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Se analiza el efecto de los surfactantes adsorbidos sobre el Oujo que tiene lugar en la
zona de formacian de la pelfcula del recubridor de ranura. La tecnica numerica
empleada en este trabajo se basa en el metodo de elementos finitos y puede manejar
adecuadamente los Oujos con superficies libres con propiedades interfaciales
variables. La completa informaci6n producida por el c6digo computacional permite
relacionar la dimimica interfacial con los mecanismos involucrados en el transporte
de materia: convecci6n y adsorci6n1desorci6n. Los resultados presentados
muestran que los efectos producidos por la \'iscosidad y la elasticidad interfacial son
semejantes; sin embargo, las condiciones operativas que hacen estos efectos mas
notables son diferentes.

The effect of adsorbed surfactants on the 110w that takes place in the film forming
zone of the slot coater is examined. The numerical technique employed in this
work, that is based on the finite element method, can suitably handle \'iscous free
surfaces with locally varying interfacial properties. The complete information
produced by the computational code allows to relate the interfacial dynamics to the
mechanism involved in the mass transport process: com'ection and
adsorption/desorption. The results presented show that the effects produced by
both interfacial viscosity and interfacial elasticity are" rather similar; however, the
operating conditions that make them more noticeable are different

Coating operations involve viscous 110ws in which a thin liquid film is continuously deposited
on a moving substrate. These Oows, upon which the control and feasibility of a coating
process depend, may be considered steady, isothermal and, except for narrow edge regions,
two dimensional; also, they are characterized by one or more free surfaces. The uniformity of
the film is one of the most important goals of a coating process, a characteristic closely related
to the dynamic behavior of the interfaces. Liquids commonly employed in coating operations
contain additives, among them surface active agents which are adsorbed at the free surface
altering its properties (surface \'iscosity and surface tension) and this, in turn, may affect the
dynamic behavior of the interface.

Despite that surfactants are often used not only in coating technology but also in a great number
of practical applications, their inOuence on the associated OO\\'Shas not been largely explored.
In a pre\'ious work. Gi;wcdoni and Saita U1ana\)1.edthe flow occuITin~in the rear ~rt of the
slot coater when the interfacial concentration of surfactant is constant; I.e. they studIed a hmit
case. Also, they presented a technique for introducing the surface viscous tenns into. the
numerical codes employed in the analysis of coating flows, That work IS the baSIS of the
present one.



The overall goal of this paper is to numerically study the effects of surface active agents in the
flow that takes place at the film forming zone of the slot coater. Figure I illustrates the flow
domain considered and shows some features of this problem which has been extensively
studied by Saito and Scriven [2] when the interface is free of surfactants. This problem is
rather complicated; nevertheless, under certain conditions we can attain an approximate
solution. The 110win the coating bead is intense; therefore, the mass transport by com'ection
must be much more important than the diffusional process and thus, we may presume that the
surfactant concentration is uniform in the liquid phase even near the interface. Then, a
concentration jump should exist in the thin interfacial sublayer where the adsorption process
takes place and the mass transfer problem is reduced to the free surface where a non-equilibrium
concentration of surface-active agents should generally exist Since the governing equations of
this problem are non-linear and strongly coupled because of the interactions between the bulk
and the surface phase, the only way of attaining proper results is by means of sophisticated
numerical techniques. The one here employed wa~ del'eloped at the University of Minnesota
for analyzing free surface 110ws when the interface is free of surfactants ( see e.g. Kistler and
Scriven [3]).
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A. Balance equations for the bulk phase

The flow in the slot coater is steady and isothermic; also, it can be regarded as two-dimensional
except for a small region near the edges of the coating device. The liquid is incompressible and
Newtonian. The surfactant concentration is presumed uniform in the liquid phase and it
remains constant throughout the process of mass transfer from or to the interface. The ambient
gas is inviscid and its pressure, which is used as the pressure datum, is arbitrarily set equal to
zero. Under these conditions, the mass balance in the bulk phase is described by the continuity
equation,

Since the characteristic dimensions of the coating device are very small, the effect of gral'i ty can
be neglected; therefore the balance of momentum results



where T = -pI+[vv+(vvf]. Equations (I), (2) and the constituti\'e equation for the
Newtonian liquid are written in their dimensionless form, The characteristic scales used are the
substrate speed (U) and the clearence between the die and the substrate (d). Pressure and
stresses are measured in units of viscous force (~IUId) , Re = pUdhl is the Reynolds number,
p and ~l are the density and the viscosity of the liquid phase, respectively.

To complete the mathematical description of the problem we must specify the appropriate
boundal')' conditions; they are as follows

a) On solid surfaces the liquid adheres to the solid; then, on the die wall the components
of the velocity vector are

\\'here u and l' are the components of the velocity vector in the x and y directions,
respectively,

b) Far upstream from the meniscus the flow is I-D; consequently, the \'Clocity
distribution should be parabolic satisfying boundary conditions (3), (4) and also
satisfying the net flow rate Q which is measured in units of (Ud). Thus,

c) Far downstream from the slot e:\it, the flow should be rectilinear; there we impose a
zero traction to the normal outflow boundary,

The boundary conditions to be imposed along the liquid-air interface are considered in detail in
the ne:\t section.

In order to obtain an e:\pression for the tmction vector at the interface we assume that the
following hypotheses hold:

(i) The normal component of the velocity at the interface is zero .

(ii) The total surface mass density is small enough so as to consider the inertial terms
negligible.

(IV) , The interface is Newtonian and the surface stress tensor of thc interface with adsorbed
surfaclants is equal to the stress tensor of the pure interface, the only difference being the
coetTicients (surface viscosity and sllli'ace tension) that in the former case depend on the
local concentration of surfactant. Moreover, published e:\perimental results ([4],[5])
show that the lolal interfacial viscosity is apprmimately equal to the dilatational surface
viscosity (k),



Considering the hypotheses (i)-(v) and the geometry of the interface (i.e., a cylindrical surface),
we obtain the folowing dimensionless expression for the traction vector at the free surface:

o(p('») - a/a" and b(p('») - K/f1d, where p(,) is measured in units of the interfacial
concentration of surfac tants·that would exist if the surface were in equilibrium with the adjacent
phase (i.e. p~») In the lalter equation s is the dimensionless arc length, W is the interfacial
"e!ocity measured in units of U, t is the unit tangent vector to the free surface pointing in the
direction of increasing sand Ca = fIU/U is the Capillary number defined \lith the ,'alue of

(J = OM corresponding to an interface free of surfactants. Also, o(p('») = a/a" and

ii(p('») = Khu/, where pI') is the dimensionless concentmtion of surfactant at the interface
measured in units of the interfacial concentmtion of surfactants that would exist if the surface
were in equilibrium with the adjacent phase (i,e. p~»). It is easy to note that if there are no
surfactants at the interface this expression will simplify to the boundary condition usually
imposed at a liquid interface.

In order to evaluate Eq. (7) it is necessary to establish a functional relation connecting o(p(,j)
and b(p('j) with p(,). Additionally, we must write an equation for the interfacial mass balance
of solute from which the local surfactant concentration should be evaluated. We make the
following assumptions:

(ii) Fick's law is appropriate to describe interfacial diffusion. Data available in the literature
([6],[7]) indicate that surface diffusion coefficients rife probably equal to or less than 10.6

cm2/s. Taking into account that the characteristic length of the system is of the order of
10-2 cm and that the characteristic velocity is generally greater than 10 cm/s, it is easily
verified that the dimensionless number relating the interfacial diffusion to the interfacial
convection (d,j/dU) is of an order equal to or smaller than 10-5 and, therefore, the
diffusional transport on the surface will be negligible compared to the convective
transport.

(iii) The mass transport between the surface and the bulk is carried out by an
adsorption/desorption process of first·order rate. Since the concentration of surfactant in
the bulk stays constant even near the free surface, this process is described by:
k"P~,j(p(') - 1); where k., is the kinetic constant.

Considering the foregoing hypotheses, the interfacial mass balance of surfactants reduces to the
following dimensionless expression:

d(p(')W) Ad( ('l)------l-p .
cis Re

In equation (8), Ad = k.1d
1pAI is the Adsorption number and Ad/Re = k.,d/U denotes the

ratio of adsorption to convective mass transport.



The remaining boundary conditions to be imposed at the interface are independent of the
adsorbed surfactants and establish that the free surface is pinned at the separation point (xs')'s)
and becomes parallel to the substrate at the outflow plane. Finally, although the surfactant can
be adsorbed at the interface, it can not be transferred through it; therefore, the interface is a
material surface and the kinematic condition adopts the usual form:

In order to observe how the presence of surfaclants affects the coating flow it is necessary to
introduce constitutive equations relating the surfactant concentration to the local values of the
interfacial tension and the surface viscosity. Tipically, a linear relationship is assumed; thus,

where f} = (aM - aJ/a.., is the elastic number, a ~ is the surface tension when p(" = 1 ,

o = K(p~")hld is the viscosity number and K(p~'»)is the value of the dilatational surface
\'iscosity at equilibrium.

In the next section we show the more salient features of the numerical technique employed to
solve the problem. The way the surface \"iscosity and surface tension are treated in the dynamic
boundary condition and the discretization of the equation representing the mass balance of
surfactant are particularly emphasized.

The system of equations is discretized using the finite element method for free surface flows
devcloped at the University of Minnesota. This solution technique has been formulated in detail
in previous works (see, e.g. Saito and Scriven [2), and Kistler and Scriven [3]), thus wc will
briefly mention the fundamentals.

EqSo (8) is weighted with the basis functions used to interpolate the interfacial concentration as
well as the frec surface location; the weighted residuals are then integrated along the free
surface. The following vanishing residuals result

In Eg. (12) the first term on the right hand side is zero when is cvaluatcd at (xs')'s) because
W = 0 at this point.

In the momentum rcsiduals pertaining to the free surfacc nodes, the traction vector is rcplaced
by Eg. (10) and the rcsulting expression is integrated by parts following the procedurc
suggested by Ruschak [81for an interface free of surfactants. Thus, we obtain

{
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Since at the separation point the velocity is known (Eq. (3» we do not need to evaluate Eq. (13)
there. AdditIOnally, the boundary conditions imposed to the liquid film at the outflow plane

imply t = i and ~ - a at (xpYF).

The comIJlete set of algebmic equations was simultaneously solved by Newton itemtion.
Computations were done in a Indy workstation of Silicon Graphics. The convergence criterium
adopted was that the norm of the difference between two consecutive approximations should be
equal to or smaller than 10-6.

The numerical scheme just described permits to obtain appropriate solutions for a wide range of
values of the representative dimensionless pammeters of the system (Re, Ca, Q); however, the
surfactant distribution presents small oscillations near the separation point when the stagnation
point is not present on the free surface. In order to eliminate these oscillations (that never
e:-.:ceeds291: and that are not associated to oscillations of the interfacial velocity) we implemented
two procedures that take into account the convective nature of the mass balance equation. They
are as follows

(i) Eq. (8) is integmted along the free surface between s = a (that is, the sepamtion point)
and an arbitrary value of s; then, the resulting e:-.:pression is made orthogonal to the
trial function <1>'(s). Thus we obtain

1, ",j r (,) Adj.' ( ('»)d ld O' ") J
'¥ lP W - - I - P sJ S = ,J = 1,-, ... , .

F, Re ,.0

(ii) Eq. (8) is wrilten in finite differences using the first order upwinding scheme proposed
by Wassmuth ef al. [9]. Since the isopammetric transformation maps the actual free
surface onto a coordinate line, the following finite difference expression is easily
introduced into the finite element code

In the preceding equation, i is a free surface node in the finite element mesh used to
discretize the flow domain; the deri\'ative of p is approximated by

(p~::- p~'»)/(Si+1- sJ if W < a and by (p~')- P~~J/(Si - Si) if W> 0, where W
stands for ~(Wi+l + Wi).

A comparison of the solution obtained with the original scheme (Eq. (12» and those obtained
using Eqs. (14) and (15) is presented in Figure 2 for a sample case. We see that Eq. (18) gives
a concentration distribution which still presents oscillations, though smaller than those shown
by the curve obtained with Eq. (12); while Eq. (15) produces a result free of oscillations. The
integral technique has already proved to be useful to avoid oscillations that may appear in the
numerical solution of hyperbolic equations in a completely different problem DO]. The.results
depicted in Figure 2 also show that the three curves are very SImIlar; thIS IS more ~Igmlleant II
we take into account that the differcnces observed in this variable (concentratIon ot surfactants)
are by far the greatest ones we found when comparing the three solutions.

The concentration profiles produced by the integral fom1 of the interfacial mass balance are no
longcr smlx)th whcn a stagnation point appears on thc frce surface and, somewhere between the



The concentration profiles produced by the integral form of the intelfacial mass balance are no
longer smooth when a stagnation point appears on the free sulface and, somewhere between the
separation and the stagnation point, the modulus of the sulface velocity is greater than 10-2 ;
close to the stagnation point the concentration profiles present oscillations whose amplitude
rapIdly grows when the sulface I'clocit)' increases_ Therefore, we employed Eg, (14) if there
was no stagnatIOn pomt and Eg. (12) otherwise.
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Figure 2 Comparison of the intelfacial concentration profiles computed with Eg. (l2)~, Eg,
(14)· and Eg. (15) D. The free surface does not present a stagnation point.

The f10w domain was tessellated into 146 elements as it was already mentioned, The non-linear
set of algebraic equations has 1396 equations that are simultaneously solved by Newton's
method; each Newton iteration takes about 35 seconds in the Indy workstation used to compute
the solutions and no more than 5 iterations were needed in order to achie\'e the convergence
criterium adopted. A zero order continuation procedure was used to progressively change any
of the parameters of the system,

SurfactanL~ adsorbed at an intelface give rise to sulface viscosity which for insoluble films may
be as large as 1 surface poise (dyn see/em) being usually less than 10-2 sulface poise for
adsorbed films (see e.g., Jaycock and Parfitt [11]). When elastic effects are negligible but the
intelfacial viscosity is non-zero, the balance of stresses at the free sulface depends on the local
concentration of surfactant through the constitutive equation relating surface viscosit)' and pI'),

The changes associated with interfacial viscosity are limited to the free sulface when I) is small,
as it can be obserl'ed in Figurc 3, whcre the streamlines calculatcd by postprocessing thc
numerical solution arc drawn. In bct, the streamlines for 1)= 0 amI 1)= 0.:25 are coincident
with the exception of thc line ending at the stagnation point (\j1 = 0.20) and those adjacent to it.
If the intelfacial "iscosity increases, the velocity field orthe bulk phase is modified, particularly
in the vicinity of the free surface (see inserts): the streamlines corresponding to I) = 1 and
b = 1.5 sholl' that the streamline of 0,20 moves upward and to the interior of the f1uid, The
recirculation zone is pushed toward the slot entrance and the extension of the 1-0 f10w region is



reduced. (Note that for increasing values of () the streamline 'P - 0.225 is displaced toward
x - 0).
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Figure 3: Streamlines for different values of the viscosity number (d); (I) 'P=O., (2) 'P=0.12,
(3) 'P=0.19, (4) 'P=0.20, (5) 1IJ=0.215, (6) 'P=0.225. The inserts show the flow field

corresponding to the region enclosed by dashed lines. Re - I, Ca = 0.05, Q = 0.20 and
Ad = 0.8.

The results depicted in Figure 3 also show that the free surface shape is not affected by b, at
least in the range of viscosity numbers here considered. According to our numerical
calculations, the static contact angle 8, ,oarics by no more than 1° when b varies between 0 and
2, either for Re = I or for Re = 32.

If ,oiscous effects are negligible (b = 0) but the interfacial tension varies with the concentr.ltion
of surfactants, the interface will show elastic effecls arising from thc surface tension gradients.



Elastic effects affect almost exclusively the interfacial velocity when ~ is very small, but as the
elasticity number increases they influence a greater zone of the bulk phase, as it is illustrated by
the streamlines drawn in Figure 4 (the inserts correspond to details of the flow field near the
free surface). The displacement of the streamline corresponding to 1J1 = 0.20 upward and
toward the inner mass of fluid, shifts the recirculation zone toward x - 0 and therefore, the
extension of the I-D flow region diminishes. If Figs. 4 and 3 are compared it is clear that
surface elasticity induces changes in the flow field very similar to those induced by surface
viscosity.

Figure 4: Streamlines for different values of the elasticity number (b); (1) 1J1=0., (2) \}1=0.12,
(3) 1J1=0.19, (4) \}1=0.20, (5) \}1=0.215, (6) 1J1=0.225. The inserts show the flow field

corresponding to the region enclosed by dashed lines. Re = 1, CCI = 0.05, Q = 0.20 and
Ad= 0.8.

The inserts in Figure 4 show that the liquid in the vicinit)' of the free surface moves slo\\'ly for
small 13. In fact, not only at the free surface but also in its "icinity the fluid velocities are

considerably smaller for B = 0.05 than for B = 0; tho~gh the values of (dV,/ an )FS are clearly
larger when 13 = 0.05. For incipient values of 13, W diminishes favouring the action of the
sorption proccss that works to reduce thc concentration gradients. Whcn the stagnallon pomt IS



no longer present (~> 0.067), any further increase of ~ produces greater values of the
velocity (at the interface and its surroundings) as it can be observed from results corresponding
to ~ <!: 0.1. Again, the system tends to reduce the velocity gradients responsible for the non-
equilibrium state and the boundary conditions at both ends of the interface
(W = 0, s - 0; W -+ 1, s -+ (0) preclude that this happens.

In this work we show that the finite element method combined with a convenient
parametrization of the free surface can be easily extended to include the case in which there are
surface-active agents adsorbed at the interface. We present three different discrete forrns of the
interfacial mass balance, one of them is based on a finite difference scheme. Although, these
three forrnulations usually gil'e similar results, in some cases the interfacial concentration
presents oscillations depending upon the discrete forrn employed. Numerical tests indicate that
the solutions computed using, either the finite difference approximation or the residuals of the
differential mass balance equation, do not oscillate when there is a stagnation point at the
interface, whereas, the residuals of the integral forrn of the mass balance produce better
solutions in the opposite situation.
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