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ABSTRACT
The differential method was applied to the sensitivity analysis for

waterhammer problems in hydraulic networks. Starting from the classical
waterhammer equations in a single-phase liquid with friction (the direct
problem) the state vector comprising the piezometric head and the
velocity was defined.

Applying the differential method the adjoint operator, the adjoint
equations with the general form of their boundary conditions, and the
general form of the bilinear concomitant were calculated. The
discretized adjoint equations and the corresponding boundary conditions
were programmed and solved by using the so called method of
characteristics.

As an example, a constant-level tank connected through a pipe to a
valve discharging to atmosphere was considered. The bilinear
concomitant was calculated for this particular case. The corresponding
sensiti ••ity coefficients due to the variation of different parameters by
using both the differential method and the response surface generated by
the computer code WHAT, solver of the direct problem, were also
calculated. The results obtained with these methods show excellent
agreement.

The analysis of waterhammer transients plays an essential role in diverse areas such as
hydroelectric projects, pumped-storage schemes, water supply systems, nuclear power plants,
oil pipelines and industrial piping systems [I]. In nuclear power plants, various operating



transients in the heat transport system can lead to significant pressure changes, which must be
taken into account in the design for a safe operation [2].

Coupled to any transient calculation, there is a necessity of estimating the influence of
different parameters on the obtained solution. This task, known as sensitivity analysis, can be
performed by running repeatedly the computer code used in the calculations for different
values of the parameters; in this way, a response surface is generated. However, this method
requires time consuming calculations when many parameters are involved.

A different approach to perform the sensitivity analyses are the perturbation methods,
which have been extensively used in reactor physics through the concept of the importance
function [3,4,5]. The application of perturbation methods to the thermalhydraulics field has
been first proposed by Oblow [6] by using the so called differential method; since then, it has
been successfully extended [7]. The differential method has the following advantages:

i) The sensitivity analysis can be performed without choosing a priori any parameter.
ii) The calculations are faster and more efficient, since only one additional set of linear

equations needs to be solved for a prescribed response.

The differential method is restricted to the linear behavior of the response surface in the
vicinity of a specific design point, being this the main disadvantage.

The purpose of this paper is to outline the development of the sensitivity theory for a
general waterhammer problem.

Direct equations. Consider the general one-dimensional waterhammer equations in a single-
phase liquid with friction [8]:
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where H is the piezometric head, V the fluid velocity, a the wave propagation speed, D the
pipe diameter, 8 the pipe inclination angle, g the gravity acceleration, and I;; the Darcy friction
factor (function of V).

The waterhammer equations can be written in a general way as

where 1= [H,V] is the state vector and p = [PI'P2 " .. ,PI] the parameter vector, which in
turn depend on the generalized coordinate vector f .

The corresponding boundary and initial conditions at the domain surface 's can be
written as

C(j,P) = Ii at T = Ts

Consider now a response functional R given by the expression

R =< S+.j>



where S+ '" [S~ ,S:] is an assigned vector weighting function, while the brackets represent
integration over the whole domain n=[o,x]x[O,1]. In the following, we shall look for an
expression for the change oR in the response functional in terms of the perturbations 0Pi of the
system parameters. In particular, expressions giving the sensitivity coefficients relevant to
different parameters will be obtained.

Derived equations. Expanding (2) around a reference solution and considering the
perturbations 0Pi as independent, we obtain the general expression for the derived equations

H l. = S(i) (5)

C 8C_ -
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The symbol a denotes a Frechet derivative [9]. The final derived waterhammer
equations are then

Expanding (4) to a first order, we obtain the change in the response functional (the
sensitivity) as

I

oR = l)p, « SI~.] > + < S+.J;, »
i=1

Adjoint equations. Instead of solving (13) for each desired parameter to obtain the change in
the response functional we can apply the concept of the adjoint function [10], defined by

< 1;; .(H· T) >=< T .(H J;;) > +p(T ,J;;) (14)

where l' is the adjoint (importance) function, H' is the adjoint operator, and P the so called
bilinear concomitant. The adjoint function is independent of the parameters. The linear adjoint
system satisfies

The particular form of the bilinear concomitant and the adjoint boundary conditions are
determined for each problem, considering that:



i) The bilinear concomitant must not involve the derived functions, except when
evaluated at the initial condition t=O.

ii) The boundary conditions for the adjoint equations must not involve the derived
functions.

The change in the response functional can now be obtained as

oR= top, [< S/~.] > + < l' .S(i) > +p]
;=1
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Method of characteristics. It can be shown that the direct and adjoint equations are
hyperbolic, so they can be transformed in ordinary differential equations along characteristic
curves C+ and C-, respectively defined by dxldt=a and dxldt=.a. For the direct equations we
have [8]

DH a DV . a1;;VIVI--+---+VsmS+---=O ;alongC+
Dt g Dt 2gD

DH a DV . a1;;VIVI----+VsmS----=O ;alongC
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Correspondingly, for the adjoint equations on C+ and C- we have

DH' gDV' .g. .gIVI( voc,) + g +
/5t+;;/5t-H ;;smS-V;; D 1:+2'av +SH+;;Sv = 0

DH' g DV' • g . • g Ivi ( V oc,) + g +
/5t-;; Dt +H ;;smS+V;; Dl1;;+2'av +SH-;;SV =0

Discretization. The characteristic curves are the same for the direct and adjoint equations and
have a constant slope. Thus, it is possible to dis-cretize regularly the plane x-t into nodes and
cycles, as in finite diffe-rences schemes, and perform the integration along the characteristics.

The direct equations have initial conditions, so the integration proceeds forward in
time. For an inner node, the values of H and V after a time step are calculated by
simultaneously solving finite difference approximations of the characteristic equations (21) and
(22). For a node connected to a spatial boundary condition, it is necessary to solve



simultaneously the appropriate characteristic equation and the corresponding boundary
condition.

The strategy used in the integration of the adjoint equations is similar to the one
detailed above. However, it will be shown later that the adjoint equations have final
conditions; thus, the integration must proceed backward in time.

The direct problem was programmed in the computer code WHAT (Water Hammer
Analysis in Tubes) [11]. With this code, any hydraulic network can be built by connecting
different components (tanks, valves, pumps, tees, etc.) through pipes. The adjoint problem
was programmed for different response functionals in the computer code ADWHAT, keeping
the same philosophy.

Let us consider the problem of a single pipe connected at the end x=0 to a constant-
level tank, while the end x=X is connected to a valve discharging to atmosphere

x
Figure 1. Hydraulic system
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were CI and C2 represent the boundary conditions at the tank and at the valve, while C3 and
C4 represent the initial conditions.

The derived boundary conditions result
1
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Adjoint equations and bilinear concomitant. The boundary conditions for the adjoint
equations and the bilinear concomitant can be calculated by replacing (28) in (19) and
considering the independence of the adjoint problem with respect to the derived functions. In
this way, the boundary conditions for the adjoint equations result

2

c; ""~H' -( V +kt Ivl) V' = 0 at x=Og
• a2

• •
C2 ",,-H +kylvlv =0 at x=X (29)

g
C; ""H' = 0 at t = T

C; ""V' =0 at t = T

Note that the initial conditions in the direct problem have been transformed into final
conditions in the adjoint problem.

Some response functionals. The solution of the adjoint equation involves the knowledge of
the solution of the corresponding direct equations and the definition of the source term S·.
The instantaneous values for the piezometric head and velocity can be chosen as response
functionals by means of suitable distribution functions.

Instantaneous piezometric head: for the weighting function

R"" H(7o) = H(xo,to)

Instantaneous velocity: let us consider the weighting function

S· = [0,0(7 - 70)]

Definition of the sensitivity problem. We consider the hydraulic system in a steady state for
t ~ O. For t ~ 0 the valve is operated in such a way that the friction coefficient changes linearly
from kYi to kYj in a time interval 't, as shown in figure 2.

The following constants were chosen: HF13 m, Hy=1O m, X=30m, D =2.54 10-2 m, e
= 1. 10-4 m, kvi = 0., kYf= 1. 103, 't = 8.35 10-2 s. and kt=0.5 if V>O or kt=1.0 if V<O. The
fluid is water, with v=1.0 10-6 m2/s, a = 1437 m/s. The pipe was discretized into 11 nodes,
resulting Ax = 3 m, t:.t = Ax/a = 2.087 10-3 s. We are interested in the sensitivity coefficients
defined by equations (32) and (34) due to variations of different parameters.
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Figure 2. Time variation of the valve friction coefficient.



Some results. Once the direct problem for the given example was numerically solved with the
WHAT code, six related adjoint problems were solved with de ADWHAT code. These six
cases have different response functionals defined as:

a) R=H(O,l), head at the tank outlet (node 1);
b) R=H(X/2,l), head at the middle of the pipe (node 6);
c) R=H(X,l), head at the valve inlet (node 11);
d) R=V(O,l), velocity at the tank outlet (node 1);
e) R=V(X/2,l), velocity at the middle of the pipe (node 6);
t) R=V(X,l), velocity at the valve inlet (node 11).

As an example of the direct solution, the evolution of H and V during the transient at
the three selected locations (nodes 1, 6 and 11) is shown in figures 3, 4 and 5.

For each one of the previously defined six adjoint cases, the sensitivity coefficients due
to changes in the parameter kvf and the closure time t were calculated, by means of the
computer code SANWHAT. Two different values of the reference time T(T=t/2 and T=20 t)
were chosen. Consequently, twenty-four different sensitivity coefficients have been evaluated.
They are tabulated in Tables 1 and 2 along with the sensitivities evaluated by obtaining direct
solutions with the selected parameters perturbed, using the WHAT code.

The closure time, has been chosen equal to the period of the perturbation (4 Xa).
For T = ,/2 we get the maximum value of the piezometric head at the valve, while for T = 20 ,
a new steady state is achieved.
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Node 01 06 11

WHAT SANWHAT WHAT SANWHAT WH4T SANWHAT

oH 2.83 2.83 9.65 9.64 206 2.06M[m] 10-5 10-5 10-3 10-3 10-2 10"2vi

oV -1.81 -1.81 -UI -UI -138 -138M[m/s] 10-4 10-4 10-4 10-4 10-4 10-4
vi

oH -0.34 -0.33 -115.6 -115.5 -247.0 -247.1-[m]0,

8V 2.170 2.171 2.050 2.051 0.65 0.66~[m/s]

Node 01 06 11

WH4T SANWHAT WH4T SANWHAT WHAT SANWH4T

oH 4.11 4.14 6.15 5.27 Ll9 1.01
M[m] 10-0 10-0 10-5 10-5 10-4 10-4vi

8V -Ll3 -Ll4 -Ll3 -Ll4 -Ll3 -1.14
M[m/s] 10-4 10-4 10-4 10-4 10-4 10-4

vi

oH -6.0 -7.1 -8.2 -8.4 -8.2 -8.7-[ml0, . 10-8 10-8 10"5 10"5 10-5 10-5

oV 1.8 2.0 1.8 2.0 3.3 3.6~[m/s] 10-0 10-0 10-0 10-0 10-0 10-0

From tables 1 and 2 it can be observed that the agreement between the results obtained
from the codes WHAT and SANWHAT is excellent for short observation times. For the
steady state, there are slight discrepancies due primarily to the treatment of the friction term in
the direct equations when the method of characteristics is applied.

In figure 6, the adjoint solutions 11 and V for case (a) at some selected cycles is
shown. This figure is only intended to show the kind of traveling delta-like waves that are
typical of the adjoint waterhammer problems.
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Figure 6, Adjoint solutions H*(x. t) and V*(x, t) at some selected times, corresponding to cycles
o to 12 (cycle 0 refers to the final time 1).

The development of the sensitivity theory by the differential method for a general
waterhammer problem was outlined. The adjoint equations and the general form of the bilinear
concomitant were obtained. The methodology was applied to a simple problem, showing
excellent agreement between the sensitivity coefficients calculated with the differential method
and the ones obtained via the solution of many perturbed direct problems.
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