
j = {v = (v1, v2)

t : vi = v̂i ◦ F
−1
Qj
, v̂i ∈ N̂C(R̂), i = 1, 2},

Wh
j = {w : w = ŵ ◦ F−1

Qj
, ŵ ∈ Ŵ(R̂)}.

Setting

NCh = {v : vj = v|Qj
∈ NCh

j , vj(ξjk) = vk(ξjk) ∀(j, k)},

Wh = {w ∈ H(div; Ω) : wj = w|Qj
∈ Wh

j },

the global finite element space to approximate the solution u of (14) is defined by

Vh = NCh ×Wh.

In order to state the approximation properties of Vh let us introduce the space

Λ̃h
s =

{
λ̃h

s : λ̃h
s |∂Qj∩∂Qk

= λ̃h
s,jk ∈ [P0(∂Qj ∩ ∂Qk)]

2 ≡ Λ̃h
s,jk, λ̃h

s,jk + λ̃h
s,kj = 0

}
,

where P0(∂Qj ∩ ∂Qk) denotes the constant functions defined on ∂Qj ∩ ∂Qk. Also, define the
projections Πh : [H2(Ω)]2 → NCh and Ph : [H2(Ω)]2 ×H1(div; Ω) → Λ̃h

s by

(ϕ(1) − Πhϕ
(1))(ξ) = 0, ξ = ξjk or ξj, (25)

〈σ(ψj)ν − Ph(ψj), 1〉B = 0, B = ∂Qj ∩ ∂Qk or ∂Qj ∩ Γ, (26)

for all ϕ(1) ∈ [H2(Ω)]2 and ψ ∈ [H2(Ω)]2 ×H1(div; Ω). Then, standard approximation theory
implies that, for all ϕ =

(
ϕ(1), ϕ(2)

)t
∈ [H2(Ω)]2 ×H1(div; Ω),

[
‖ϕ− Πhϕ‖0 + h

(∑

j

‖ϕ− Πhϕ‖
2
1,Qj

) 1

2

+ h2

(∑

j

‖ϕ− Πhϕ‖
2
2,Qj

) 1

2

+ h
1

2

(∑

j

|ϕ− Πhϕ|
2
0,∂Qj

) 1

2

+ h
3

2

(∑

j

|σ(ϕj)νj − Phϕj|
2
0,∂Qj

)1/2
]

≤ Ch2
(
‖ϕ(1)‖2 + ‖∇ · ϕ(2)‖1

)
. (27)
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Next, let us define the projection Qh associated with the displacement vector of the fluid
phase as follows:

Qh : [H1(Ω)]2 → Wh : 〈(Qhϕ− ϕ) · ν, 1〉B = 0,

B = ∂Qj ∩ ∂Qk or B = ∂Qj ∩ Γ.

Then, it follows from7, 8 that

‖ϕ− Qhϕ‖0 ≤ Ch‖ϕ‖1, (28)
‖ϕ− Qhϕ‖H(div;Ω) ≤ Ch (‖ϕ‖1 + ‖∇ · ϕ‖1) . (29)

Set

Ah(u, v) =
∑

j

[∑

l,m

(
σlm(u), εlm(v(1))

)
Qj

−
(
pf (u),∇ · v(2))

)
Qj

]
(30)

and
Θh(u, v) = −ω2 (Pu, v) + iω (Bu, v) + Ah(u, v) + iω 〈D SΓ(u), SΓ(v)〉 .

Then the global finite element procedure is defined as follows: find uh =
(
u(1,h), u(2,h)

)t
∈ Vh

such that

Θh(u
h, v) = (f, v), v =

(
v(1), v(2)

)t
∈ Vh. (31)

Let us denote by u(m,h)
j , j = 1, 2, , the components of the vector u(m,h), m = 1, 2.

Theorem 4.1. Problem (31) has a unique solution for any ω 6= 0.

Proof. Set f = 0, choose v = uh in (31) and take the imaginary part in the resulting equation
to obtain

ω
(
Buh, uh

)
+
∑

Qj

(
Ei ε̃(u

h), ε̃(uh)
)

Qj
+ ω

〈
D SΓ(uh), SΓ(uh)

〉
= 0. (32)

Since each term in the left-hand side of (32) is nonnegative, in particular we have that
(
Buh, uh

)
=

0, and the argument in the proof of Theorem 3.1 can be repeated to show that

u(2,h) = 0, Ω. (33)

To show that u(1,h) = 0, take an element, say Q1, among the four elements which intersect Γ at
the vertices of Ω; two faces ofQ1 are contained in Γ. After a proper transformation, without loss
of generality we can assume that Q1 = (−1, 1)2 with the faces ΓR = {(x1, x2) ∈ Γ : x1 = 1}
and ΓT = {(x1, x2) ∈ Γ : x2 = 1} contained in Γ. Set

u
(1,h)
1 = a1 + b1x1 + c1x2 + d1(α(x1) − α(x2)).
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Since the boundary term in (32) must vanish and the matrix D is positive definite, we conclude
that SΓ(uh) = 0 and consequently u(1,h)(x1, x2) must vanish on ΓR ∪ ΓT . In particular at the
mid point of ΓR ∪ ΓT we have

u
(1,h)
1 (1, 0) = a1 + b1 −

2

3
d1 = 0, u

(1,h)
1 (0, 1) = a1 + c1 +

2

3
d1 = 0, (34a)

u
(1,h)
2 (1, 0) = a2 + b2 −

2

3
d2 = 0, u

(1,h)
2 (0, 1) = a2 + c2 +

2

3
d2 = 0. (34b)

Next, since the second term in the left-hand side of (32) is nonnegative and the matrix Ei is
positive definite, for (x1, x2) ∈ Q1 we must have

ε11(u
(1,h)) = b1 + 2d1

(
x1 −

10

3
x3

1

)
= 0, (35a)

ε22(u
(1,h)) = c2 − 2d2

(
x2 −

10

3
x3

2

)
= 0, (35b)

ε12(u
(1,h)) =

1

2

[
c1 + b2 − 2d1

(
x1 −

10

3
x3

1

)
+ 2d2

(
x2 −

10

3
x3

2

)]
= 0. (35c)

From (34) and (35) it follows that u(1,h)
1 |Q1

= u
(1,h)
2 |Q1

= 0. Let us take an element Q2 adjacent
to Q1 that intersects Γ and has a common face Γ12 with Q1. Then u(1,h)

1 and u(1,h)
2 vanish at the

mid points of Γ2 and Γ12 and ε11(u
(1,h)), ε22(u

(1,h)) and ε12(u
(1,h)) vanish identically on Q2, so

that repeating the above argument we verify that

u
(1,h)
1 |Q2

= u
(1,h)
2 |Q2

= 0. (36)

Repeating the argument, one can show that (36) holds for all elements with a face contained in
Γ. Next stripping out such boundary elements, take a boundary element with two faces common
with the corner of stripped out domain and repeat the argument to show the validity of (36) for
those elements. Then continue the process until the domain is exhausted. This completes the
proof.

5 A PRIORI ERROR ESTIMATES FOR THE GLOBAL PROCEDURE

In this section, we derive an error estimate between the solutions u and uh defined by (14)
and (31), respectively. The argument in this section is close to that given in18 which uses a
boot-strapping argument similar to19 for nonconforming finite element methods for Helmholtz-
type problems. Also, see20 for such a boot-strapping argument for conforming finite element
methods for the Helmholtz equation.

Set

Zh =
(
Πhu

(1),Qhu
(2)
)t
, δ = u− uh =

(
δ(1), δ(2)

)
, γ = Zhu− uh =

(
γ(1), γ(2)

)
.
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Our first goal is to derive an estimate for ‖γ‖0, and for that purpose we will solve the adjoint
problem (23) with γ as a source term. It is convenient to define the following broken norms and
seminorms:

‖v‖2
s,h =

∑

j

‖v‖2
s,Qj

, |v|2s,h =
∑

j

|v|2s,Qj
, |v|2s,h,Γ =

∑

j

|v|2s,∂Qj∩Γ.

First note that for v = (v(1), v(2))t ∈ [L2(Ω)]
4 such that v(1) ∈ [H1(Qj)]

2, v(2) ∈ H(div;Qj).
Using integration by parts on each Qj, we obtain

Θh(u, v) =
∑

j

(
−ω2Pu + iωBu− L(u), v

)
Qj

(37)

+
∑

j

〈
(σ(u)ν,−pf(u)ν)

t , (v(1), v(2))t
〉

∂Qj\Γ
.

Thus from (31) and (37) we see that for v ∈ Vh

Θh(δ, v) =
∑

j

[ 〈
σ(u)ν, v(1)

〉
∂Qj\Γ

−
〈
pf (u), v

(2) · ν
〉

∂Qj\Γ

]
. (38)

Notice that the regularity assumption (13) implies that pf(u) ∈ H1/2(∂Qj ∩ ∂Qk), which to-
gether with the fact that v(2)

j · νjk + v
(2)
k · νkj = 0 in the sense of H−1/2(∂Qj ∩ ∂Qk), leads

to
∑

j

〈
pf (u), v

(2) · ν
〉

∂Qj\Γ
= 0. (39)

Hence, thanks to (39) and that v(1) is orthogonal to constants, (38) can be rewritten in the form

Θh(δ, v) =
∑

j

〈
σ(u)ν − Ph(u), v

(1)
〉

∂Qj\Γ
, v ∈ Vh. (40)

Let ψ =
(
ψ(1), ψ(2)

)t be the solution of the adjoint problem:

−ω2Pψ − iωBψ − L∗(ψ) = γ, Ω, (41a)
G∗

Γ(ψ) − iωDSΓ(ψ) = 0, Γ. (41b)

According to (24), ψ satisfies the regularity assumption

‖ψ(1)‖2 + ‖ψ(2)‖H1(div,Ω) ≤ C(ω)‖γ‖0. (42)

Using integration by parts on each Qj and applying the boundary condition (41b), we get

− (γ,L∗(ψ)) = Ah(γ, ψ) + iω 〈D SΓ(γ), SΓ(ψ)〉 (43)

−
∑

j

[ 〈
γ(1), σ∗(ψ)ν

〉
∂Qj\Γ

−
〈
γ(2) · ν, p∗f(ψ)

〉
∂Qj\Γ

]
.
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Next, the argument used to show the validity of (39) can be applied to see that the last term in
the right-hand side of (43) vanishes. Thus (43) implies that

‖γ‖2
0 =

(
γ,−ω2Pψ − iωBψ − L∗(ψ)

)
(44)

= Θh(γ, ψ) −
∑

j

〈
γ(1), σ∗(ψ)ν

〉
∂Qj\Γ

.

Next, since σ∗(ψ)ν − P ∗
h (ψ) has average value zero on ∂Qj \ Γ, (here P ∗

h (ψ) is defined as in
(26) replacing σ(ψ) by σ∗(ψ)) we have that for any q(1) ∈ [P0(Qj)]

2,
〈
q(1), σ∗(ψ)ν − P ∗

h (ψ)
〉

∂Qj\Γ
= 0,

so that (44) can be stated in the form

‖γ‖2
0 = Θh(γ, ψ) −

∑

j

〈
γ(1) − q(1), σ∗(ψ)ν − P ∗

h (ψ)
〉

∂Qj\Γ
. (45)

Next use (40) to see that for v ∈ Vh,

Θh(γ, v) = Θh(δ, v) − Θh(u− Zhu, v) (46)

=
∑

j

〈
σ(u)ν − Ph(u), v

(1)
〉

∂Qj\Γ
− Θh(u− Zhu, v).

Then use (46) in (45) to obtain

‖γ‖2
0 = Θh(γ, ψ − v) − Θh(u− Zhu, v) +

∑

j

〈
σ(u)ν − Ph(u), v

(1)
〉

∂Qj\Γ

−
∑

j

〈
γ(1) − q(1), σ∗(ψ)ν − P ∗

h (ψ)
〉

∂Qj\Γ
. (47)

Next, since ψ(1) ∈ [H2(Ω)]2, (47) can be put in the equivalent form

‖γ‖2
0 = Θh(γ, ψ − v) − Θh(u− Zhu, v)

+
∑

j

〈
σ(u)ν − Ph(u), v

(1) − ψ(1)
〉

∂Qj\Γ
(48)

−
∑

j

[ 〈
γ(1) − q(1), σ∗(ψ)ν − P ∗

h (ψ)
〉

∂Qj\Γ
.

Let us bound each term in the right-hand side of (48). First, choose v =
(
v(1), v(2)

)t
= Zhψ ∈

Vh such that

‖ψ(1) − v(1)‖0 + h‖ψ(1) − v(1)‖1,h + h2‖v(1)‖2,h ≤ Ch2‖ψ(1)‖2 ≤ Ch2‖γ‖0, (49a)
‖ψ(2) − v(2)‖0 ≤ Ch‖ψ(2)‖1 ≤ Ch‖γ‖0, (49b)∥∥∇ ·

(
ψ(2) − v(2)

)∥∥
0
+ h

∥∥∇ ·
(
ψ(2) − v(2)

)∥∥
1,h

≤ Ch‖∇ · ψ(2)‖1 ≤ Ch‖γ‖0. (49c)
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For the first term in the right-hand side of (48), using (49) we see that

|Θh(γ, ψ − v)| ≤ C(ω)

[
‖γ‖0‖ψ − v‖0 + ‖γ(1)‖1,h‖ψ

(1) − v(1)‖1,h

+‖∇ · γ‖0‖∇ · (ψ − v)‖0 + |〈SΓ(γ), SΓ(ψ − v)〉|

]

≤ C(ω)h‖γ‖0

[
‖γ(1)‖1,h + ‖∇ · γ(2)‖0 + |〈SΓ(γ), SΓ(ψ − v)〉|

]
. (50)

The boundary integral in the right-hand side of (50) can be bounded using (42) and the trace
inequality as follows:

|〈SΓ(γ), SΓ(ψ − v)〉| ≤ C‖γ‖0h
3/2
[
‖γ(1)‖1,h

]
, (51)

where we have used that
∑

j

〈(
ψ(2) − Qhψ

(2)
)
· ν, γ(2) · ν

〉
∂Qj\Γ

= 0.

Hence, using (51) in (50), we get

|Θh(γ, ψ − v)| ≤ C(ω)h‖γ‖0

[
‖γ(1)‖1,h + ‖∇ · γ(2)‖0

]
. (52)

By choosing q(1)
j = q1|Qj

, to be the average value of γ(1) onQj and using the trace inequality,
(27) and (42), the last term in (48) is bounded as follows:

∣∣∣∣∣
∑

j

〈
γ(1) − q(1), σ∗(ψ)ν − P ∗

h (ψ)
〉

∂Qj\Γ

∣∣∣∣∣

≤

(∑

j

|γ(1) − q(1)|20,∂Qj\Γ

)1/2(∑

j

|σ∗(ψ)ν − P ∗
h (ψ)|20,∂Qj\Γ

)1/2

≤

(∑

j

h‖γ(1)‖2
1,Qj

)1/2

h1/2
(
‖ψ(1)‖2 + ‖∇ · ψ(2)‖1

)

≤ Ch‖γ‖0‖γ
(1)‖1,h. (53)

Next, using integration by parts in the Ah(u − Zhu, v)-term and the boundary condition
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(41b), the second term in the right-hand side of (48) can be written in the form

Θh(u− Zhu, v) =
∑

j

(
u− Zhu,−ω

2Pv − iωBv − L∗(v)
)

Qj

+
∑

j

〈SΓ (u− Zhu) ,G
∗
Γ(v)〉∂Qj\Γ

+
∑

j

〈SΓ (u− Zhu) ,G
∗
Γ(v)〉∂Qj∩Γ

+iω 〈DSΓ (u− Zhu) , SΓ(v)〉

=
∑

j

(
u− Zhu,−ω

2Pv − iωBv − L∗(v)
)

Qj

+
∑

j

〈SΓ (u− Zhu) ,G
∗
Γ(v) − G∗

Γ(ψ)〉∂Qj∩Γ +
∑

j

〈SΓ (u− Zhu) ,G
∗
Γ(v)〉∂Qj\Γ

+iω 〈DSΓ (u− Zhu) , SΓ(v − ψ)〉

≡ T1 + T2 + T3 + T4. (54)

Let us bound each term in the right-hand side of (54). First, using (27), (28), and (49) we see
that

|T1| ≤ Ch‖γ‖0

(
‖u(1)‖2 + ‖u(2)‖1 + ‖∇ · u(2)‖1

)
.

For the T2 term, applying the trace inequality, (27), (28), (24), and (49), one has

|T2| ≤
∑

j

|u(1) − Πhu
(1)|0,∂Qj∩Γ |(σ

∗(v) − σ∗(ψ)) · ν|0,∂Qj∩Γ

+
∑

j

∣∣(u(2) − Qhu
(2)
)
· ν
∣∣
−1/2,∂Qj∩Γ

∣∣p∗f (v) − p∗f(ψ)
∣∣
1/2,∂Qj∩Γ

≤ C‖γ‖0

[
h2
(
‖u(1)‖2

)
+ h

(
‖u(2)‖1 + ‖∇ · u(2)‖1

)]
. (55)

Next, we decompose T3 as follows:

T3 =
∑

j

〈SΓ (u− Zhu) ,G
∗
Γ(v) − G∗

Γ(ψ)〉∂Qj\Γ
+
∑

j

〈SΓ (u− Zhu) ,G
∗
Γ(ψ)〉∂Qj\Γ

≡ T3,1 + T3,2. (56)

Then, as in (55),

|T3,1| ≤ C‖γ‖0

[
h2
(
‖u(1)‖2

)
+ h

(
‖u(2)‖1 + ‖∇ · u(2)‖1

)]
.

The other term in (56) can be bounded by using again the fact that Πhu
(1)
j −Πhu

(1)
k is orthogonal
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to constants

|T3,2| ≤

∣∣∣∣
∑

j

〈(
u(1) − Πhu

(1)
)
· ν, σ∗(ψ)ν · ν

〉
∂Qj\Γ

+
〈(
u(1) − Πhu

(1)
)
· χ, σ∗(ψ)ν · χ

〉
∂Qj\Γ

−
∑

j

〈(
u(2) − Qhu

(2)
)
· ν, p∗f(ψ)

〉
∂Qj\Γ

∣∣∣∣

≤ Ch2 ‖γ‖0‖u
(1)‖2,

where we have used again the argument in (39) to cancel out the terms involving u(2) in the
inequality above. Finally, in order to bound T4, applying the trace inequality, (27), (28), and
(49), we obtain

|T4| ≤ C

[∑

j

∣∣u(1) − Πhu
(1)
∣∣
0,∂Qj∩Γ

∣∣v(1) − ψ(1)
∣∣
0,∂Qj∩Γ

+
∑

j

∣∣(u(2) − Qhu
(2)
)
· ν
∣∣
0,∂Qj∩Γ

∣∣(v(2) − ψ(2)
)
· ν
∣∣
0,∂Qj∩Γ

]

≤
∑

j

‖u(1) − Πhu
(1)‖

1

2

0,Qj
‖u(1) − Πhu

(1)‖
1

2

1,Qj
‖ψ(1) − v(1)‖

1

2

0,Qj
‖ψ(1) − v(1)‖

1

2

1,Qj

+
∑

j

h
1

2 |u(2) · ν| 1
2
,∂Qj∩Γh

1

2 |ψ(2) · ν| 1
2
,∂Qj∩Γ

≤ C‖γ‖0h
3‖u(1)‖2 + Ch‖u(2)‖1‖ψ

(2)‖1

≤ C‖γ‖0h
3‖u(1)‖2 + Ch‖u(2)‖1.

Collecting the estimates for T1, T2, T3, and T4, we conclude that

|Θh(u− Zhu, v)| ≤ C‖γ‖0

[
h2‖u(1)‖2 + h

(
‖u(2)‖1 + ‖∇ · u(2)‖1

)]
. (57)

Next, use the trace inequality, (27), and (52) to bound the third term in the right-hand side of
(48) as follows:

∣∣∣∣∣
∑

j

[ 〈
σ(u)ν − Ph(u), v

(1) − ψ(1)
〉

∂Qj\Γ

∣∣∣∣∣

≤

(∑

j

|σ(u)ν − Ph(u)|
2
0,∂Qj\Γ

)1/2(∑

j

|v(1) − ψ(1)|20,∂Qj\Γ

)1/2

≤ Ch1/2
(
‖u(1)‖2 + ‖∇ · u(2)‖1

)
h3/2

(
‖ψ(1)‖2

)

≤ Ch2‖γ‖0

(
‖u(1)‖2 + ‖∇ · u(2)‖1

)
. (58)
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Thus collecting the bounds in (52), (53), (57), and (58), we obtain

‖γ‖0 ≤ C(ω)
[
h
(
‖γ(1)‖1,h + ‖∇ · γ(2)‖0

)
(59)

+h2
(
‖u(1)‖2

)
+ h

(
‖u(2)‖1 + ‖∇ · u(2)‖1

)]
.

Using the triangle inequality, the last estimate (59), and the approximation properties of Πh

and Qh in (27) and (28), we get

‖δ‖0 ≤ ‖γ‖0 + ‖Zhu− u‖0 ≤ C(ω)
[
h
(
‖δ(1)‖1,h + ‖∇ · δ(2)‖0

)

+h
(
‖u(1) − Πhu

(1)‖1,h + ‖∇ · (u(2) − Qhu
(2))‖0

)

+h2‖u(1)‖2 + h
(
‖u(2)‖1 + ‖∇ · u(2)‖1

)]

≤ C(ω)
[
h
(
‖δ(1)‖1,h + ‖∇ · δ(2)‖0

)
(60)

+h2‖u(1)‖2 + h
(
‖u(2)‖1 + ‖∇ · u(2)‖1

)]
.

We next use a Gärding-type inequality to bound the δ-terms in (60) in terms of the u-terms
in that inequality. First note that using Korn’s second inequality21, 22 and that Ei is positive
definite, we get

|Im (Θh(δ, δ))| = ω (Bδ, δ) +
∑

j

(Ei ε̃(δ), ε̃(δ))Qj
+ ω 〈D SΓ(δ), SΓ(δ)〉

≥ C1(ω)
[
‖δ(1)‖2

1,h + ‖∇ · δ(2)‖2
0 + 〈SΓ(δ), SΓ(δ)〉

]
− C2(ω)‖δ‖2

0.

Hence,

‖δ(1)‖2
1,h + ‖∇ · δ(2)‖2

0 + 〈SΓ(δ), SΓ(δ)〉

≤ C3(ω) |Θh(δ, δ)| + C2(ω)‖δ‖2
0

≤ C3(ω)
[
‖δ‖2

0 + |Θh(δ, u− Zhu)| + |Θh(δ, γ)|
]
. (61)

Since γ ∈ Vh, the expression for Θh(δ, γ) given in (40) can be replaced by using (61) so that

‖δ(1)‖2
1,h + ‖∇ · δ(2)‖2

0 + 〈SΓ(δ), SΓ(δ)〉

≤ C3(ω)

[
‖δ‖2

0 − ω2 (Pδ, u− Zhu) + iω (Bδ, u− Zhu) + Ah(δ, u− Zhu) (62)

+iω 〈D SΓ(δ), SΓ(u− Zhu)〉 +
∑

j

〈
σ(u)ν − Ph(u), γ

(1)
〉

∂Qj\Γ

]
.

Let us bound the last five terms in the right-hand side of (62). First, thanks to the approxi-
mation properties of Πh and Qh given in (27) and (28), it follows that

∣∣−ω2 (Pδ, u− Zhu) + iω (Bδ, u− Zhu)
∣∣ (63)

≤ C(ω)
[
‖δ‖2

0 + h4‖u(1)‖2
2 + h2‖u(2)‖2

1

]
.
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Again, due to (27) and (28),

|Ah(δ, u− Zhu)| ≤ C(ω)

[ (
‖δ(1)‖1,h‖u

(1) − Πhu
(1)‖1,h

)
(64)

+‖∇ · δ(2)‖0‖∇ · (u(2) − Qhu
(2))‖0

]

≤ ε
(
‖δ(1)‖2

1,h + ‖∇ · δ(2)‖2
0

)
+ C(ω)h2

[
‖u(1)‖2

2 + ‖∇ · u(2)‖2
1

]
.

Next, using the trace inequality and approximation properties (27) and (28) again, we have

|ω 〈D SΓ(δ), SΓ(u− Zhu)〉|

≤ ε 〈DSΓ(δ), SΓ(δ)〉 + C(ω) 〈DSΓ(u− Zhu), SΓ(u− Zhu)〉

≤ ε 〈DSΓ(δ), SΓ(δ)〉

+C(ω)

[∑

j

|u(1) − Πhu
(1)|20,∂Qj∩Γ +

∑

j

|(u(2) − Qhu
(2)) · ν|20,∂Qj∩Γ

]

≤ ε 〈DSΓ(δ), SΓ(δ)〉 + C(ω)

[
h3‖u(1)‖2

2 +
∑

j

h2|u(2) · ν|21,∂Qj∩Γ

]

≤ ε 〈DSΓ(δ), SΓ(δ)〉 + C(ω)

[
h3‖u(1)‖2

2 +
∑

j

h2‖u(2)‖2
3

2
,Qj

]

≤ ε 〈DSΓ(δ), SΓ(δ)〉 + C(ω)
[
h3‖u(1)‖2

2 + h2‖u(2)‖2
3

2

]
. (65)

Finally, owing to the orthogonality property of γ(1) to constants on ∂Qj \Γ, the trace inequality,
and (27), it follows that

∣∣∣∣∣
∑

j

〈
σ(u)ν − Ph(u), γ

(1)
〉

∂Qj\Γ

∣∣∣∣∣ =

∣∣∣∣∣
∑

j

〈
σ(u)ν − Ph(u), γ

(1) − q(1)
〉

∂Qj\Γ

∣∣∣∣∣

≤ C

(∑

j

|σ(u)ν − Ph(u)|
2
0,∂Qj\Γ

)1/2(∑

j

|γ(1) − q(1)|20,∂Qj\Γ

)1/2

≤ Ch1/2
(
‖u(1)‖2 + ‖∇ · u(2)‖1

)
(∑

j

h‖γ(1)‖1,Qj

)1/2

≤ Ch‖γ(1)‖1,h

(
‖u(1)‖2 + ‖∇ · u(2)‖1

)

≤ Ch
(
‖δ(1)‖1,h + ‖u(1) − Πhu

(1)‖1,h

) (
‖u(1)‖2 + ‖∇ · u(2)‖1

)

≤ ε‖δ(1)‖2
1,h + Ch2

(
‖u(1)‖2

2 + ‖∇ · u(2)‖2
1

)
. (66)

2446



Hence using (63), (64), (65), and (66) in (62), we have the following estimate:

‖δ(1)‖1,h + ‖∇ · δ(2)‖0 + 〈SΓ(δ), SΓ(δ)〉
1

2 (67)

≤ C(ω)
[
‖δ‖0 + h

(
‖u(1)‖2 + ‖u(2)‖ 3

2

+ ‖∇ · u(2)‖1

)]
.

Next, use (67) in (60) to obtain

‖δ‖0 ≤ C(ω)
[
h‖δ‖0 + h2

(
‖u(1)‖2 + ‖u(2)‖ 3

2

)
+ h

(
‖u(2)‖1 + ‖∇ · u(2)‖1

)]
. (68)

Therefore, it follows from (68) that for sufficiently small h > 0 such that 0 < C(ω)h < 1,

‖δ‖0 ≤ C(ω)
[
h2
(
‖u(1)‖2 + ‖u(2)‖ 3

2

)
+ h

(
‖u(2)‖1 + ‖∇ · u(2)‖1

)]
. (69)

Finally using (69) in (67), we arrive at the following error estimate.

‖δ(1)‖1,h + ‖∇ · δ(2)‖0 + 〈SΓ(δ), SΓ(δ)〉

≤ C(ω)h
[
‖u(1)‖2 + ‖u(2)‖ 3

2

+ ‖∇ · u(2)‖1

]
.

We summarize the above in the following theorem:

Theorem 5.1. Let u ∈ V and uh ∈ Vh be the solutions of (14) and (31), respectively. We then
have the following energy-norm error estimate: for sufficiently small h > 0,

‖u(1) − u(1,h)‖1,h + ‖∇ · (u(2) − u(2,h))‖0

+|u(1) − u(1,h)|0,Γ + |(u(2) − u(2,h)) · ν|0,Γ

≤ C(ω)h
[
‖u(1)‖2 + ‖u(2)‖ 3

2

+ ‖∇ · u(2)‖1

]
.

Also, we have the [L2(Ω)]6-error estimate as follows: for sufficiently small h > 0,

‖u− uh‖0 ≤ C(ω)
[
h2
(
‖u(1)‖2 + ‖u(2)‖ 3

2

)
+ h

(
‖u(2)‖1 + ‖∇ · u(2)‖1

)]
.
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