REFINAMENTO AUTOMÁTICO MÚLTIPLO DE MALHAS BI E TRIDIMENSIONAIS EM SISTEMAS DE ELEMENTOS FINITOS

José L. F. Aymone, Ademar G. Groehs

CEMACOM, CPGEC Universidade Federal do Rio Grande do Sul, Av. Oswaldo Aranha, 99 - 3º andar, CEP: 90035-190, Porto Alegre, RS, Brasil

RESUMO

Este trabalho apresenta um estimador de erros "a-posteriori" para análises de elementos finitos em problemas elásticos-estáticos lineares, e um processo de refinamento auto-adaptativo tipo h por nó. Esse processo evita o problema da geração de nós irregulares e está sendo implementado no sistema GAELI.

ABSTRACT

This paper presents an "a posteriori" error estimator for finite elements analysis in linear elastic-static problems, and a h-method adaptive remeshing procedure that works node by node. This procedure avoids the problem of irregular nodes generation and it has been implemented into the GAELI system.

INTRODUÇÃO

Os processos adaptativos, além de realizarem a análise normal de elementos finitos, determinam a região do domínio onde o modelamento não é adequado e, após isso, melhoram o mesmo usando uma das estratégias (versão r, p ou h). Geralmente, inicia-se a análise com uma malha o mais uniforme possível e calcula-se a solução. Após isso, estima-se o erro local, enriquecendo a malha onde o erro for grande.

A versão r simplesmente realoca a posição dos nós, a versão p aumenta o grau dos polinômios das funções de interpolação e a versão h, que será utilizada neste trabalho, atua através da subdivisão dos elementos. A malha ótima será atingida quando o erro for igual em todos os elementos, ou seja, quando houver uma distribuição uniforme do erro de aproximação tendo como limite superior a percentagem de erro especificada. O presente trabalho utiliza um estimador de erros proposto por [1] e [2] baseado na projeção e suavização do campo de tensões sobre todo o domínio da estrutura. Este estimador de erros está implementado no sistema GAELI [3].

O ESTIMADOR DE ERROS

Calculam-se as tensões aproximadas pela expressão $\hat{\sigma} = D\hat{\varepsilon} = DB\hat{U}^{e}$ onde $\hat{\varepsilon} = \hat{U}^{e}$

representam respectivamente as deformações específicas e os deslocamentos nodais aproximados e D é a matriz constitutiva elástica. Sendo σ a solução exata de tensões, o erro de tensões será dado pela expressão (1)

$$e_{\sigma} = \sigma - \hat{\sigma} \,. \tag{1}$$

Como a expressão (1) é uma função de ponto, de dificil aplicação prática, utiliza-se a norma de energia do erro definida sobre o volume do elemento Ω

$$\|E\|_{e_{\sigma}} = \sqrt{\int_{\Omega} e_{\sigma}^{T} D^{-1} e_{\sigma} d\Omega}.$$
 (2)

Para obter uma avaliação de σ , parte-se da expressão $\sigma^* = \Phi \overline{\sigma}^*$ onde uma componente de tensão σ^* , em um ponto qualquer no interior de um elemento, relaciona-se com as mesmas componentes de tensão $\overline{\sigma}^*$ nos diversos nós do elemento através da matriz linha de funções Φ .

Para obter $\overline{\sigma}^*$ minimiza-se o funcional quadrático $\chi = \int_{\Omega} (\hat{\sigma} - \sigma^*)^2 d\Omega$ para cada componente de tensão $\hat{\sigma}^* e \sigma^*$, o que permite obter $\left[\int_{\Omega} \Phi^T \Phi \ d\Omega\right] \overline{\sigma}^* = \int_{\Omega} \Phi^T \hat{\sigma} \ d\Omega$ onde $\overline{\sigma}^* e$ o vetor incógnita do problema, o qual não depende de Ω . Integrando $M = \int_{\Omega} \Phi^T \Phi \ d\Omega = R = \int_{\Omega} \Phi^T \hat{\sigma} \ d\Omega$ por Gauss, pode-se obter cada conjunto de componentes $\overline{\sigma}^*$ para os nós do elemento. Denomina-se $\overline{\sigma}^*$ de tensões projetadas que dependem do elemento considerado.

Usando os nós do elemento como pontos de integração, a matriz M dá origem à matriz diagonal M^{D} [4], enquanto R da origem à R^{D} . Essas matrizes permitem obter as matrizes globais $M^{T} = \sum_{e=1}^{QL} M^{D}$ e $R^{T} = \sum_{e=1}^{QL} R^{D}$ onde QL é o número de elementos constituintes da estrutura. A solução do sistema $M^{T} \overline{\sigma}^{\bullet\bullet} = R^{T}$ fornece as tensões suavizadas globais $\overline{\sigma}^{\bullet\bullet}$ nos nós do elemento. A partir de $\overline{\sigma}^{\bullet\bullet}$ pode-se obter, para cada elemento, os valores das componentes de tensão $\sigma^{\bullet\bullet}$ nos pontos de integração de Gauss através de funções de interpolação ϕ utilizadas para calcular a matriz de rigidez do elemento. Assim, para cada componente em um certo ponto de integração, $\sigma^{\bullet\bullet} = \sum_{i=1}^{NNE} \phi_{i} \overline{\sigma}^{\bullet\bullet}$ onde ϕ_{i} são os valores das funções de interpolação no ponto de integração e NNE é o número de nós por elemento. Após isso, é possível fazer uma avaliação da expressão (1) nos pontos de integração (*PI*) como

$$\left(\hat{e}_{\sigma}\right)_{PI} = \left(\sigma_{\tilde{e}}^{**} - \hat{\sigma}_{\tilde{e}}\right)_{PI}$$
(3)

e uma avaliação da expressão (2) pode ser obtida pela expressão (4)

$$\left\|E\right\|_{\hat{e}_{\sigma}} = \sqrt{\sum_{P_{l}=1}^{NP_{l}} \left(\hat{e}_{\sigma}^{T}\right)_{P_{l}} D^{-1}\left(\hat{e}_{\sigma}\right)_{P_{l}} W_{P_{l}} \det J_{P_{l}}}$$
(4)

onde W_{PI} é o peso e det J_{PI} é o determinante do Jacobiano. Seguindo o raciocínio utilizado na norma de energia do erro obtém-se, ao substituir na expressão (4) o termo \hat{e}_{σ} por $\hat{\sigma}$, uma avaliação da norma de energia de tensão através $\|E\|_{\hat{\sigma}} = \sqrt{\sum_{P_{I-1}}^{NP_{I}} \left(\hat{\sigma}^{T}\right)_{P_{I}} D^{-1}\left(\hat{\sigma}\right)_{P_{I}} W_{P_{I}}} \text{ det } J_{P_{I}} \text{ Para obter uma melhor avaliação da norma de$ da expressão energia de tensão $||E||_{\hat{\sigma}}$, em nível de elemento, pode-se combinar $||E||_{\hat{\sigma}}$ com a expressão (4) chegando à $\|\overline{E}\|_{\hat{\sigma}} = \sqrt{\|E\|^2_{\hat{\sigma}} + \|E\|^2_{\hat{\sigma}_{\sigma}}}$. Com isso, o erro relativo aproximado $\hat{\eta}(\%)$, em nível de elemento, será

$$\hat{\eta} = \frac{\|E\|_{\hat{\sigma}}}{\|\overline{E}\|_{\hat{\sigma}}} \times 100 .$$
(5)

REFINAMENTO AUTO-ADAPTATIVO TIPO h POR ELEMENTO

Existem várias estratégias de refinamento tipo h. Na estratégia utilizada neste trabalho, é estabelecido um critério de precisão cujo objetivo é atingir uma determinada porcentagem de erro relativo através da norma de energia. Para isso, utiliza-se as normas de energia globais. A norma de energia do erro, correspondente à toda a estrutura, pode ser avaliada como

$$\|E\|_{T\hat{e}_{\sigma}}^{2} = \sum_{i=1}^{QL} \|E\|_{i\hat{e}_{\sigma}}^{2}$$
(6)

onde $||E||_{i\hat{e}_{\sigma}}$ é calculado, para cada elemento *i*, pela (4). A norma global de tensão, obtida de forma semelhante à expressão (6) será $||E||_{T\hat{\sigma}}^2 = \sum_{i=1}^{QL} ||E||_{i\hat{\sigma}}^2$.

Admitindo que o erro esteja igualmente distribuído entre todos os elementos, que é a condição ótima [5], tem-se $||E||_{t\hat{e}_{\pi}} = ||E||_{j\hat{e}_{\pi}} = ||E||_{k\hat{e}_{\phi}}$ tal que $1 \le i, j \le QL$, onde *i* e *j* correspondem a dois elementos distintos quaisquer e *k* simboliza um valor constante do erro. Devido à isso, a expressão (6) pode ser reescrita como $||E||^2_{T\hat{e}_{\pi}} = QL \cdot ||E||^2_{k\hat{e}_{\pi}}$ e o erro relativo de toda a estrutura, avaliado por uma expressão análoga à (5), fica

$$\hat{\eta}_{T} = \left[\frac{QL \times \|E\|_{k\hat{e}_{\sigma}}^{2}}{\|E\|_{T\hat{e}}^{2} + \|E\|_{T\hat{e}_{\sigma}}^{2}}\right]^{1/2} \times 100 .$$
(7)

Estabelecendo $\overline{\eta}_{T}$ como o máximo erro relativo permitido para a estrutura, em porcentagem, o critério a ser satisfeito será $\hat{\eta}_{T} \leq \overline{\eta}_{T}$. Adotando a igualdade, a expressão (7) permite obter

$$\left\|E\right\|_{k\hat{e}_{\sigma}} = \sqrt{\left(\frac{\overline{\eta}_{T}}{100}\right)^{2} \times \frac{\left\|E\right\|_{T\hat{e}}^{2} + \left\|E\right\|_{T\hat{e}_{\sigma}}^{2}}{QL}}$$
(8)

que pode ser adotado como limite superior de erro desejado em cada elemento,

correspondente ao $\overline{\eta}_{T}$ especificado. Então se $||E||_{t\hat{e}_{\sigma}} > ||E||_{t\hat{e}_{\sigma}}$, com $1 \le i \le QL$, o elemento *i* deve sofrer refinamento. Fazendo $\rho_{i} = ||E||_{i\hat{e}_{\sigma}} / ||E||_{k\hat{e}_{\sigma}}$ e sendo *p* igual à ordem do polinômio empregado, o valor de $\rho_{i}^{1/p}$ pode ser interpretado como

$\rho_i^{1/p} \leq 1$	- não há necessidade de realizar refinamento;
$1 < \rho_i^{1/p} \le 2$	- há necessidade de realizar um refinamento;
$2^{r-1} < \rho_i^{1/p} \le 2^r$	- há necessidade de realizar r refinamentos sucessivos.

Devido à existência de elementos de dimensões variadas, é interessante utilizar na expressão (8), em lugar de (I/QL), a relação de volumes (V_i/V_T) onde V_i representa o volume do elemento considerado e V_T o volume global. O valor limite $||E||_{k\hat{e}_{\pi}}$ passará a depender do elemento e, para um elemento *i*, será

$$\left\|E\right\|_{k\hat{e}_{\sigma}} = \sqrt{\left(\frac{\overline{\eta}_{T}}{100}\right)^{2} \cdot \left(\frac{V_{i}}{V_{T}}\right) \cdot \left(\left\|E\right\|_{T\hat{\sigma}}^{2} + \left\|E\right\|_{T\hat{e}_{\sigma}}^{2}\right)}$$
(9)

São válidas todas as fórmulas vistas anteriormente, substituindo $||E||_{k\hat{e}_{\sigma}}$ por $||E||_{ik\hat{e}_{\sigma}}$ onde for o caso. O refinamento por elemento normalmente apresenta problemas de implementação por criar, dependendo do tipo de subdivisão adotado, os chamados nós irregulares (ver figura 1).

Figura 1 - Tipo de subdivisão que cria os nós irregulares.

A vantagem das subdivisões acima é que elas conduzem a elementos com um mínimo de distorção, não importando o nível de refinamento. Nota-se que os nós irregulares não existem nos elementos vizinhos ao elemento refinado. Por isso, usam-se técnicas especiais que permitem acoplá-los ao restante da malha. Essas técnicas, contudo, implicam modificações no algoritmo de solução e apresentam dificuldades adicionais para o caso de elementos quadráticos ou cúbicos e em malhas constituídas de elementos de diversas formas ou tipos.

Embora seja possível subdividir um elemento sem criar nós irregulares, refinamentos sucessivos, levados a cabo sobre elementos oriundos do primeiro refinamento, tendem a gerar elementos muito distorcidos. Esses elementos possuem ângulos internos cada vez mais próximos de 180°, dando origem a erros cada vez mais acentuados. Por isso, será adotada uma técnica intermediária que não cria nós irregulares e que tende a apresentar um menor índice de distorção nos elementos oriundos de refinamentos sucessivos. Esta técnica opera realizando o refinamento ao redor de um nó e não diretamente dentro de um elemento.

REFINAMENTO AUTO-ADAPTATIVO TIPO h POR NÓ

É a estratégia utilizada neste trabalho. Para tal, procura-se caracterizar nós ao redor dos quais será realizado o refinamento. Inicialmente calcula-se, para cada elemento, a norma de energia do erro e o valor limite de erro conforme as expressões (4) e (9) respectivamente. Em seguida realizam-se, para cada nó, as médias dos quadrados da norma de energia e do limite de erro

dos elementos concorrentes no nó N. Sendo NLCN o número de elementos concorrentes no nó N, tem-se $||E||_{N\hat{e}_{\sigma}}^2 = \frac{1}{NLCN} \sum_{i=1}^{NLCN} ||E||_{i\hat{e}_{\sigma}}^2 e ||E||_{N\hat{e}_{\sigma}}^2 = \frac{1}{NLCN} \sum_{i=1}^{NLCN} ||E||_{i\hat{e}_{\sigma}}^2$. Comparando essas expressões, haverá refinamento nos elementos que circundam o nó N sempre que $||E||_{N\hat{e}_{\sigma}} > ||E||_{N\hat{e}_{\sigma}}^2$. As figuras 2 à 5 mostram a subdivisão adotada conforme o tipo de elemento utilizado.

Nó ao redor do qual é realizado o refinamento

Figura 2 - Elemento quadrilátero.

Figura 3 - Elemento hexaédrico.

Figura 5 - Elemento pentaédrico.

As subdivisões de elementos valem para malhas mistas com qualquer dos elementos acima mostrados, tanto lineares como quadráticos, contanto que cada elemento dê origem a elementos de mesma ordem e que não haja mistura de elementos de ordem diversa.

O processo de criação de nós e elementos é controlado através do arranjo NCONTR, que tem uma posição para cada nó. Este arranjo controla o processo ao longo das diversas etapas de refinamento e utiliza a variável NIVEL. Ao iniciar o processo, a variável NIVEL é feita 1 e todos os nós da malha original recebem o valor NIVEL no arranjo NCONTR. Para um nó que tenha o valor em NCONTR=NIVEL e que necessite de refinamento $||E||_{N\hat{e}_o} > ||E||_{Nk\hat{e}_o}$, marca-se este nó com valor -1 em NCONTR (nó não será mais refinado) e aos nós dos elementos ligados a ele é atribuído, durante a etapa, o valor 0 para impedir refinamento ao redor destes nós na etapa. Ao final da etapa, o valor de NCONTR, correspondente a estes nós, é reposto com NIVEL. Aos novos nós, atribui-se o valor NIVEL+1 no arranjo NCONTR. O processo continua por tantas etapas quantas forem necessárias para produzir refinamento ao redor dos nós com NCONTR=NIVEL. Se, a partir de uma certa etapa, não existirem mais nós sem refino com $||E||_{N\hat{e}_o} > ||E||_{Nk\hat{e}_o}$, NIVEL é incrementado de 1 e o processo recomeça para os novos nós. Nós intermediários de elementos quadráticos não são considerados no processo acima.

EXEMPLOS

Obs:. Nos exemplos a seguir, $\hat{\eta}$ (%) e $\overline{\eta}_r$ vêm das expressões (5) e (8) respectivamente. Exemplo 1: Retângulo vazado (fig. 6a) do qual se discretiza apenas um quarto (região em L hachurada) devido à dupla simetria geométrica e de carregamento(ver figuras 6 e 7).

Figura 6 - Região em L. Estado plano de tensões. Elementos quadriláteros de 8 nós. $\overline{\eta}_T = 1\%$ a) Retângulo vazado. b) Malha inicial, 106 nós, 27 elementos. c) Malha inicial, $\hat{\eta}$ (%). d) 1° refinamento, 196 nós, 55 elementos, $\hat{\eta}_{max} = 5.6\%$. e) 3° refinamento, 400 nós, 119 elementos.

Figura 7 - Região em L. 3º refinamento, $\hat{\eta}(\%)$.

Comparando $\hat{\eta}$ máximo da figura 7 (2,6%) com o $\hat{\eta}$ máximo da figura 6c (7,2%), nota-se que houve um abaixamento considerável do erro relativo dos elementos. Ao realizar a 4^ª etapa de refinamento, não se consegue abaixar o $\hat{\eta}$ máximo. Isto mostra que a distorção de alguns elementos está afetando os resultados e impossibilitando um abaixamento maior do erro.

Exemplo 2: Viga simplesmente apoiada (ver figuras 8, 9, 10 e 11).

Figura 8 - Viga simplesmente apoiada. Sólido tridimensional. a) Desenho esquemático.b) Malha inicial, 262 nós, 32 elementos. Elementos hexaédricos de 20 nós.

Figura 9 - Viga simplesmente apoiada. a) Malha inicial, Tensão σ_x . b) Malha inicial, $\hat{\eta}(\%)$.

Figura 10 - Viga simplesmente apoiada. 1º refinamento, 429 nós, 56 elementos. $\hat{\eta}_{max} = 13\%$

Figura 11 - Viga simplesmente apoiada. a) 2° refinamento, 567 nós, 80 elementos. b) 2° refinamento, Tensão σ_x . c) 2° refinamento, $\hat{\eta}(\%)$.

O exemplo 2 (figuras 8, 9, 10 e 11) conduz a um resultado que permite atingir a percentagem de erro especificada $\overline{\eta}_T = 5\%$ em quase toda a estrutura. As únicas exceções são: o ponto de aplicação da carga concentrada e os pontos de apoio. Os valores de tensão σ_x estão próximos da tensão σ_x máxima teórica de 1,25×10⁵ kN/m², visto que $\sigma_{x max} = 1,2 \times 10^5$ kN/m² em todas as etapas de refinamento.

Obs:. O exemplo 1 (Região em L) também foi analisado com uma malha de elementos quadriláteros de 4 nós e conseguiu-se atingir um nível de erro de 5,4%. Esse nível de erro é semelhante ao obtido pelo processo que cria os nós irregulares [4]. Para atingir esse nível de erro, a quantidade de nós e elementos utilizados no refinamento por nó é quase a metade daquela necessária no processo que cria os nós irregulares.

CONCLUSÕES

A estratégia de refinamento por nó, por não criar nós irregulares, é de fácil implementação em sistemas convencionais de elementos finitos. Ela pode ser aplicada em elementos bi e tridimensionais lineares e quadráticos do tipo triângulo, quadrilátero, pentaedro ou hexaedro.

Ao realizar refinamentos sucessivos dentro de uma mesma etapa, consegue-se atingir baixos índices de erro mais rapidamente. Apesar da distorção dos elementos, que aumenta nas consecutivas etapas de refinamento, o processo permite que se obtenha um abaixamento do nível de erro até valores da ordem de 5%, exceto para pontos de aplicação de carga ou apoio. Para níveis de erro menores, corre-se o risco de a distorção exagerada em alguns elementos não permitir o abaixamento do erro, embora isso não seja uma regra.

De modo geral, o estimador de erros e o processo de refinamento utilizados mostraram-se bastante eficientes, uma vez que o erro diminui até níveis razoáveis do ponto de vista de engenharia. Caso se desejar erros ainda menores, pode-se iniciar o processo com uma malha mais fina.

REFERÊNCIAS BIBLIOGRÁFICAS

[1]Zienkiewicz, O. C. and Zhu, J. Z., A Simple Error Estimator and Adaptative Procedures for Practical Engineering Analysis, International Journal for Numerical Methods in Engineering, Vol. 24, 1987, págs. 337-357.

[2]Zhu, J. Z. and Zienkiewicz, O. C., Adaptative Techniques in the Finite Element Method, Communications in Applied Numerical Methods, Vol. 4, 1988, págs. 197-204.

[3] Groehs, A. G. e Santos, M. I. G., GAELI - Gerador e Analisador de Estruturas Lineares, Grupo de Análise Numérica Aplicada, UFRGS, Porto Alegre, Brasil, 1990.

[4]Silva, L. C. P., Um Processo de Refinamento Auto-Adaptativo Tipo h para o Método dos Elementos Finitos, Dissertação de Mestrado, Curso de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul, 1991.

[5] Lyra, P. R. M., Alves, L. D., Coutinho, A. L. G. A. and Landau, L., Comparison of Mesh Refinement Strategies for the h Version of the Finite Element Method, X Congresso Ibero-Americano sobre Métodos Computacionais em Engenharia, Vol. 2, 1989, págs. A595-A610, Porto, Portugal.