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We present a BEM/panel code to compute 3D potential flows about ship-forms with linea.ri7.ed
free-surface conditions in order to 'compute the wave drag as a function of the Froude number.
The basic governing equations of potential flow with free surface are the Laplace equation for the
velocity potential with appropriated boundary conditions and the free sUrface condition. The last
is based on the Bernoulli equation which relates the surface elevation with the local absolute value
of velocity. However this problem is ill-posed in the sense that allows multiple solutions, associa-
ted with the existence of a system of trailing gravity waves propagating in both (upstream and
downst.ream) directions. Solutions with upstream propagating trailing waves should be considered
non-physical and should be discarded. This is done by means of the addition of an upwind or
artificial viscosity term. Details of the upwind technique will be given in another paper [1].
The standard BEM/panel discretization is based in the Green's third theorem and an integral
representation of the potential velocity is obtained by means the Morino's formulation. On the
surface of the domain, this representation reduces to an integral equation for the source (or mono-
polar) and the doublet (or dipolar) density layers. In this problem the first is found by application
of a linearized boundary condition and the second is the unknown over the surface of the domain.
A low order panel method is used for the analytic integrations of the monopolar and dipolar in-
fluence coefficients. Then a non-symmetric' dense linear system is obtained which is solved by
preconditioned Krylov iterative methods, where the coefficient matrix is the sum of the dipolar
influence matrix, plus the product of the monopolar influence and the difussive matrices. Both the
dipolar and the monopolar influence matrices are evaluated with an exact field integral and they
are full populated in general, whereas the difussive matrix is sparse. These properties are taken
into account for an iterative solution where the principal CPU time cost is the evaluation of the
coefficient matrix.

Key words: 3D BEM, potential flows, wave-drag, ships forms, free surface upwind technique,
trailing gravity waves.

The problem of wave making and wave resistance of ships is an old problem in naval engineering
and with the advent of both the high speed digital computers and numerical methods, today it is
possible to deal with it from the view point of the computational hydrodynamics. The presence
oi II. free sunace conduces to a non iinear problem and the classic way to deal it, it is to solve
a sequence of linear problems and We expect that their solutions converge to the solution of the
original problem, where in this case the free surface is a part of the unknowns. At the present we
only ('.()nsidered the linearized problem where we assume a ship-like body with constant forward
velocity in an infinitely deep and calm uniform sea, as depicted in figure 1. As a first level of
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description we a.ssume an inviscid 3D flow with a free surface and it is solved with an extended
panel method, which it is an extension of the basic Morino's formulation originally proposed for
subsonic potential aerodynamic about complex configurations. It is extended by us to include
the presence of a free surface with gravity waves for both submerged and surface bodies. Our
exposition will process in two steps. In the mst step we employ the basic Morino's formulation to
solve the so called freezed problem, where the zero position of the free surface is simply a plane
and with this a.ssumption we compute the velocity field over such plane. In the second step we
employ the extended formula.tion proposed by us to compute a first correction of the position of the
free surface, also called the first linearized surface problem. The previous computed velocity field
over the plane is now an input to compute a numerical diffusive matrix inherent to this extended
formulation, which results from an upwind surface density technique inspired from the upwind
density techniques in transonic flows. In this paper we considered both the ba.<;icformulation for
the freezed surface problem and the first linearized problem, whereas the upwind surface density
technique is discussed in some detail in a companion paper presented at the same conference [1].

Figure 1: s/Jip-like body with constant forward velocity in a iniinitely deep and calm Ulliform
~a.

In a first level of aerodynamics/hydrodynamics description we assume a 3D flow field inviscid,
irrotational, incompressible and sta.tionary, with the flow a.ttached to the surfaces of the body and
without propagation waves. With such idealizations the governing differential model is the Laplace
differential equation for the total potential 4)0 of the freezed problem

4)0( ) = { Uox + t/J
x Uox +,p*

x E (0 U f)
xE(O*Ur}

where Uo is the external velocity, t/J and t/J* are the external and internal perturbation potentials
respectively, x = (x,y,z) is the position vector, n and n* are the extf'Inal and internal domains
respectively, r is the boundary of 0 composed of r = r B + r F + roo,where r B is the hull portion
of the ship wetted by the flow, rF is the freezed surface assumed by us as known, i.e., a plane of
equation z = 0, and r<Xl is an idealized hemisphere towards infinity.
The boundary conditions for the total potential velocity 4)0 of the freezed problem are, i) over both
the surface of the body fB lUld the free'1..edsurface the normal velocity V" is prescribed (Ne\LTIlann
condition),



ii) and at infinity the total potential \1elocity of the freeze<!problem tends to the external (imposed)
potential,

From a mathematical view point it is an exterior Neumann problem [2] for the total potential .po,
and it is also equivalent to solve the perturbation potentials 1> and 4>*. The solution in terms of
these can be found with the Morino's formulation [3]. It ill an integral representation based in
the third Green's theorem which is applied for both outer and inner domains for the perturbation
potentials 4>and 4>* respectively and combining the resulting expressions we obtain,

where 01 = 1/2 for x E r - roo, 01 = 1 for x E fl, 01 = 0 for x E fl*, r = IIx - Yll2 is the Euclidean
distance from the sourcc-point-g-tothe field point x, po = 4>* -4>lr--r~ is the source (or monopolar)
surface density, both defined over the discontinuity surface r - roo for oP, whereas at infinity roo
we assume that (TO(y) -> 0 and I'°{Y) -> 0 for Iyl -+ 00. The super indices over the density layers
denote that these are for the freezed problem. The usual specifications for the internal potential
are 4>* = 0 or 4>0 = Uox. In aeronautical works cited by [4] has been reported that the zero internal
perturbation potential option conduces to results of comparable accuracy to those from higher
order panel methods for the same density control points. We opted for the first option, i.e., we
imposed 4>* = 0 and then the normal and tangential velocities from the external side of the wetted
hull of the ship are,

Vn=(Uo,n)+ :1 = (Uo,n) + (To

r-r""

Vi = (Uo,t) + ~I
r-r~

where n is the normal exterior unit vector, i is a tangential unit vector over the exterior side of
the body. For the freezed problem all the surfaces are impenetrables so the normal velocity is null
Vn = 0, and then the monopolar density is found by direct application of the boundary conditions
(To = (-Uo,n), whereas for the doublet density layer pI} = -4> for x E r - roo. Then in the basic
Morino's formulation for the freezed problem we have,

~po_~ f dI'y~~po=_-.!- f dI'y~qO
2 47r lr-r 00 an r 47r lr-r 00 r

which can be recognized as a Fredholm integral equation of second kind for pO with Ii weak
singularity and it can be written as,

11 a 1A(x) = ..,...- dI' ,--,. 4,.. ~Onrr-foo

where A( x) and C (x) are the dipolar and monopolar influence operators, respectively and I is
the identity operator. The solution of its associated discrete vet'llion is the basic panel method
implemented by us.



For the second step we will proceed to obtain a first displacement of the zero position of the
previous freezed surface. Now the total potential <)1 for tbis first correction can be written as
<)1 = Uox + <P + t/J for x E f - roo, where <P and t/J are the exterior perturbation potentials of the
freezed and the first correction problems, respectively, such that the first linearized velocity field
is given by U = U" + Vt/J, where U" is the velocity field over the plane of the freezed problem, and
Vt/J is the first velocity field correction.
For t/J we have .the Laplace equation At/J = 0 for x E n with homogeneous Neumann boundary
conditions ov~r the body fJtP/8n = 0 for x ErE, whereas over the whole plane Wenow inject a
"transpiration flux" a such that,

where TJ is the first incremental correction of the position of the free surface and is found from the
application of the Bernoulli equation for unit density U~/2 = U2/2 + gT/, where 9 is the gravity
acceleration. Then,

Furthermore, because we are interested to obtain the wave drag coefficient Cx as a function of
the Froude number Fn = Uo/,,;gr;*, where Cx is a nondimensional wave drag force and L is a
characteristic length, we can define UfJ = a"Uv1, where a" is a nondimensional velocity factor, U"l
is the velocity field over the whole plane of the freeze<!problem for unit velocity at infinity, then
the transpiration flux is null over the body a1(x, t/J) = 0 for x E fB, and over the plane it is given
by,

1 o:~ 2 a: 2
a (x,t/J) = -2 (UfJ1, VU,,) + - (U"l, V) t/J == afJ + D7jJ ; x E rF

9 9
where a" is a source term and D is the diffusive term. The resulting system of equations for
p.l = _7jJ is now,



P.
Figure 3: p, q plane according to'the k-local tern of the side Lk.

where x E r_.roo. Thus, in this form we computed Uvl only once for the freezed problem and then
we computed the solution for a discrete interval of Froude number {Fl,F2, ••• , Fi, ." Fn} where for
each F; we assemble and solve the associate discrete system of algebraic equations.

BASIC AND EXTENDED PANEL METHOD
For a numerical solution we opted by a lower panel method where we approximate the assumed
regular and finite surface f' = rII + rb by polyhedral surface f'n, where we cut the plane a great
distance relative to the body and the surface toward infinity roo it is not considered. Each face of
the polyhedral surface is a flat panel (usually quadrilaterals or triangles), We employ a collocation
technique to setup the discrete system of algebraic equations for both the freezed and the first
linearized problems where the collocation points are the centroids of the panels. For the first we
simply have,

(1/2 Inn - Ann)J.l~ = -CnnO"~

where Ann, Cnn E Rn,n are the dipolar and monopolar influences matrices, respectively, Inn E Rn,n
is the identity matrix, J.l~, O"~ E Rn.l are the dipolar and monopolar column vectors, and n is both



the total panels number and the total collocation points present in the polyhedral surface rn'

Whereas for the seCond,

.[
1/2 [1'1' + ApI' - CppDpp
..A6p --,ClJpl)pp

where Dpp E Rpp is the diffusive matrix over the whole plane, ApI' and Abh are the dipolar self-
influence submatrices over the plane and over the body, respectively, Abp and Apb are the dipolar
influence submatrices between them, Cpp is the monopolar self-influence matrix over the plane,
ChI' and Cph are the monopolar influence submatrices between plane and body.

DIPOLAR AND MONOPOLAR MATRICES COMPUTATION

Because each flat panel support both uniform monopolar and dipolar density layers, we can extract
these from the discrete integral operators and then for Ann = [Aij] and Cnn = [Cij] we have the
following definitions

11 1Cij = - dfj-
411" I'j rij

where rij = IIXij 112=.IIXi - Xjll2 is the Euclidean distance from the centroid Xj of the j - manantial
panel ofthe area rj to the collocation point Xi. We can be integrate these in closed form replacing
the surface integrals over each flatmanantial panel by a linE'-8J'integral over its closed Aj contour
of mj edges by means of the Stokes' theorem. Thus for a flat polygonal j-panel situated in an
arbitrary position and a field point Xi in the three dimensional space, we consider a local tern
according to the side Lk (see figures 2 and 3). The discretized expressions for both the dipolar
and monopolar influence coefficients are computed by sums over the mj edges,

mj

Aij = L:A~(Pa'Pb,q,Xi) ;
k=l

mj

Cij = L:CJ(Pa,Pb,q,Xi)
k=l

where A1(Pa,Ph,q,Xi) and Cj(Pa,Pb,q,Xi) are th:e k - edge contribution of the j -mananantial
panel for the collocation point Xi according to,

Pa = (Xk-l/2 - x;)· tk

Ph = (Xk+l/2 - Xi) . tk

q = (Xk-l/2 - Xi) . nk
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Figure 6: isolines of elevation for a submerged cube.

where P6 and P••are the abscissas of the side Lk , q the common ordinate according to local dihedral
P, q parallel to the side Lk and whose origin is the normal projection of the Xi field point, tk and nk

are the local unit vectors of the side Lk content in the plan of the j-panel. The functions M(p, q, '7)
and D(p, q, '7) are the transcendental functions,

For U I sqIt (g 2R)
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Figt!re 7: wave drag as a function of the Froude number for a horizontal circular cylinder
obtained by the extended panel method.

-1 [p-I'7I-#+q2+'72] [ ~-]M(p,q,'7) = 21'71tan ----q-------- - qln p+ yr + (q2 + '72)

D(p,q,r/)= 2 sg('7) tan-1 [P-I'7I- V;+~~2]
DIRECT AND ITERATIVE SOLVERS

The dipollloI /loUdmODopolar influl:uCl: lUatrices An and en for both the basic and the extended
panel method are in general full populated and non-symmetric, whereas the diffusive matrix Dpp of
the extended method is sparse. In both cases we solve the algebraic system by direct and iterative
methods. For the direct solution we have incorporated the LINPACK direct solver for a full
populated matrix system, with LU decomposition and pivoting with backsustitution, whereas for



the iterative solution we have implemented the following preconditioned Krylov iterative solvers:
Generalized Minimal Residual (GMRES), Conjugate Gradients over Normal Equations (CGN),
bi-Conjugate Gradients (bi-CG) and Conjugate Gradients Squared (CGS). As an example we have
solved a delta wing of 5 % thickness with 3,072 p8.llels, and the convergence history plot obtained
with these iterative solvers it is shown in figure 4.

VECTORIZED ITERATIVE SOLVERS + BEM
For an iterative solution of the algebraic system of equations obtained by a BEM/panel discret.i-
zation we will take in account that in general the system matrix is full populated. In an iterative
solver where the system matrix is full populated, the principal cost are the vector-matrix product
operation y = Ax and the vector-matrix transpose product operation y = A' x present in some sol-
vers, where A is the system matrix, A' its transpose, x and y are some input and output vectors.
These products must be evaluated a certain numbe,r of times in each iteration, for example, in
Conjugate Gradients over Normal Equations (CGN) and Bi-Conjugate Gradients (BCG) solvers
we have one of each cl88Bat each iteration, and for Conjugate Gradients Squared (CGS) we have
two of the first cliiSS aJia'ii6Iiiiofthe second one. Because the system matrix is in general dense
and non symmetric we discard the possibility to store the full populated matrix in core memory,
for example, with n = 10,000 panels we need 160 Mbytes of RAM in double precision arithmetic.
Furthermore we also discard the disk storage and swapping because its relative lower performance.
Then we choose to recompute the system matrix at each matrix-vector product operation and in
principle this can be done by row or columns with a double nested loop. Another point to taken in
account is that we compute the dipolar and monopolar matrices involving by summation over the
side of manantial panel (and eventually geometric symmetries). From heuristic cost considerations
we concluded that the lowest operations number is found when we compute the system matrix by
columns. Then, in the system matrix A we have a double nested loop with a j-column loop for the
all manantial;panels and an i-row loop for the collocation points. The column oriented algorithms
to be used in vectorial processors can .be written as,
i) vector - matrix product operation:

y = Ax = A}x(1) + A2x(2} + ...+ A;x(i) + .,.+ Anx(n)

y=o
do j = 1, n
Aj
y = y + Aj x (j)
end do

i} vector - matrix transpose product operation:

vectorial
Fortran
semicode

(A}, x)
(A2,x)

(Ai,x)

vectorized
Fortran
semi code

y=o
doj = 1, n
Aj
do i = 1, n
y (j) = y (j) + Aj (i) x (i)
end do
end do



Submerged Cube
Let us consider a cube of unit length submerged at unit depth from its upper face (see figure 5). On
the freezed surface we only considered a portion of 1, 000 xl, 000 length. The cube is off-centered
a 20% towards the upwind direction. This is done to capture better the wave pa.ttern. The Froude
number based in the cube length is 4.5 whereas based in the plane length is 0.1. The mesh is 64
panels by 64 panels and the isolines of eleva.tiOliare shown in figure 6. This case can be considered
as an approximation of a point pressure pertUrbation, in which case the characteristic wave pattern
should be independent of the details of the submerged body.
Submerged Circular Cylinder
In the following example we considered a submerged circular cylinder. The analytical wave drag
force per unit transversal length WLis,

.WL= 47r2~tR4 e-2g//U'

where R is the cylinder radius, f the depth to its axis, g the gravity acceleration, U the non
perturbed velocity. We have computed the numerical drag force obtained by the extended panel
method implemented by us for a Froude number F interval and it is shoWn in figure 7 for a mesh
with 300 x 3 panels over the freezed surface and 128 panels over the cylinder.
Semi-Submerged Sphere
We now consider a semi submerged sphere of unit radius with center over the freezed plane (z = 0).
In the figure 8 we show the isolines of elevation field for a Froude number of F == 4.5 with Ii mesh
with 45 x 15 panels in the circumferential and radial directions and 96 panels over the wetted
submerged semi sphere.

Scale Ship Model
Finally we consider a scale model of a ship at Froude number F = 0.5 whose isolines of elevation
field are shown in figure 9.

A basic and an extended lower HEM/panel code it was presented. The solution of the wave
drag problem in 3D hydrodynamics requires the extension of the basic panel method in order to
incorporate the linearized free-surface. This is done by an upwind §urface density or transpiration
technique. The extended panel method is an intere.stinp; tool because we only need to discretize
the surfaces of the wetted hull of the ship and a finite portion of the freezed surface.
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