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Se presenta un aJ.goritmo para determinar la fonna optima en procesos de conformado de
meta.les con respecto a un determina.do criterio, de modo de satisfa.cer distintas restric-
dones de diseiio. Se estudian proce808 de conformado de metales descriptos en tennin08
de la fonnulaci6n de f1ujo. Para ellos se desanolla el anaJisis de seDllibilidad a la forma.
mediante el, metodo de la configuracion de referencia, en el cual se han tomado como
variables de disei.i.olas coordenad.a.s de algunos nodOBque sirven para definir la forma de
la herramienta. El llamado metodo de diferenciacion directa es aplica.do para formular
el problema de sensitividades. A partir de los resultados del ambOB ana.Iisis (de equili-
brio y de sensibilidad) se eva.lua un funcional de costo y su gradiente en el espa.cio de
dise:fi.o.Estos valores constituyen los datos de entrada para ca.da interacian del algoritmo
de optimizaci6n mediante el cual se obtienen el conjunto de valores de las variables que
minimizan el funcional, de 10 que resulta la forma optima segUn el criterio adoptado. Se
consideran el metodo de gradientes conjudados y el aJ.goritmo de Schittkowski y se com-
paran ambos resultados. EI ana.Iisis se realiza para procesos estacionanos. La tecmca es
ilustrada calculando el diseii.o optimo de una matriz de extrusion con respeeto a distintos
criteriOB.

An optimization algorithm is presented to meet various conditions during the design of
a given metal forming operation. Metal forming processes described in terms of the flow
approach are co~sidered. Shape sensitivity analysis is obtained by the control volume
approach, where the design variables are some selected nodal coordinates used to defined
the tool shape. The 80 called direct differentiation method is followed to fonnulate the
sensitivity problem. The results from the equilibrium and the sensitivity problems are
used to evaluate a cost functional and its gradient in the design space. These values are
the input for eac.h iteration of the optimization algorithm, from which the new values
of the designed variables are obtained, which minimize the functional, resulting in the
optimal shape with respect to the adopted optimization criterion. The conjugate gradient
method and Schittkowski's algorithm are used And compared. Steady state processes are
considered. The procedure is illustrated by calculating the optimal design of an extrusion
matrix with respect to different criteria.

1. Introduction
Industrial metal forming operations U8Uallyrequire expensive equipements and big amounts of energy.
One of the criteria to evalua.te the efficiency of a. given process can be stated by its capability to



produce the desired piece regarding shape and mechanical properties with the least energy usage.
Computer modelling of these problems has an obvious interest since it can lead to better designs and
cost reductions. In addition, metal forming operations have attracted the attention of researchers
because complex material behaviour and geometric configurations take place. More accurate con-
stitutive models have arised and been implemented in numerical codes which are very useful tools
for analysis and avoid the construction of prototypes. However, classical analysis does not tell the
designer which are the key problem va.riahles neither how design changes affect the process. Any im-
provement in this respect depends on the designer's experience. Nevertheless, in structural analysis,
similar questions have been successfully answered by the design sensitivity analysis (DSA), which
gives the gradient of state variables and/or response functionals in the design variables space. The
main goal of DSA results when analytical (as opposed to finite difference) methods are applied for
calculating the design derivatives. In this case sensitivities are ohtained by solving a linea.r problem
with the same system matrix as the tangent stiffness matrix already calculated and inverted for the
equilibrium problem. Therefore the sensitivities result at a very low computational cost as compared
with the equilihrium problem. On the other hand, hy the so-called finite difference approach for
sensitivity analysis at least twice the original computational effort must be employed to obtain the
numerical derivatives for each design va.riahle, and additionally it is always an unsolved problem
which should be the design increment size in order to have low truncation and approximation errors.
It is commonly stated that optimal design is the natural following step after DSA. In fact, although
the information produced by DSA is already very important in itself, it isdear that further advantage
can he taken from it. An optimization problem can then he defined in which a functional subject to
design constraints is to be minimized. In another context, such an optimization has been attempted
in [2] but the approach used there does not make use of sensitivity techniques. Moreover, it used a
non-gradient optimization algorithm.
The value of the functional and its gradient at each design configuration is used to find the optimum
design. Recently DSA has been extended to metal forming pro(",e8SC8both to parameter and to shape
problems[l, 3]. In this paper these results are used to find the optimum design of a given process
according to an adopted optimization criterion.

2. Analysis problem
We consider metal forming processes modeled by the finite element method in terms of the flow
approach [4, 5, 6]. Velocities and pressures are obtained by solving the equilibrium equation in its
weak form

f iTTfji dO = f fT 5y dO + f tT ev d(8n)10 Jo J/JOt

together with the incompressibility condition in which the nodal pressures act as Lagrange multi-
pliers. The metal is modeled as a viscoplastic (rate hardening) material described by the constitutive
equation

• 1
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where iT is the stress tensor, i: the strain rate tensor, p the pressure, I(p) the unit tensor and f.l the
equivalent viscosity.
By standard finite element patterns the equations (1) and the incompressibility condition are discre-
tized and a non-linear system of equations is obtained. The velocity and pressure field is obtained
after solving the system by iterations: either by so-called back substitution, in which case the (se-
cant) stiffness matrix is used, or by the Newton RaphsoD method, where the tangent stiffness matrix
is needed. The specific choice ma.y be given by the viscous character of the mat,erial being modeled
and by the way the loads are applied: constant or by imposition of constant velocities.
The flow approach in its "classical" version has been extended with the treatment of free surfaces,
friction with contact and particular techniques are also included to eliminate some inherent numerical



problems, e.g. matrix scaling and spurious pressure mode elimination. Details about these features
can be found in the already quoted papers.

3. Shape sensitivity analysis and optimization algorithm
Given a generic response functional

IV= f G(t7,E,v,b)dn+ f g(vp,t,b) d(iIDv) + f h(v,t"b)d(aflt)10 100v 1aflt

we are interested in finding its sensitivity to a given set of design variables, whkh in our case will
define the problem geometry. In fact, this means to find the response functional gradient in the design
space. The two more popular methods for sensitivity analysis are the Adjoint system method (ASM)
and the Direct differentiation method (DDM). Both have been applied to parameter sensitivity
analysis of metal forming processes in a flow approach context in [1]. The former method builds an
equivalent fictitious structure where the a.ll the "adjoint" quantities have the meaning of sensitivities.
The latter finds the design derivative of (3) by intermediate ca.lculation of the equilibrium problem
variables. In both cases the tangent stiffness matrix of the equilibrium problem is obtained as the
matrix (or its transposed, in ASM) for the sensitivity problem. Therefore the sensitivity solution
results as a byproduct of the equilibriulIl solution, usua.lly as a linear problem.
Further, shape sensitivity analysis involves the definition of how a.ll the problem quantities depend on
the design variables, which in this case are coordinates or in general geometric entities defining the
problem shape. A survey and comparison of different methods for shape sensitivity analysis for linear
structural analysis can be found in [7]. The extension to metal forming processes described in terms
of the flow formulation is presented in [3] by application of the direct differentia.tion method to the
continuous expresion of the equilibrium equation (I). Derivatives with respect to geometric variables
result by considering, according to the Domain parametrization method, a fixed reference configura.-
tion and design-dependent mappings to every actual conflgura.tion. By taking design variations from
(1) we get
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and a similarly obtained expression for the incompressibility condition. Both equations give, after
discretization, the same tangent matrix as the analysis problem. The quantities 6x and ax denote,
respectively, implicit and explicit variations of x with respect to the design variables. From the state
variable sensitivities the sensitivity of the response functional (3) is obtained.
The preceding problem is solved at each design iteration of an optimization algorithm which mini-
mizes (3) with respect to the design variables. Two optimization algorithms have been employed:
the firat one is based on the conjugate gradient method[8] and the second is the Schittkowski's
algorithm[9].
The optimiza.tion problem can be formulated as follows
Optimization problem:
Minimize the functional IV
subject to

T, = XHI - Xi - f(Y"Yi+l,yOi) ~ 0

for i = 1, NO where NC is the number of constraints.

4. Numerical illustration
The procedure is illustrated by finding the optimum design of an extrusion matrix, where the extru-
sion ratio is fixed and the design variables are some nodal coordinates defining the matrix shape.



Figure 3:· Optimal shape - Criteria: averaged effective strain rate deviation (left) and maximum
local effective strain rate (right)



Optimization criteria of minimizing the deformation energy, the maximum straiIJ. rate and uniform
rate of deformation are investigated.
Fig. 1 shows the scheme of an extrusion problem with its discretization into finite elements. A
constant velocity is imposed on the left boundary (so the extrusion force is design variable) and no
friction boundary conditions have been assumed. By the flow approach we obtain the velocity, strain
and stress solution. Further, for any given configuration the shape sensitivities may be obtained by
application of the procedure outlined in Section 3 for appropriately defined shape parameters. Shape
sensitivity analysis of such a.problem with respect to the die angle has been presented in [3J. On that
occasion the die profile was supposed to be a straight line so that only one design parameter (the
horizontal coordinate of the upper right die comer) was enough to define any geometry variation.
Therefore the discretized domain was divided into only three ma.croelements (two rectangular and
one trapezoidal) in order to calculate the dXi/dh derivatives through the mapping Xi = Xi(ej,h),
where ej are the local coordinates a.t the (fixed) reference configuration.
Now we want to find the optimal die profile with respect to certain response functionals which shall
be defined later on. In order to allow a maximum of degrees of freedom for the die contour we take
this time -instead of one tra.p~idal design m&Cl(>-elementfor the conical zone-- as many as segments
the die profile will have. This number is limited by the number of nodes in that part of the boundary.
Now we consider the response functionals we want to optimize. In each case we will get as the
optimization result the set of coordinates defining the "optimal" die. The following functionals have
been investigated.

4.1 Proposed Funetionals
Energy rate

i(I = max(!q"i")
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which are optimized by the corresponding die profiles shown in figures 2 to 4.
Table 1 shows the reduction in all of the considered funetionals, achieved after optimization with
respect to the x coordinate of the four nodes laying on the conical part of the die. We can see
two different families of optimal shapes obeying to the functional character: local or global. For
the specific CaIICof the overall deformation energy (the same conclusion can be drawn about others)
the global functional presents a practically straight optimal die profile while the corresponding local
criterion (i.e. to minimize the maximum local plastic deformation energy rate) exhibits a strongly
concave profile. Ii is interesting to notice, however, that both give approximately the same angle
between the die and the material outlet, which is the most critical zone, where the strain rate and
stresses are concentrated.
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Figure 4: Optimal sha.pe - Criteria.: overall distorsion ra.te (left) a.nd maximum local distorsion rate
(right)

_____ ~_.---~_J

Functional lli., We lliM W~, lliD I)••
Initial value 0.8658E+5 0.3684E+6 4.802 6.8844 7.119 5.068
Optimal value 0.7922E+5 0.2686E+6 2.913 5.3424 6.358 3.997



The optimal solution also strongly depends on the bounary conditions. In contrast with the already
shown solutions, where, as stated, no friction conditions have been assumed, Fig. 5 shows the optimal
solution with respect to the \{rB deformation energy criterion for a problem modeled with sticking
friction condition. We see that, besides from the different shape, a much less significant reduction
is achived: from \{rEO = O.1552E + 6 to lifE! = O.1530E + 6. This fact is explained by the dead zone
appearing in the neighbourhood of the die comer, which is larger for such boundary conditions.

Fina.lly, comparative plots of the energy rate are shown for the initial (Fig. 6), optimized (Fig. 7)
configuration.~ and for the one optimized with respect to the 10('& criterion (Fig. 8). It can be
seen that the last plot shows visible differences with respect to the original and the optimized ones,
which suggests that the minimum for both criteria (local and global) are very different. On the
other hand the isocurves for the energy rate have a similar pattern in both the initial and the
global-optimized ('.()nflgurations, in the latter we see smoother energy gradients and the deformation
zone more spreaded throughout the domain.
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5. Final remarks
In this work a poligonal line for the die profile has been adopted in such a way that every nodal
coordinate on the die profile is an independent design variable. With no additional difficulty other
solutions can be adopted as well, for example to define the die profile in terms of spline lines which
decide about the nodal coordinates. In that case the design parameters will be given by the spline
coefficients, with the additional advantage that no further restrictions are necessary in order to avoid
noli-realistic situatiollil.
Nevertheless, an amazing repeatibility has been found for a same functional when results from dif-
ferent sets of design parameters as compared. Accepting for the analysed case that the crucial
magnitude is the die angle near the material outlet, this value is virtually the same either taking
from one to four design parameter, provided they give enough degrees of freedom so that the system
may reach this configura.tion. Moreover, this angle is very much similar comparing the global and
local version of a same criterion and even among different optimization criteria.
The optimizations yielded up to 40% reduction of the cost functional, although in many ca8f'-Sthis
value was less significant. On the other hand, the "optimal" shape is strongly dependent on the
functional choice and on the boundary conditions. Further research is necessary in order to evaluate
the functionals behaviour at the other functionals minima.
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