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Summary:
Our contribution examines discontinuous failure processes in quasi-static environments. To
this end, we first discuss the loss of continuity in solids at the local level of materialB, and
subsequently at the global level of structural systems. These local and global failure indicators
are formalized in terms of localization conditions that are illmrtrated with the aid of transformed
Mohr stress coordinates.

For definiteness, the discontinuous failure process is illlL'ltrated with the example problem of a
Drucker-Prager material that ill IL'Iedto describe the matrix behavior of a two-pha!le particle
COlllp08ite.For illlL'ltration, progressive failure in a representative compollite specimen illeva!.u-
ated with regard to the respective energy absorption capacity in uniaxial compression.

Resumen: .
La ponencia examina 108 proce8Ollde fallo 0 rotura con diBcontinuidad en un entomo cuasi-
estatico. Para ello, se discute primero la peerdida de continuidad en sOlidos a nive! local del
material, y seguidamente al nivel global de sistemas estmctura1es. J..ollindica.dores de rotura
locales y globales se formalizan en terminos de !as condiciones de locaizaci6n y de argumentos
de Mohr.

El proceso de rotura 0 fallo con discontinuidad se ilustra mediante el ejemplo de una probeta
de material tipo Drucker-Pragt'.r sometida a compresion. La miBma formulaci6n de material
elastopIastica se utiliza tambien para describir el comportamiento de la matriz en un material
compuesto de particulas. La rotura progresiva en las probetas de material uniforme y de material
compuesto se comparan y se evalUan en rclacion a sus respectivas capacidades de absorcion de
energfa.

INTRODUCTORY REMARKS
Deterioration science, and in particular the evaluation of degradation processes, are recent initiatives
by the Engineering Division of the US-National Science Foundation with the aim to enhance the
current state of Civil Infrastructure SysteUlll. At the core of this effort stands the behavior of
engineering materials and the description of the constitutive behavior to predict load capacity and life
expectancy of ageing and deteriorating structures. In the case of cohesive-frictional materials, such
as concrete and geomaterials, a realistic constitutive description depends critically on the treatment
of the low cohesive strength lWd its ability to capture tensile cracking. In addition, it has to properly
account for the pressure-sensitivity of internal friction and the concomitant lo..'l8of nomlality (loss
of symmetry). Consequently, degradation analysis of cohesive-frictional materials is a pressing issue,



not only when severe overloads are considered, e.g. due to earthquake and impact loading, but also
when gradual deterioration under service load conditions is to be evaluated due to hygrothermal
ageing and environmentally induced damage.

Recent advanceS of computational methods, and the finite element analysis in particular, have
made it possible to evaluate the nonlinear and inelastic performance of complex structural compo-
nents in three dimensions. Thereby, the material behavior is at the center of such assessments that
require numerical integration of nonlinear tensor-valued rate (differential) equations. Consequently,
the incremental tracing of the response history and the proper treatment of &'ingular points are crit-
ical when failure initiation at the material level and failure propagation at the structural level are
to be captured. In short, there is an urgent need for quantitative analytical solutions to assess the
local state of material deterioration and for the efficient and robust computational treatment that
captures the progressive failure process at the structural level without undue bias.

DISCONTINUOUS FAILURE AT THE MATERIAL LEVEL
Clearly failure is a non-local and dynamical process when local material defects propagate through
the solution domain subjected to non-uniform conditions. Consequently we are facing the solution
of initial boundary value problems, in which local material failure initiates the progressive failure
process within the structure, that might evolve in a ductile or brittle manner depending on the
confinement level.

In order to rationalize failure initiation and failure propagation, we need first to discuss the
manifestation of degradation processes that take place at the material level. To this end we define
failure as a process in which the continuity relations of classical continua are relaxed, and in which
jumps in the field variables appear due to loss of regularity, see (1], and [2].

- In ductile failure, the displacement (velocity) field remains continuous at the macroscopic level
as well 88 their time/space derivatives - we speak of diffuse (distributed) failure when the
kinematic compatibility conditions are satisfied fully.

- In localized failure certain components of the strain tensor and the stress tensor exhibit jump
conditions. This is traditionally the realm of localization analysis of weak discontinuities, where
the material remains competent, i.e. the contiguity of neighboring particles is fully maintained,
but discontinuities arise in the higher derivatives of space and/or time.

- In brittle failure, the tangential displacement (velocity) components, and in the case of tensile crack-
ing also the normal displacement (velocity) components, exhibit jumps across a discontinuity
surface. This is traditionally the realm of discrete fracture analysis of strong discontinuities
when contact and decohesive interface behavior determines the degradation of surface tractions.

The formation of Liiders bands coincides with the onset of localized deformations, when the stress
level reaches a critical value during yielding [3] and [4]. Thus shear hand formation is the result. Lo-
calization may be viewed as a bifurcation phenomenon that can be predicted in terms of pre-localized
constitutive properties of the material. If the material is rate-independent, then critical conditions
appear when the constitutive relations allow for bifurcation from a homogeneous or smoothly varying
deformation field into a field, in which first weak, and subsequently strong discontinuities appear.
This bifurcation condition coincides with the stationarity condition of acceleration (stress) waves,
i.e. localization analysis may be considered as a search for stationary acceleration waves (standing
waves).

We say that there exists a discontinuity of order n in a continuum, if any of the n-th partial
space Of time derivatives of the field exhibits a jump aCfOBS the surface S (figure 1, left). Let S c V
be a surface that separates the domain in two parts, 1)+ and 1)- (1)+ U 1)- = V, v+nv- = 0),
then the jump of the function ¢J : 1)-+ R3 across tile surface S is defined as [4» = ¢J+ - 4>- . We



Hadamard's Compatibility Condition: The general theory of the acceleration waves was origi-
nally formulated in [5J. According to Hadamard, waves are:

"An isolated geometric surface (not necessarily plane) that moves relatively to the mate-
rial, across which certain field variables are momentarily discontinuous."

An acceleration wave implies the existence of second order discontinuities in the displacement field,
while the first order derivatives are still continuous (u(z, t) Eel). Consequently, we speak of
formation of weak discontinuities.

Let S be a discontinuity surface of 1-st order for q,(z, t) (see figure 1). Then the function is
continuous ,p E CO and does not exhibit jumps along the discontinuity surface, [d,pJ = 0 [6J. If c
denotes the propagation speed and N the propagation direction of the wave front, then the following
expressions must hold: az

z=z.,+Nct {Jt =Nc (1)

O=(d¢J) = [:: dt+: dt] =(4),iNicdt+~dtJ (2)

#- c (4),i) N; = -(~J (3)

As V"q, can only exhibit jumps along the propagation direction N, we can write [,p,i) = aNi.
This results in the general Hadamard's compatibility condition that interrelates time and space
derivatives along the discontinuity surface,

This equality has to be satisfied by any CO continuous field in the domain 1>. It states that jumps
of the spat.ial derivatives may only occur normal to the discontinuity surface, and that the jumps of
the space and time derivatives are negative proportional to the propagation velocity.

Remark: Recall that displacement-based finite element formulatious maintain interelement
continuity for conforming element .formulations, but they exhibit jumps of the normal derivatives
along the element interfaces. This relaxation of kinenlatic regularity arises as the weak equilibrium
statement of the virtual work principle relaxes the minimum continuity requirements of the displace-
ment field from u(z, t) Eel down to u(z, t) ECo.

Stationary Condition of Elastoplastic Body Waves
At the outset we mentioned that the localization.condition corresponds to the formation of stationary



acceleration waves. In order to examine the appearance of standing body waves in elastoplastic solids
we need to consider the rate form of equilibrium and the consequences of second order discontinuities
in the displacement field u(:I:, t) E C1 , with spatial and time derivatives that arc Co continuous,

E = ~ (v~u+ V",u) E Co and ,,= ':;; E Co (5)

If the material is elastic on both sides of the discontinuity surface S, and the same elasticity tensor
relates stresses to strains (E~ = E;; = Eo), then the stress tensor is also u(:I:, t) E CO continuous.
The Hadamard compatibility condition (4) requires that the velocity and stress fields satisfy :

c[vi..i)=-[vi)Ni (V)i,jE{I,2,3} (6)

C [u'i,k) = -[Ui;) N" (V)i,j, k E {I, 2,3} (7)
Letting k --+ i in (7), the equation of motion, uii,' = P Vi' in the absence ofthe body forces transforms
into

-[Uii) N, = P C [v;) (8)
Introducing the elastic constitutive law, the strain-displacement relations, and taking advantage of
the minor symmetry in Eijkl = EijIJ<

. 1
P ~ [tii) = -c Nj Eij/d [ikl) = -2" eN, Eijlel ((VI,Ie) + [VIe,I)) = N, Eijlel NIe[vl) (9)

Denoting Qjl = Ni Eijlel N" as the elastic acoustic tensor, then the jump in the acceleration field
is governed by the wave propagation equation accorded to Christoffel:

I (Q'j, - P c2 6;1) [ti,l4] (10)

where the wave propagation velocity C is determined by the E'.igenvalues (p c2) of the acoustic tensor
and the jump of the acceleration by its eigenvector. Consequently, the positive definite acoustic
tensor of linear elasticity results in positive wave speeds.

If during the load history the material becomes plastic, stress-induced anisotropy reduces the
tangential stiffness properties and the propagation speed of acceleration waves will change accord-
ingly. Thereby, a zero value of the lowest wave speed indicates a standing wave associated with
formation of a discontinuity, and a complex eigenvalue (p c2) indicates instability in the form of
divergence (flutter) - see [4].

The flow theory of plasticity distinguishes plastic loading from elastic unloading according to
the alignment of the elastic trial stress rate ire with the normal to the yield surface n : thus plastic
loading takes place when n : ire= n : Eo : E > O. In that case, plastic consistency and the additive
strain decomposition provide a plastic multiplier ~ that is strictly positive :

~= < n ;:e > with the hardening parameter hp = Hp + n : Eo : m > 0 (11)

where m designates the flow direction of the plastic flow rule Ep = .x m. In the domain, where
(F E Co, its derivatives exist but they are not necessarily continuous. Thus the tangent stiffness
tensor depends on the loading condition:

. _ E .' b E _ { Eo - t; Eo : m 0 n : Eo if n: ire > 0
(F - t· E were t - E 'f .

o 1 n: (Fe ~ 0

Consequently, the jump of the stress rate across the discontinuity surface S reads:

(ir] = Eo ; (e] - ~ Eo; m [< n ; ire >] (13)

If we define e as in [6]: [< n : ire » = e [n : ire), the wave type depends on the value of this
parameter:



1. Plastic Wave: if « n: iT. »+ > 0 and « n: iT. >t > 0, then ~ = 1;

2. Elastic - Plastic Wave: if «n: iT. »+ > 0 and « n: iT. »- ~ 0 defines an unloading
wave, and « n: iT. »+ $ 0 and « n: iT. »- > 0 a reloading wave, then e E (0,1) ;

3. Elastic Wave: if « n: iT. »+ < 0 and « n: iT. »- < 0, then e = o.
The relationship between the stress and the strain increment jump becomes:

[iT) = Eo: [E) - ~ Eo: m [< n: iT. » = (Eo - ~ Eo: m® n: Eo) : [E]

[iT) = E; : [E) with E; = Eo - .~ Eo :m ® n : Eo (14)

Following the derivation of (9), taking into account symmetries in the stress and strain tensor, the
elastic-plastic acoustic tensor reads:

where aj = Ni E~pq mpq and bl = n,.. E~./cl N/c.
Consider the eigenbasis formed by the eigenvectors of the elastic acoustic tensor. If 1/g :5 ~ $

1/1denote the eigenvalues, then Qo has the format:

Its eigenvalues T/ are the roots of the characteristic polynomial:

(1/i' - 1/) - if; al ~ -if; al ~ ._.5.. al b:i

/(1/) = -~ a2 bl (rfi - 1/) - if; ~ ~ -t a2 b:i
- h. a3 bl -if; a3 ~ (rfa - 11) - -l; a3 ~

(1/1- 71)(7h -11) (113-11) - ~ [al bl (1/2- 1/) (1/3 - 1/)

+ ~ ~ (711- 1/) (1/3- 1/)+ a3 b:i (111- 1/)(7h - 1/)] (18)

The roots of the characteristic polynomial may be found analytically or numerically if the material
characteristics, n and m, and the wave type { are defined. From the eigenvalues the corresponding
eigenvectors and thus the directions of the acceleration jumps may be obtained, but not their mag-
nitudes. If all roots are positive, then the wave propagation velocities CO = V1/il p are also positive,
whereby the corresponding eigenvectors define their polarization directions. A zero value represents
a standing wave in a non-propagating medium) while negative roots indicate instability to small
disturbances defining a pair of complex wave speeds that correspond to a "flutter instability" [4]. In
that case, only one wave speed remains real, while there are two complex-conjugate ones.



Localization Condition of Weak Discontinuities
In contrll8t to the standing wave argument, localization analysis detects the formation of spatial
discontinuities· in the kinematic fields across singularity surfaces that might emerge in an overly
stressed body. The formation of a weak discontinuity assumes that a second order singularity
appears, where the displacement and velocity fields are still continuous:

while the velocity gradients exhibit jump conditions,

IV,.u) = V,.u+ - V,.u- '" 0,

For the sake of argument we state the formulation in direct and indicial notation. Applying Maxwell's
Compatibility Condition [7], the jump condition of the velocity gradient must be a rank-one ten-
sor:

(V,.uJ=1'M@N, (vi,jJ=1'MiNj (20)
As before, N defines the normal of the discontinuity surface (S) and Mdesignates the jump direction,
and l' the jump amplitude. Comparing with the Hadamard compatibility condition in 4, we recognize
the physical meaning of the jump amplitude and the polarization direction, i.e.

[E)= ~ [V~u +V,.u] = ~ (N @M + M @N) = l' (N @ M)sym

Remark: The symmetrizing condition of the strain rate expression transforms the rank-one
tensor of the velocity gradient (20) into a rank-two tensor (22), except when M II N indicating a
mode I discontinuity of cracking. In other terms, the partial derivatives tangential to the discontinuity
surface remain continuous, while the partial derivatives perpendicular to the singularity surface
exhibit jumps.

Assuming that the onset of localization takes place when both sides of the singularity surface
are in a state of plastic loading, then the tangential elastoplll8tic constitutive law together with
the strain rate jump, and taking into consideration the minor symmetries of the tangent material
operator, lead to the jump of stress rate:

According to Cauchy's lemma, the traction rate vector i has to remain continuous across any
surface in the interior of a solid (see figure 1). Thus, we may combine this requirement with the
constitutive and kinematic equations, the localization condition as long as the two faces along the
singularity surface remain in full contact:

In spite of the traction continuity requirement the stress tensor still exhibits discontinuities. In fact,
complementary to the jump condition of strain rates, the normal stress components tangential to
the discontinuity surface exhibit now jump conditions, while the normal stress component normal
to the surface and the shear stress component remain continuous. In analogy to the acoustic tensor
15, Ql = N· Ee • N defines the tangential localization tensor in elastoplastic continua, whereby
the eigenvector M indicates the direction of the velocity jump. ThUB discontinuous bifurcation
initiates when the localization tensor exhibits a singularity, i.e. when



In analogy to the stationarity condition of acceleration waves, the localization condition characterizes
the formation of weak discontinuities in terms of the bifurcation argument above. Recall, a weak
diS<"-Ontinuityof second order in the displacement field signals the onset of localized failure, that
precedes formation of strong discontinuities of first order in the displacement field.

Remark: The localization condition (25) implies that at the onset of localization both sides
of the singularity surface are in a state of loading, [Etl :::::0, and that the traction rate vector t is
continuous across the singularity surface (figure 1, right), It) = N . [u) = O. In analogy to fracture
mechanics, the eigenvector M of det(Qt) = 0 characterizes the discontinuous failure mode, thus
M /I N indicates mode I, and M 1. N indicates mode II failure.

Geometrical Localization Analysis
In the case of localization, the important aspect is the direction N of the normal to the discontinuity
surface which is an implicit function of the localization tensor Qt = N· Et· N, where det( Qt) = 0 .
For the sake of argument, let us consider the elastoplastic bifurcation process in a non-associated
Drucker-Prager solid where the plastic yield condition and the plastic potential are linear functions
of the first principal invariant and the secc>nddeviatoric invariant:

F(ll, J2) = fJ; + 01 h- fll = 0 and Q(It, J2) = fJ; + a2 11 -- f32 = 0 (26)

/" - /" 2 /" f'
ai = v'3(/~+tm j fli :::::v'3U:C

: m
Here the two parameters ai, fli in the yield function and the plastic potential are calibrated in terms
of strength values in uniaxial tension and compression: It and I~.The gradients of the yield function
and the plastic potential with respect to stress are

of 1 8Q 1
n = OCT :::::2" VJ2 8 +a1 1112 and m = OCT = 2 VJ2 8 +a2 1112

The elastoplastic tangent stiffness of the non-associated Drucker-Prager solid leads to the localization
tensor in the form : I Qt = N . Et" N = Qo - t; a @ b I (28)

where Qo = N . Eo . N, and where a = N . Eo : m and b= ~ : Eo . N designate the so-called
traction vectors. Using an intriguing eigenvalue property of rank-one modifications of the unit tensor,
see [8] and [9], one is able to recast the localization condition of the generalized eigenvalueproblem
Q;;l . Qt = 12 - t; Q;;l . a @ b and to convert the solution of det(Qt) = 0 into maximizing the
hardening modulus Hp in the expression below:

I Hp + n : Eo : m = b . Q;;l . a I
Localization initiates when the hardening modulus Hp reaches a maximum for all possible orientations
N = N(fJ), or in other terms when the hardening modulus reaches a critical value for localization,
Her = max(Hp).

This maximizing problem has been solved analytically using Lagrange's multipliers for stress-
based isotropic non-associated elastoplasticity in [4]. Here we pursue a geometric solution of this
problem that follows the original concept of the Mohr envelope in strength of materials, see [to] and
[11]. In this approach, the critical localization directions and the maximum hardening modulus are
determined with the aid of the geometric representation of stress in Mohr coordinates.
The normal and the resultant shear stress components (O"N and 'TN) of the stress tensor CT and the
deviatoric stress 8 on a plane with the normal N are:
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r; = (N· B) • (N . s) - (N .B . N)2
U 8 r

ifM = ..r:T2 ' 8M = .fJ2 ' TN = ..;J; (30)

The two terms of the analytic localization condition (29) reduce for the non-associated Drucker-
Prager material to :

Consequently, the localization condition traces the shape of an ellipse in the transformed Mohr
coordiuates-Of normal and shear stnllIs :

where the center and the half-axes of the localization ellipse are defined by

1- 1+/1
aft - 1- 2 /I (a1 + (2)

2(1+/1) 6(1+/1) 2 (1+/1)2
E Hp + 1+ al a2 -1 ._2 /I + (01 - (2) 2 (1- /1)(1- 2 /I)

2 (1 - /I) B2
1-2/1

ContrlJXYto the conical envelope of the Drucker-Prager yield condition, the locAlization envelope of
the elastoplastic material formulation forms an ellipse in the transformed Mohr space, the center of
which depends on the hydrostatic state of stress as well as the elastic and plastic material properties.
Tangency between the elliptic localization envelope and the principal Mohr Circle of stress with the
radius r= 0.5(U1 - U3)/..;J2 and the center lie = 0.5(U1 + U3)/..(J;

yields the critical hardening modulus Her illustrated in figure 2 when r::; A, r::; B , and
life - 0'01 ::; A - r :



Table 1: Yield Stresses, Critical Hardening Modulus and Failure Angles of Drucker-Prager Formu-
lation in Three Dimensions (J:/ f: = 2/1).

Loading Case Stress Components Failure Angle (Ocr) HcrlE

01 U2 ua v=O.O v=0.2 v=0.5 _.
Compression 0.00 0.00 -2.00 41.81" 35.26° 24.09" -0.2315

Shear 0.77 0.00 -0.77 33.68" 31.24° 27.37° -0.0370

Tension 1.00 0.00 0.00 19.47" 21.42° 24.09° -0.0093

in [111 indicate that the hardening modulus does not affect the critical localization angle. Hp changes
only the size of the elliptic localization envelope, but not the center and not the half axes (AI B)
in equation (34). However, Poisson's ratio does change the shape and position of the ellipse, and it
certainly affects the localization angle. Table 1 summarizes the stress components at yield, the
predicted localization directions and the critical.hardening modulus when an associated Drucker-
Prager solid with Oil ;:: 0i2 is considered. We observe that the critical failure angle varies with
Poisson's ratio. The critical hardening modulus however does not depend on Poisson's ratio if the
flow rule is associated. We also note that, the localization condition is reached in three dimensions
only when softening takes place, or alternativE'ly when the Drucker-Prager solid loses normality in
the case of non-associated flow. Comparing the localized failure modes in figure 3, the localization
angles of the non-associated ca.'leare bounded by the those of the associated Drucker-Prager and the
von Mises formulation.

Remarks: For associated plastic flow the critical hardening parameter must be negative in
three dimensions, while in two dimensional analysis the localization condition may be reached for
perfect pla.'lticity (Hcr = 0), see [11]. The localization angle in three dimensions depends on Poisson's
ratio, while in two dimensions this angle and thus the localized failure mode remains fixed and does
not vary with the state of stress. In plane strain, due to the kinematic constraint, the stress state
at the stationary point has to be considered, when u -t O. At that point the principal stress values
differ from the stress values at the initial yield point.
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Figure 3: Localization Properties in Uniaxial Compression: van Mises (top), Associated Drocker-
Prager (middle), and Non-Associated Druc-ker-Proger (bottom).



Uniaxial Compression Problem
For illustration of the analytical and geometrical localization results, V.1l examine the load-deformation
of an elastoplastic solid in uniaxial compression in order to assess the localization ·properties of von
Mises versus associated and non-associated Drucker-Prager softening behavior. The material prop-
erties are in this example:

E = 2000.0 ksi; 1/ = 0.2; f~= 2.0 ksi

1" {2.0 ksi Mises (38)
t = 1.0 ksi Drucker-Prager

whereby softening is described in terms of a cubic parabola"with zero slope at the peak and the resid-
ual stress levels. Figure 4 illustrates the response behavior in terms of axial and lateral stress-strain
components (left). Note that the non-associated Drucker-Prager formulation exhibits for uniaxial
compression· the same axial and lateral deformation characteristics as the von Mises formulation
does because an incompressible flow potential of the von Mises type is used. The figure on the
right depicts the hardening or rather the softening moduli at different loading stages. It illustrates
that the softening von Mises formulation reaches the critical hardening modulus of localization right
after peak, while the associated Drucker-Prager formulation never reaches the critical value. The
figure also shows the destabilizing effect of the non-associated Drucker-Prager model which almost
reaches localization when the· plastic hardening modulus H;:" 7' min.. Finally, we observe that the
critical hardt'.ning modulus to initiate localization remains constant during proportional loading, and
that the corresponding localization directions also remain fixed. ThiS observation indicates that the
localized failure mode does not depend on the level of stress and remains fixed during proportional
loading.
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Figure 4: Softening Response Behavior in Uniaxial Compression (left), Localization Analysis of
Critical Hardening Moduli (right) of von Mises, Drucker-Prager and Non-Associated Drucker-Prager
Materials.

DISCONTINUOUS FAILURE AT THE STRUCTURAL LEVEL
Localization analysis of discontinuous bifurcation and is an important first step to understand and
model brittle and ductile failure in materials. The failure angle can be determined analytically and
it was shown that the corresponding failure mode does not change during proportional loading. This
observation helps to design a finite element mesh layout that is able to capture localized failure.
According to the studies in [12], the mesh layout should be aligned with the eventual localization
direction to capture the iocalized failure mode without undue mesh bias.

The following study shows that the analytical localization angles coincide with the failure
directions obtained from finite elements analysis·at the structural level. In fact, the same structural



failure modes are obtained using random meshes as well as regular meshes, only the ductility changes
significantly with initial imperfections. Consequently, a study of a two-phase particle composite is
carried out to introduce imperfections in a natural manner. The computational results in [11] show
that the failure mode in the composite is similar to the failure mode of the homogeneous matrix ma-
terial, as long as random distributions of particles are considered at volume fractions representative
for dispersed media.

Failure Analysis of a Two-Phase Particle Composite
The test specimen is a square domain that is subjected to compressive loading (see figure 5-left). The
random mesh layout of the representative "unit-square" is illustrated in figure 5-right which shows
the geometry and boundary conditions. The compression test is performed in displacement control,
imposing uniform vertical displacements u at the upper surface nodes. Voronoi-polygonization is

L
Figure 5: Square Compression Specimen (left) and Finite Element Discretization (right) using a
Random Mesh to generate a Two-Phase Composite Based on Voronoi Polygonization 016 x 6 = 36
aggregates, A,./Am = 0.6 = const.

performed using a 6 x 6 mesh of elastic particles as described by Stankowski in [13]. The resulting
mesh, with 1656 constant strain triangles in the elastoplastic matrix and the elastic particles is being
analysed with the finite element code ABAQUS [14]. In an attempt to relate to the properties
of normal strength concrete, the elastic properties of the aggregate particles are assumed to be
considerably higher than those of the elastoplastic cementitious matrix material:

Em = 2000. ksi
Ea = .ooסס1 ksi

Vm =0.2
Va = 0.1

The yield strength of the Drucker-Prager matrix material is calibrated in terms of f: = 2.0 kSi, It =
1.0 ksi, whereby the compressive strength is modified according to isotropic softening varying the
compressive strength with the equivalent plastic strain:

/.' _ { 2.0 ksi 'lj; = 0
" - 0.2 ksi lj; = e;-



A second order parabola describes the softening branch for fP E [0, q- = 0.5J, where the maximum
plastic strain for the residual stress is.r,:r- = 0.5. For the uniform specimen made of the Drucker-
Prager matrix material, the analytical failure angle is obtained by both finite element analyses, Wiing
random as well as regular mesh layouts. In both cases, the localized deformations concentrate in one
element layer, however, for the random mesh, the formation of the localization band is delayed due
to misalignment of the mesh with the failure direction.

The progressive failure study in the two-phase particle composite is carried out in order to
identify whether the failure directions remain close to the ones predicted by the homogeneous mate-
rial. In the composite study there is no need for a weak element, as failure is triggered by the multiple
stress concentrators in the aggregate-matrix interfaces. The main results of the composite failure
study with 36 aggregates are shown in figure 6. It depicts· the deformed shape, contour plots of the
plastic strains, and a comparison between the aggregate, matrix and the composite responses. The
stiffness and. strength properties of the composite specimen are higher than the ones of the uniform
elastoplastic matrix material, but in return, the composite is a lot more fragile, when compared with
the matrix alone. The increased brittleness of the composite specimen is due to the mismatch in
mechanical properties of the two constituents and the stress concentrations in the particle interfaces.
Clearly, matrix failure initiates at the aggregate-matrix interface, and it propagates in the matrix
in the direction close to the localization direction of the uniform matrix material. The localization
process is accelerated due to multiple stress concentrators at the aggregate-matrix interface. Con-
sequently, the softening branch is much steeper (see top figure). The stiffness of the composite is
higher than the matrix stiffness, and its strength is increased by almost 40%.

As for von Mises material in plane strain, the aggregate particles induces lateral confinement
in the matrix and, as a result, the matrix does behave similar to the uniaxial strain case where the
stresses increase without bounds, see figure 7. However, in some locations triaxial tension develops,
the stress path slides down the Drucker-Prager cone close to the vertex point, where the numerical
analysis terminates prematurely. The important observation of the composite study in plane strain
is, that distinct failure bands do not form whatsQeVer,andt4at adiffusedef~~tion process docs
emerge in which the plastic deformations are distributed evenly throughout the specimen.

CONCLUDING REMARKS
The paper did outline the kinematical concepts behind discontinuities in cohesive-frictional materials.
Our fOC115was localization analysis at the material level. A geometrical solution of the localization
condition was developed for non-associated and pressure-sensitive plasticity in order to detect the
on..'letand the orientation of discontinuous failure modes in terms of a Mohr-type envelope approach.
This geometrical concept counects modem localization analysis and the traditional strength concept
of the Mohr envelope condition,' aDd it provides new insight into the proximity of the stress state to
discontinuous failure.

The failure predictions of Drucker-Prager materials were studied also at the structural level
for comparison with localization results at the constitutive level. Mter highly stressed regions reach
the localization condition, mesh objectivity with regard to ductility is lost in general, and the slope
of structural softening depends greatly OIl the element size and on the element orientation. Local
instabilities of the global equilibrium configuration are activated, and failure bands begin to propagate
throughout the structure. Thereby, the orientation of these failure bands follows closely the analytical
localization predictions at the constitutive level.

For illustration of the effect of initial imperfections, a two-pase particle composite was anal-
ysed. Plane stress analysis of the elastoplastic Drucker-Prager matrix did result in the same localized
failure mode in the composite specimen as the uniform Drucker-Prager specimen did. In contrast,
plane strain analysis did result in diffuse failure throughout the matrix of the composite specimen
because confinement of the out-of-plane kinematic constraint did prevent formation of localized fail-
ure.
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