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En este trabajo se trata Ill. soluci6n de problemas de respuesta transitoria no lineal de
estmcturas por metodos de descomposici6n del dominio. Estas tecnicas result an conve-
nientes para problemas de grandes dimensiones, atin para UIl procesamiento secuencial.
En este trabajo se apunta a Ill. soluci6n en paralelo, y para esto la descomposici6n del
dominio puede ser un algoritmo interesante de resoluci6n, sobre todo en un entorno de
computadoras paralelas de memoria local 0 para la resoluci6n con redes de computad<r
ras secuenciales y/0 paralelas.

Development of algorithms for parallel solution of nonlinear problems of transient me-
chanical response is considered in this work. Domain decomposition techniques are
chosen as they ll'-5ult in efficient tools for solving large problems in engineering anal-
ysis. They lead to bigh granularity tasks and result in powerful ways of performing
parallel computations. They are also suitable for applications on different hardware
architectures and/or different programming models. Algorithms.reported for structural
mechanics are presented, as well as the characteristics of nonlinear finite element pr<r
grams with regard to their parallel execution capability.

Domain decomposition techniques are efficient tools for solving large problems in engineering anal-
ysis. A first division arises whether the analysis domain is decomposed in overlapping subdomains
(Schwarz metho<ls) or in non overlapping subdomains (i.e. Schur Complement method). The latter
has been widely UBedin structural mechanics.
Despite their UBefulnessin dividing large computational tasks in the framework of traditional
computer architecture, these methods are particularly attractive regarding parallel computations.
The development of parallel algoritluns for non linear structural mechanics is being currently
accomplished in the Computational Mechanics Group of INTEC. The present is a progress report
where domain decomposition techniques are presented, specially those with proved efficiency in
finite element computations. The main characteristics of a non linear finite element code are
discussed in connection with parallel computation.

Domain decomposition techniques provide efficient solution methods for mechanical problems.
They are based on splitting the analysis domain n into a number N S D of non overlapping sub-
domains (figure 1). Let 1V denote each subdomain and 1', (i = 1,3) their bonndaries. 1'1 states
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for boundaries with kinematical conditions, f2 for those with mechanical conditions and f3 for
frontiers with other sub domains. With this notation the whole domain is

NSD

f3= U r~
=1

Figure 1: Domain decomposition

Applying the usual displacement ba.'led finite element method to solve a static mechanical problem
the following system is get

At each sub domain (comprising n"and r~)the subdomain stiffness matrix K·, displacement vector
u· and force vector f" may be constructed. We can realize partitioning these matrices into a group
of internal d.c.f. u" and a group of interface d.o.£. u·. The subdcmain stiffness matrix may be
written

The upper symbol 0 means internal d.o.f., 0 means interface d.o.f. and D refers to interaction
between internal and interface d.o.f ..
On the other hand, if we collect the contribution of all sub domains to the interface d.o.f., we can
write

as the assembled stiffness matrix for the whole interface problem, UJ being the displacement vector
associated to it. Matrices with subscript I have the size of the whole interface problem.



Recalling the whole problem, the stiffness matrix may be written

J{1 0 0 i<:lI
0 J{2 0 i<:i

K== KS j{s0 0 [

j{l,T K2,T i<:s,T K[[ [ [

,s o=·I,NSD
NSD .

f[ - Ei<:;,T(KS)-lfS
s=l

NSD 1
S c~, K[ - Ej{;,T CKs) - Kj

s=l

is known 85 the Schur complement matrix or capacitance matrix.
The first group of equations in (10) represents the uncoupled equilibrium system for the internal
d.o.f. iis at each subdomain, resulting from the non penetration character of the decomposition.
This part of the solution is perfectly parallelizable. The size of these problems is given by the
granularity of the domain decomposition.
The second part of (10) represents the interface problem. The size of the Schur complement S is
usually much smaller than that of the global matrix K, but it is also more dense than K. The
condition number of S is usually much smaller than that of K. On the other hand matrix S may
not be explicitly aBsembled and the solution performed in a subdomain-wise fashion. This part
of the solution is coupled for the whole problem. The efficiency of the global solution is highly
tightened to the efficiency of the solution for the interface problem.
We (;an therefore think as the problem being solved in two steps; an interface problem and an
internal one. A popular strategy is to solve the internal problem (lO-a) by direct methods and the
interface problem (10-b) by iterative ones. Direct methods are preferred for (lO-a) since the lead
to close solutions. and no error propagation is produced to the interface problem.



Direct methods, however, are not BUitable for the interface problems due to their large storage
requirements. Matrix S is usually full and expensive to construct. Some applications of direct
methods are reported in the literature, but they are mainly concerned with special cases (e.g.
slender structures) where the interface problem size is limited [1,2]. Iterative methods perform
well for the interface problem, in particular conjugate gradient techniques with preconditioning.
As it was already said, the condition number for the Schur complement is less than for the whole
stiffness matrix. In the case of a Laplace problem, cond(K) = O(b) while cond(S) = O(k).
Domain decomposition can be seen as a way of preconditioning the whole problem.

3.1 The Preconditioned Conjugate Gradient Method

We will focus on .the solution of the interface problem (lo-b). The interface do.f. matrix K[ may
be written

NSD

LKj
s=l

Eq. 13 shows that contributio1lll of each sub domain to the matrix S may be computed indepen-
dently. Equation lo-b is rewritten

We will now discuss the solution of (15) via Preconditioned Conjugate Gradient methods. The
algorithm is shown in Table I for a generic linear system

The mOllt time consuming parts ofthe process are the matrix-vector products at steps A.2 and B.l,
and the solution of the LEQ systems at A.3 and B.7 (preconditioning). The rest of the operations
on vectors with the sire of the global interface problem are dot product and SAXPY operations
(Sum of Alpha X Plus Y).
Preconditioning is of paramount importan<.'e regarding the performance of a Conjugate Gradient
algorithm. Among the popular preconditioners we can mention:
1. Jacobi or diagonal scaling
2. Block Jacobi
3. Incomplete Cholesky factorization
4. Element by Element (EBE)
Domain decomposition results itself in a good preconditioner for a global Conjugate Gradient
solution. As limiting cases it performs as a direct global method if the number of subdomains
tends to one (i.e. the whole structure 811 a subdomain), or 811 a Conjugate Gradient global solution
with EBE preconditioner when the number of 8ubdomain tends to the number of elements. Domain



A.
A.1
A.2
A.3
A.4
A.5
A.6

B.
B.1
B.2
B.3
B.4
B.5
B.6

C.
C.l

B.7
B.S'
B.9
B.lO
H.ll

Initialization

x(O) = Xn-l
r(O) = b - Ax(O)
solve Pz(O) = r(O)
p(1) = (r(O), z(O»
p(l) = z(O)
i = 1

Iterations (i=1,2, ... )
a(i) = Ap(i)
m(i) ""' (p(i), a(i))
a(i) =~.
x(i) = x(i - 1) + a(i)p(i)
r(i) = r(i - 1) - a(i)a(i)
Convergence test on r(i) or x(i)
if converged go to C,
otherwise go to B.7
solve PZ(i) = r(i)
p(i + 1) = (r(i),z(i»
{J (.) .~. p(i+1}

~ - -ii\i)-
p(i + 1) = z(i) + {J(i)p(i)
i = i + 1, go to B.1

Bnd C.G. loop
Xn =co x(i)

ma~rix-vector prod + sum vectors
system solution

dot product

decomposition or substructure-by-substructure preconditioners are reported to be more efficient
than EBE preconditioner [3}.
Some methods for efficient solution of the interface problem within a domain decomposition frame
are referred to in the subsequent sections.

matrix-vector prod.
dot product

SAXPY
SAIPY

system solution
dot product

3.2 The Dirichlet-Neumann Method [12]

The most time consuming part in the algorithm of Table I are the matrix-vector products (A.2
and B.3) and the system solutions (A.3 and B.7). We will consider these operations in the frame
of Ii domain decomposition.
The matrix-vector product in B.l (also in A.3) may be written

a = Sp

S being the Schur complement and, owing to (13),

NSD NSD

a = L as = l:SSp
.;;,.,:1 .=1

that is, the contribution to a is computed separately at t"-achsub domain. At 8ubdomain 8 we have
(see (14))



Equations 20 to 22 show that to compute the matrix-vector product (18) it suffices to solve at
each subdomain a Dirichlet problem where prescribed values p are imposed on the interface r;,
and the associated force vector a8 is obtained. Finally the contributions a8 of each 8ubdomain are
added together.
For the preconditioning phase (B.7 and A.3, in Table I) the following procedure is followed [4]. At
each subdomain a matrix Di is defined such that

That is to say that by 88Sembling the matrices Dj of all subdomains the identity matrix is get on
the global interface space. The simplest choice for Dj is a diagonal matrix whose entries are the
reciprocal of the number of subdomains that share the current d.o.f..
Given the residual force computed at each conjugate gradient iteration the projection onto each
subdomain is performed:

NSD

Z = L D8z'
8=1

NSD
p-l = L D8(s·)-ID8T

8=1

Solution of (25) is in turn equivalent to solve a Neumann problem on subdomain 8 where the
solution vector z· contains displacements of the interface d.o.f.. It can be performed without
explicitly forming the Schur complement matrix S, by writing for each 8ubdotnain:



When applying the conjugate gradient iteration to the interface problem, matrix-vector products
(A.2 and B.l) and system solutions (A.3 and B.7) are replaced by alternatively solving subdomain
problems with Dirichlet and Neumann boundary conditions, respectively. These subdomain solvers
are perfectly parallelizable. For Laplace problems it has been reported that while the condition
number for the global matrix is 0 (-b) (h being the element size). that for the Schur complement is
O( i), and by using the preconditioner (27) it reduces to 0(1). This result have not been proved for
other problems but numerical evidence show similar behavior for structural mechanics problems.
In general cases equation 25 leads to singular S matrices unless enough rigid body motions be
prevented by proper fixations. Several techniques have been proposed to handle this drawback.
De Roek and Le Tallec [4] modified the solution algoritlun by eliminating d.o.f. associated with
zero pivots. If the rigid body motions are set arbitrarily, the efficiency of the preconditioner
deteriorates with the increase in the number of subdomains. A practical limit was found to be 16
subdomains [5]. This is due to the local character of the correction in the residual forces implied
in this algorithm. In fact, Widlund has shown that the condition number of a DDM, whithout a
mechanism of global transport of the information, grows at least as ~ , H being the subdomin
largest diameter [6). Some attempts to propagate the corrections between the subdomains have
been done by solving, at each iteration, a coarse problem with few d.o.f. on each subdomain
[7,8,9). Other efficient techniques have been developed, such as the FETI (Finite Element Tearing
and Interpolating), which is based on a Dual Schur complement method [10,11).

The structure of a non linear finite element code for structural analysis may be written in the
general pattern;
For each time step:

A update variables
B iterate on:

B.1 compute element stress
B.2 assemble element forces into global vectors
B.3 solve linearized equilibrium equations system
B.4 convergence test:

if converged go to next time step
if not converged go to next iteration

The algorithm operations may be classified, with regard to their parallel c.haracter, in:
a) naturally uncoupled tasks: such as updating of global state vectors (A) or computing element

stress (B.1). They are easily parallelizable. Allocating each element to one processor is the most
direct way of doing it.

b) lOQsely uncoupled task.~: such as assembly operations (B.2) or error para-meters eomputat.ion (H.4)
Care must be taken in updating global (shared) variables. Parallel accumulation tasks should be
synchroni7.ed, Reordering strategies (v.g. "coloring") may be used for these tasks.

c) strongly coupled tasks: the solution of the linear equations system. It is the most complex tasks
to render parallel. It may be solved either by algebmic pamllelism where each task of the solution



algorithm is split into the different processors, or by domain decomposition in the way described
in precedent sections.
Domain decomposition, being a tool for the solution of the equation system, is suitable to deal
with the other types of parallel tasks. It requires just to synchronize the accumulation operations
while assembling or error computing (b).

Distributed memory architectures are taken as target for our development. In particular the work
on clusters of workstations or personal computers is considered. Domain decomposition methods
are well suited for these architectures, but may be used also in shared memory computers.
A message passing programming model is suitable for distributed computations. Communication
between processors is handled by means of PVM (Parallel Virtual Machine) [13]. This is a software
package allowing. that heterogeneous or homogeneous clusters of computers be used as a single
parallel -distributed memory- computer. It provides the basic routines for communication and
runs under Unix on a wide range of computers (including PC).
A software that manages communication between personal computers have been developed [14].
This package rons under DOS and allows to split computations in a fashion similar to PVM. With
limited characteristics, however, it allows to conduct parallel computations under DOS.

In this report, domain decomposition techniques for solving large systems of equations have been
presented. The aim is to make use of them to perform parallel solution of non linear finite element
structural problems.
Parallelization of linear elastic programs have been performed and the work on transient analysis
is being conducted.

This work have been done under support of CONICET (Consejo Nacional de Investigaciones Cien-
tificas y TOCnicas),Universidad Nacional del Litoral, Argentina, and Fundaci6n Antorchas.
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