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Se presenta la: simulaci6n computacional de deformaciones elasto-plciBticas inducidas por
. movimiento de defectos en crist ales. Se adopta un modelo constitutivo que vincula las
fuerzas impulsoras con Ill. velocidad de Ias disiocaciones. EI modelo hace uso de Ias relacio- .
nes entre el tensor de deformaciones plciBticasy el de densidad de disiocaciones. Dado un
cristal bajo ciertas condiciones iniciales y de contorno, se obtiene Ill. evolucion del campo
de dislocaciones y de las deformaciones clasto-plciBticas mediante III.resoluci6n acoplada
del sistema de ecuaciones resultante de III.ecua.cion de equilibrio y del balance de dislo-
caciones para cada paso de tiempo. Se discretiza el sistema de ecuac~ones mediante el
metodo de 108 elementos finitos. Se ilustra el modelo a traves de III.simulaci6n del movi-
miento de un campo de dislocaciones de borde que produce una banda de deformaciones
de cone en un monocristal.

The computer simulation of elastic-plastic deformations induced by crystal defect motion
is presented. The constitutive model relates the driving forces with dislocation veloci-
ties. The model makes use of the coupling between the plastic deformation rate and
the dislocation velocity. Given a crystal under certain boundary and initial conditions
the evolution of both dislocation field and elastic-plastic deformations is obtained by s0-
lving the coupled system of equations resulting from the equilibrium equation and the
dislocation balance for each time step. The set of equations is discretized by the finite
element method. As an example the movement of edge dislocation field inducing shear
band deformation in a monocrystal is considered.

Introduction
In continuum mechanics two different approaches may be identified for dislocation modelling.

The first one considers the dislocations as discrete lines in an elastic c.ontinuum; the second, as
a 3-dimensional region the dimensions of which are determined by the assumed size of the disloca-
tion core. An important drawback of the first approach is the discrete character of the dislocation,
which represents a singularity within the cOntinuum description of crystal deformation. As a result
stresses grow to infinity along t.he disloc.ation liM. Th", soc.ond drawback, even more serious, is that
as a discrete model it cannot be implemented in continuum mechanics based on numerical methods,
e.g. the finite element method. In spite of this, many attempts are presently undertaken for di-
slocation modelling in a finite element context. Among them, Stigh [6] makes use of a cut-off and
welding technique to insert the elements which simulates the dislocation. However, such an approach



III practice does not allow to model the dIslocation movement. In other approach Canova et al. [IJ
have used a model where discrete dislocations travel across the elements ~jumping" from node to
node. In this approach the direction of dislocation movement is limited by the discretization.

In the preaent work the method developed by Dluzewski and Antunez [3Jhas been used.

where ejmn is the permutation tensor. In the linear theory it is also assumed that the plastic
deformation rate satisfies the kinematic condition

where vd is the vector of the local velocity of discolations. The absolute dislocation velocity is written
as v + Vd where v is the velocity of ma.terial (mass velocity).

Set of equations and unknowns
The dislocation field motion for quasi-static isothermal elastic-plastic problems can be described by
the following set
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where D and l are respectively fourth and second order tensors depending on the material constants,
while fd is the Peach-Koehler force [5] defined for a continuous dislocation density field. This force
.is expressed by

In order to reduce the number of unknowns we ha.ve additionally restricted the problem to the
conservative motion of edge dislocations. Moreover, limiting the dislocation motion to pure slip, the
plastic deformation tensOr reads

t;p = IPt; 0

where the tensor £0 is taken as a 'constant and is expressed by

bd bd
1::0 = Ib;' @ (I x Tbdl)



where bd and I are the Burgers vector and the unit dirt'-ction vector along the dislocation line,
respectively. Taking into account the preceding relations, the equation system (5)-(7) reduces to the
following set

divu 0 (13)
Pd -div(Pdvd) (14)
'Yp = VdPdbd (15)

where bd = Ibdl, Vd= IVdl,while the stresses and dislocation velocity fulfill the following constitutive
equations

u D(Vu - /,pE.)

Vd = Adb.iU: e.
Ad is the nonzero component of Ad such that

bd bd
Ad == Ad1bdl @(l x Ibdl)

(16)
(17)

Summarizing, the unknowns ate: displacements - U"', Uti, scalar dislocation density -. Pd, and plastic
deformation /,p. . .

Numerical algorithm
The numerical simulation of dislocation motion was. carried out by introducing the corresponding

numerical procedures developed to this purpose to the FEAP program (7]. Available elastic-plastic
programmes (like the one quoted) calculate each deformation incremt->Jltwithout distinction of elastic
and plastic component. These models are approximated and do not assure good results during
unloading. Therefore in the presented algorithm we have chosen a more exact, but difficult approach
hased on the separate modelliDg of elastic and plastic deformations.

The equation set to be solved is given by equations (13)-(15). They constitute a nonlinear
coupled set in which the displacements u",,~, dislocation density Pd and plastic deformation "(p are
the unknowns. The latter is treated as internal variable and is calculated by integration along the
process history, while the other three are nodal variables. Time integration is performed by the
(implicit) backward Euler algorithm. The balance equation for forces is written in rate form. After
discretization the algebraic equation system reads

where au, ap, fu and fp are the displacement, dislocation density, nodal forces and nodal dislocation
flow vectors, respectively, while a, is the plastic deformation vector at the Gauss integration points.
Moreover,

Cu 1 VTWuDVNdv (20)

Cp 1Wp®Ndv (21)

P" -1 vrW"uDe.bdPdVddv (22)

P 1. T bd ( )
p = v V WPlbdlVdPddv 23

where W ••and W,. are weight flmetions for displacements and dislocation density, respectively. N
is the shape function and Pd<and Vd<are, respectively, the dislocation density and velocity. This
velocity is determined at the Gauss points as



The ma.trix equation (19) can he considered as the nonlinear ordinary differential equation system
with respect to the a vector

By use of the hack ward Euler scheme for time integration, equation (25) has been replaced by the
relation

1
At C (a..+l - a..) + P(a..+d == f (26)

from which we obtain a..+l for t.,+!. In that case, (26) can be solved by the Newton-Raphson method.
Then the tangent stiffness matrix has the form

K{il _ ~_ + _oP
T - At 0 (i)ll;,+!

After suhstituting (22) and (23) and carrying out the differentiation we get

oP. ~ [ If) VTWuDeobdPdAdbdeoDVNdv If) VTW"DeobdvdNdv ]
Oa!:~l ~ ff)(VTWp~)PdAd£oDVNdv I,,(VTWpIb)vdNdv

Numerical example
Let us consider the possihilities concerning the houndary conditions to the set of equations (13)-(15)
corresponding, respeet.ively, to the variables u, Pd and'1p. For the first we can specify either displa~
cements or houndary tensions, while for the second, dislocation density values or dislocation flux
q = n . VdPd' However we can notice that equation (15) does not require boundary conditions. In
our simulation a square region of 108nm x 108nm, has been divided into 402 elements as shown in
fig. la, with a refinement up to an element size of 1nm in the region where the dislocation field is
expected to propagate (fig 1h).The domain has been fixed by constraining the vertical displacements
in the lower boundary and by additionally fixing the horizontal displacement of the left lower corner
node, in order to eliminate rigid hody motion. On the left boundary nodal forces are imposed which
induce a shear stress field 0',." see fig.2. The material constants used in this simulation are summa.-
rized in table 1. With respect to the initial conditions. for the dislocation density field, it is worth to
point out that the developed numerical algorithm does not allow to directly specify an initia.l field
for it with automatic generation of the corresponding (according to equation (16)) residual stress



Kirchhoff modulus
Young modulus
Burgers' vector
Viscosity coefficient

Physical quantity
G
E
b

A.!

Value
0.3 x 105 MPa
0.7 x lOS MPa.
0.3nm
1 x 10-6••M'Pa

field. For this reason, zero initial dislocation density has been assumed in all the discretized domain,
Pd(X, t)l~ := 0, so ·that 1'p(x, t)lt=O == 0, and lldditionally, a constant-in-time incoming dislocation
flux q = I x 1O-llm-1s-1 is specified between nodes 85 and 105. For the rest ofthe boundary Pd= 0
is imposed. Edge dislocations are being modelled, and the Burgers' vector components are

b", ;:: cos 200
• O.3nm

b" sin 200
• 0.3nm

(29)
(30)

The dislocation entering into the discretized domain propagate across the elements dragged by
the forces arising from the stress field. Under the effect of the flowing dislocation field the discretized
domain becomes gradually unloaded. Figure 3 shows the stress field at the end of the process, while
figure 6 presents the final configuration after 25 times magnification of the displacement field.

Conclusions from the computer simulation
The formulation presented here is one of the first attempts of simultaneous application of the conti-

nuum theory of discolations and the finite element method for computer simulation of elastic-plastic
deformation proCesses. In what concerns the deformation mechanism liescription (plastic flow rule),
the continuum dislocation theory results directly from the mathematical description of experimental
observations. On the other hand from the qualitative analysis of the obtained results, it should be
said that they remind rather a heat diffusion process in a continuous medium than the really obse-
rved dislocation motion. We can ask Which is the main reason for the qualitative differences between
the real dislocation flow process and the computer simulation results? In the authors' opinion, it
is not due to an erroneous kinematic assumption in the continuum theory of dislocations (plastic
flow rule), because tpe process history does not depend only on the kinematic assumptions, but and
mostly, on the thermodynamic forces which govern the process. To appreciate what au ess(.'ntial role
these forces have in the qualitative evolution of the plastic deformation procesll, it suffices to compare
photographs of the deformed microstructure pattern corresponding to materials with low and high
stacking fault energy.

A crucial question arises, then: which forces should be considered in the continuum theory of
dislocations, in order to have a better description of the problem. An important argument here
is that material structures corresponding to a quasi-uniform field of monomial dislocations are not
found in practice. Moreover, in spite ofthe .fact that the dislocation motion is generally accepted as
the fundamental mechanism of crystal plastic deformation, the lattice curvature observed in mono-
crystals are usually measured not in degrees hut in minutes. This fact supports the statement that
structures with high dislocation density tensor (that is, high lattice distortion) are a very high energy
structures. Therefore, when in the continuum theory of dislocations the dislocation field ad(x, t) is
assumed, it should. not be simultaneously assumed also that the free energy does not depend on ad.
Unfortunately to such assumption, which is classical in the continuum theory, we have limited in
numerical implementations.



Figure 2: State of stress in [MPa], at time t := 0, - right: deta.iledview of the area with highest
stress gradient
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